# Cross Products and Tripple Vector Products in 3-dimensional Euclidean Space 

Kanchun<br>Shinshu University<br>Nagano

Hiroshi Yamazaki<br>Shinshu University<br>Nagano

Yatsuka Nakamura<br>Shinshu University<br>Nagano


#### Abstract

Summary. First, we extend the basic theorems of 3-dimensional Euclidean space, and then define the cross product in the same space and relative vector relations using the above definition.


MML Identifier: EUCLID_5.

The articles [14], [2], [12], [9], [6], [4], [3], [5], [13], [10], [11], [7], [8], and [1] provide the terminology and notation for this paper.

We adopt the following convention: $x, y, z$ denote real numbers, $x_{3}, y_{3}$ denote elements of $\mathbb{R}$, and $p$ denotes a point of $\mathcal{E}_{\mathrm{T}}^{3}$.

We now state the proposition
(1) There exist $x, y, z$ such that $p=\langle x, y, z\rangle$.

Let us consider $p$. The functor $p_{1}$ yielding a real number is defined as follows:
(Def. 1) For every finite sequence $f$ such that $p=f$ holds $p_{1}=f(1)$.
The functor $p_{2}$ yields a real number and is defined by:
(Def. 2) For every finite sequence $f$ such that $p=f$ holds $p_{2}=f(2)$.
The functor $p_{3}$ yields a real number and is defined by:
(Def. 3) For every finite sequence $f$ such that $p=f$ holds $p_{\mathbf{3}}=f(3)$.
Let us consider $x, y, z$. The functor $[x, y, z]$ yields a point of $\mathcal{E}_{\mathrm{T}}^{3}$ and is defined as follows:
(Def. 4) $\quad[x, y, z]=\langle x, y, z\rangle$.
One can prove the following three propositions:
(2) $[x, y, z]_{\mathbf{1}}=x$ and $[x, y, z]_{\mathbf{2}}=y$ and $[x, y, z]_{\mathbf{3}}=z$.
(3) $p=\left[p_{\mathbf{1}}, p_{\mathbf{2}}, p_{\mathbf{3}}\right]$.
(4) $0_{\mathcal{E}_{\mathrm{T}}^{3}}=[0,0,0]$.

We adopt the following rules: $p_{1}, p_{2}, p_{3}, p_{4}$ are points of $\mathcal{E}_{\mathrm{T}}^{3}$ and $x_{1}, x_{2}, y_{1}$, $y_{2}, z_{1}, z_{2}$ are real numbers.

Next we state several propositions:
(5) $p_{1}+p_{2}=\left[\left(p_{1}\right)_{\mathbf{1}}+\left(p_{2}\right)_{\mathbf{1}},\left(p_{1}\right)_{\mathbf{2}}+\left(p_{2}\right)_{\mathbf{2}},\left(p_{1}\right)_{\mathbf{3}}+\left(p_{2}\right)_{\mathbf{3}}\right]$.
(6) $\left[x_{1}, y_{1}, z_{1}\right]+\left[x_{2}, y_{2}, z_{2}\right]=\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right]$.
(7) $x \cdot p=\left[x \cdot p_{\mathbf{1}}, x \cdot p_{\mathbf{2}}, x \cdot p_{\mathbf{3}}\right]$.
(8) $x \cdot\left[x_{1}, y_{1}, z_{1}\right]=\left[x \cdot x_{1}, x \cdot y_{1}, x \cdot z_{1}\right]$.
(9) $(x \cdot p)_{1}=x \cdot p_{\mathbf{1}}$ and $(x \cdot p)_{\mathbf{2}}=x \cdot p_{\mathbf{2}}$ and $(x \cdot p)_{\mathbf{3}}=x \cdot p_{\mathbf{3}}$.
(10) $-p=\left[-p_{\mathbf{1}},-p_{\mathbf{2}},-p_{\mathbf{3}}\right]$.
(11) $-\left[x_{1}, y_{1}, z_{1}\right]=\left[-x_{1},-y_{1},-z_{1}\right]$.
(12) $p_{1}-p_{2}=\left[\left(p_{1}\right)_{\mathbf{1}}-\left(p_{2}\right)_{\mathbf{1}},\left(p_{1}\right)_{\mathbf{2}}-\left(p_{2}\right)_{\mathbf{2}},\left(p_{1}\right)_{\mathbf{3}}-\left(p_{2}\right)_{\mathbf{3}}\right]$.
(13) $\left[x_{1}, y_{1}, z_{1}\right]-\left[x_{2}, y_{2}, z_{2}\right]=\left[x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}\right]$.

Let us consider $p_{1}, p_{2}$. The functor $p_{1} \times p_{2}$ yielding a point of $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by:
(Def. 5) $\quad p_{1} \times p_{2}=\left[\left(p_{1}\right)_{\mathbf{2}} \cdot\left(p_{2}\right)_{\mathbf{3}}-\left(p_{1}\right)_{\mathbf{3}} \cdot\left(p_{2}\right)_{\mathbf{2}},\left(p_{1}\right)_{\mathbf{3}} \cdot\left(p_{2}\right)_{\mathbf{1}}-\left(p_{1}\right)_{\mathbf{1}} \cdot\left(p_{2}\right)_{\mathbf{3}},\left(p_{1}\right)_{\mathbf{1}}\right.$. $\left.\left(p_{2}\right)_{\mathbf{2}}-\left(p_{1}\right)_{\mathbf{2}} \cdot\left(p_{2}\right)_{\mathbf{1}}\right]$.
The following propositions are true:
(14) If $p=[x, y, z]$, then $p_{1}=x$ and $p_{2}=y$ and $p_{3}=z$.
(15) $\left[x_{1}, y_{1}, z_{1}\right] \times\left[x_{2}, y_{2}, z_{2}\right]=\left[y_{1} \cdot z_{2}-z_{1} \cdot y_{2}, z_{1} \cdot x_{2}-x_{1} \cdot z_{2}, x_{1} \cdot y_{2}-y_{1} \cdot x_{2}\right]$.
(16) $\left(x \cdot p_{1}\right) \times p_{2}=x \cdot\left(p_{1} \times p_{2}\right)$ and $\left(x \cdot p_{1}\right) \times p_{2}=p_{1} \times\left(x \cdot p_{2}\right)$.
(17) $p_{1} \times p_{2}=-p_{2} \times p_{1}$.
(18) $\left(-p_{1}\right) \times p_{2}=p_{1} \times-p_{2}$.
(19) $[0,0,0] \times[x, y, z]=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(20) $\left[x_{1}, 0,0\right] \times\left[x_{2}, 0,0\right]=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(21) $\left[0, y_{1}, 0\right] \times\left[0, y_{2}, 0\right]=0_{\mathcal{E}_{T}^{3}}$.
(22) $\left[0,0, z_{1}\right] \times\left[0,0, z_{2}\right]=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(23) $p_{1} \times\left(p_{2}+p_{3}\right)=p_{1} \times p_{2}+p_{1} \times p_{3}$.
(24) $\left(p_{1}+p_{2}\right) \times p_{3}=p_{1} \times p_{3}+p_{2} \times p_{3}$.
(25) $\quad p_{1} \times p_{1}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(26) $\left(p_{1}+p_{2}\right) \times\left(p_{3}+p_{4}\right)=p_{1} \times p_{3}+p_{1} \times p_{4}+p_{2} \times p_{3}+p_{2} \times p_{4}$.
(27) $p=\left\langle p_{1}, p_{2}, p_{3}\right\rangle$.
(28) For all finite sequences $f_{1}, f_{2}$ of elements of $\mathbb{R}$ such that len $f_{1}=3$ and len $f_{2}=3$ holds $f_{1} \bullet f_{2}=\left\langle f_{1}(1) \cdot f_{2}(1), f_{1}(2) \cdot f_{2}(2), f_{1}(3) \cdot f_{2}(3)\right\rangle$.
(29) $\left|\left(p_{1}, p_{2}\right)\right|=\left(p_{1}\right)_{\mathbf{1}} \cdot\left(p_{2}\right)_{\mathbf{1}}+\left(p_{1}\right)_{\mathbf{2}} \cdot\left(p_{2}\right)_{\mathbf{2}}+\left(p_{1}\right)_{\mathbf{3}} \cdot\left(p_{2}\right)_{\mathbf{3}}$.
(30) $\left|\left(\left[x_{1}, x_{2}, x_{3}\right],\left[y_{1}, y_{2}, y_{3}\right]\right)\right|=x_{1} \cdot y_{1}+x_{2} \cdot y_{2}+x_{3} \cdot y_{3}$.

Let us consider $p_{1}, p_{2}, p_{3}$. The functor $\langle | p_{1}, p_{2}, p_{3}| \rangle$ yielding a real number is defined as follows:
(Def. 6) $\langle | p_{1}, p_{2}, p_{3}| \rangle=\left|\left(p_{1}, p_{2} \times p_{3}\right)\right|$.
The following propositions are true:
(31) $\langle | p_{1}, p_{1}, p_{2}| \rangle=0$ and $\langle | p_{2}, p_{1}, p_{2}| \rangle=0$.
(32) $p_{1} \times\left(p_{2} \times p_{3}\right)=\left|\left(p_{1}, p_{3}\right)\right| \cdot p_{2}-\left|\left(p_{1}, p_{2}\right)\right| \cdot p_{3}$.
(33) $\langle | p_{1}, p_{2}, p_{3}| \rangle=\langle | p_{2}, p_{3}, p_{1}| \rangle$.
(34) $\langle | p_{1}, p_{2}, p_{3}| \rangle=\langle | p_{3}, p_{1}, p_{2}| \rangle$.
(35) $\langle | p_{1}, p_{2}, p_{3}| \rangle=\left|\left(p_{1} \times p_{2}, p_{3}\right)\right|$.

## References

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of $n$-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

