Cross Products and Tripple Vector Products in 3-dimensional Euclidean Space

Kanchun Shinshu University Nagano Hiroshi Yamazaki Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. First, we extend the basic theorems of 3-dimensional Euclidean space, and then define the cross product in the same space and relative vector relations using the above definition.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{EUCLID_5}.$

The articles [14], [2], [12], [9], [6], [4], [3], [5], [13], [10], [11], [7], [8], and [1] provide the terminology and notation for this paper.

We adopt the following convention: x, y, z denote real numbers, x_3, y_3 denote elements of \mathbb{R} , and p denotes a point of $\mathcal{E}^3_{\mathrm{T}}$.

We now state the proposition

(1) There exist x, y, z such that $p = \langle x, y, z \rangle$.

Let us consider p. The functor p_1 yielding a real number is defined as follows:

(Def. 1) For every finite sequence f such that p = f holds $p_1 = f(1)$.

The functor p_2 yields a real number and is defined by:

(Def. 2) For every finite sequence f such that p = f holds $p_2 = f(2)$. The functor p_3 yields a real number and is defined by:

(Def. 3) For every finite sequence f such that p = f holds $p_3 = f(3)$.

Let us consider x, y, z. The functor [x, y, z] yields a point of \mathcal{E}_{T}^{3} and is defined as follows:

(Def. 4) $[x, y, z] = \langle x, y, z \rangle$.

One can prove the following three propositions:

- (2) $[x, y, z]_1 = x$ and $[x, y, z]_2 = y$ and $[x, y, z]_3 = z$.
- (3) $p = [p_1, p_2, p_3].$

C 2003 University of Białystok ISSN 1426-2630 KANCHUN et al.

(4) $0_{\mathcal{E}^3_{\mathrm{TT}}} = [0, 0, 0].$

We adopt the following rules: p_1 , p_2 , p_3 , p_4 are points of \mathcal{E}_T^3 and x_1 , x_2 , y_1 , y_2 , z_1 , z_2 are real numbers.

Next we state several propositions:

- (5) $p_1 + p_2 = [(p_1)_1 + (p_2)_1, (p_1)_2 + (p_2)_2, (p_1)_3 + (p_2)_3].$
- (6) $[x_1, y_1, z_1] + [x_2, y_2, z_2] = [x_1 + x_2, y_1 + y_2, z_1 + z_2].$
- (7) $x \cdot p = [x \cdot p_1, x \cdot p_2, x \cdot p_3].$
- (8) $x \cdot [x_1, y_1, z_1] = [x \cdot x_1, x \cdot y_1, x \cdot z_1].$
- (9) $(x \cdot p)_1 = x \cdot p_1$ and $(x \cdot p)_2 = x \cdot p_2$ and $(x \cdot p)_3 = x \cdot p_3$.
- (10) $-p = [-p_1, -p_2, -p_3].$
- (11) $-[x_1, y_1, z_1] = [-x_1, -y_1, -z_1].$
- (12) $p_1 p_2 = [(p_1)_1 (p_2)_1, (p_1)_2 (p_2)_2, (p_1)_3 (p_2)_3].$
- (13) $[x_1, y_1, z_1] [x_2, y_2, z_2] = [x_1 x_2, y_1 y_2, z_1 z_2].$

Let us consider p_1, p_2 . The functor $p_1 \times p_2$ yielding a point of \mathcal{E}^3_T is defined by:

(Def. 5)
$$p_1 \times p_2 = [(p_1)_2 \cdot (p_2)_3 - (p_1)_3 \cdot (p_2)_2, (p_1)_3 \cdot (p_2)_1 - (p_1)_1 \cdot (p_2)_3, (p_1)_1 \cdot (p_2)_2 - (p_1)_2 \cdot (p_2)_1].$$

The following propositions are true:

- (14) If p = [x, y, z], then $p_1 = x$ and $p_2 = y$ and $p_3 = z$.
- (15) $[x_1, y_1, z_1] \times [x_2, y_2, z_2] = [y_1 \cdot z_2 z_1 \cdot y_2, z_1 \cdot x_2 x_1 \cdot z_2, x_1 \cdot y_2 y_1 \cdot x_2].$
- (16) $(x \cdot p_1) \times p_2 = x \cdot (p_1 \times p_2)$ and $(x \cdot p_1) \times p_2 = p_1 \times (x \cdot p_2)$.
- (17) $p_1 \times p_2 = -p_2 \times p_1.$
- (18) $(-p_1) \times p_2 = p_1 \times -p_2.$
- (19) $[0,0,0] \times [x,y,z] = 0_{\mathcal{E}^3_{\mathcal{T}}}.$
- (20) $[x_1, 0, 0] \times [x_2, 0, 0] = 0_{\mathcal{E}^3_{T}}$
- (21) $[0, y_1, 0] \times [0, y_2, 0] = 0_{\mathcal{E}^3_{\mathcal{T}}}.$
- (22) $[0,0,z_1] \times [0,0,z_2] = 0_{\mathcal{E}^3_{m}}.$
- (23) $p_1 \times (p_2 + p_3) = p_1 \times p_2 + p_1 \times p_3.$
- (24) $(p_1 + p_2) \times p_3 = p_1 \times p_3 + p_2 \times p_3.$
- (25) $p_1 \times p_1 = 0_{\mathcal{E}^3_T}$.
- (26) $(p_1 + p_2) \times (p_3 + p_4) = p_1 \times p_3 + p_1 \times p_4 + p_2 \times p_3 + p_2 \times p_4.$
- (27) $p = \langle p_1, p_2, p_3 \rangle.$
- (28) For all finite sequences f_1 , f_2 of elements of \mathbb{R} such that len $f_1 = 3$ and len $f_2 = 3$ holds $f_1 \bullet f_2 = \langle f_1(1) \cdot f_2(1), f_1(2) \cdot f_2(2), f_1(3) \cdot f_2(3) \rangle$.
- (29) $|(p_1, p_2)| = (p_1)_1 \cdot (p_2)_1 + (p_1)_2 \cdot (p_2)_2 + (p_1)_3 \cdot (p_2)_3.$
- $(30) \quad |([x_1, x_2, x_3], [y_1, y_2, y_3])| = x_1 \cdot y_1 + x_2 \cdot y_2 + x_3 \cdot y_3.$

382

Let us consider p_1 , p_2 , p_3 . The functor $\langle |p_1, p_2, p_3| \rangle$ yielding a real number is defined as follows:

(Def. 6) $\langle |p_1, p_2, p_3| \rangle = |(p_1, p_2 \times p_3)|.$

The following propositions are true:

- (31) $\langle |p_1, p_1, p_2| \rangle = 0$ and $\langle |p_2, p_1, p_2| \rangle = 0$.
- (32) $p_1 \times (p_2 \times p_3) = |(p_1, p_3)| \cdot p_2 |(p_1, p_2)| \cdot p_3.$
- (33) $\langle |p_1, p_2, p_3| \rangle = \langle |p_2, p_3, p_1| \rangle.$
- (34) $\langle |p_1, p_2, p_3| \rangle = \langle |p_3, p_1, p_2| \rangle.$
- (35) $\langle |p_1, p_2, p_3| \rangle = |(p_1 \times p_2, p_3)|.$

References

- [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of *n*-dimensional topological space. *Formalized Mathematics*, 11(**2**):179–183, 2003.
- 2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [13] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 8, 2003