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Summary. Convexity of a function in a real linear space is defined as
convexity of its epigraph according to “Convex analysis” [24]. The epigraph of

a function is a subset of the product of the function’s domain space and the

space of real numbers. Therefore, the product of two real linear spaces should

be defined. The values of the functions under consideration are extended real

numbers. We define the sum of a finite sequence of extended real numbers and

get some properties of the sum. The relation between notions “function is convex”

and “function is convex on set” (see definition 13 in [21]) is established. We obtain

another version of the criterion for a set to be convex (see theorem 6 in [15] to

compare) that may be more suitable in some cases. Finally, we prove Jensen’s

inequality (both strict and not strict) as criteria for functions to be convex.

MML Identifier: CONVFUN1.

The terminology and notation used here are introduced in the following articles:

[27], [30], [25], [8], [18], [9], [3], [29], [14], [4], [31], [11], [6], [7], [19], [26], [22],

[16], [5], [10], [21], [17], [2], [12], [28], [13], [1], [20], and [23].

1. Product of Two Real Linear Spaces

Let X, Y be non empty RLS structures. The functor AddInProdRLS(X, Y )

yielding a binary operation on [: the carrier of X, the carrier of Y :] is defined by

the condition (Def. 1).

(Def. 1) Let z1, z2 be elements of [: the carrier of X, the carrier of Y :], x1, x2

be vectors of X, and y1, y2 be vectors of Y . Suppose z1 = 〈〈x1, y1〉〉 and

z2 = 〈〈x2, y2〉〉. Then (AddInProdRLS(X, Y ))(z1, z2) = 〈〈(the addition of

X)(〈〈x1, x2〉〉), (the addition of Y )(〈〈y1, y2〉〉)〉〉.
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Let X, Y be non empty RLS structures. The functor MultInProdRLS(X, Y )

yields a function from [: R, [: the carrier of X, the carrier of Y :] :] into [: the carrier

of X, the carrier of Y :] and is defined by the condition (Def. 2).

(Def. 2) Let a be a real number, z be an element of [: the carrier of X, the carrier

of Y :], x be a vector of X, and y be a vector of Y . Suppose z = 〈〈x, y〉〉.

Then (MultInProdRLS(X, Y ))(〈〈a, z〉〉) = 〈〈(the external multiplication of

X)(〈〈a, x〉〉), (the external multiplication of Y )(〈〈a, y〉〉)〉〉.

Let X, Y be non empty RLS structures. The functor ProdRLS(X, Y ) yields

an RLS structure and is defined by:

(Def. 3) ProdRLS(X, Y ) = 〈[: the carrier of X, the carrier of Y :], 〈〈0X ,

0Y 〉〉,AddInProdRLS(X,Y ),MultInProdRLS(X, Y )〉.

Let X, Y be non empty RLS structures. Note that ProdRLS(X,Y ) is non

empty.

Next we state two propositions:

(1) Let X, Y be non empty RLS structures, x be a vector of X, y be a vector

of Y , u be a vector of ProdRLS(X,Y ), and p be a real number. If u = 〈〈x,

y〉〉, then p · u = 〈〈p · x, p · y〉〉.

(2) Let X, Y be non empty RLS structures, x1, x2 be vectors of X, y1, y2

be vectors of Y , and u1, u2 be vectors of ProdRLS(X, Y ). If u1 = 〈〈x1, y1〉〉

and u2 = 〈〈x2, y2〉〉, then u1 + u2 = 〈〈x1 + x2, y1 + y2〉〉.

Let X, Y be Abelian non empty RLS structures. One can verify that

ProdRLS(X, Y ) is Abelian.

Let X, Y be add-associative non empty RLS structures. Observe that

ProdRLS(X, Y ) is add-associative.

Let X, Y be right zeroed non empty RLS structures. Observe that

ProdRLS(X, Y ) is right zeroed.

Let X, Y be right complementable non empty RLS structures. One can

check that ProdRLS(X,Y ) is right complementable.

Let X, Y be real linear space-like non empty RLS structures. Observe that

ProdRLS(X, Y ) is real linear space-like.

Next we state the proposition

(3) Let X, Y be real linear spaces, n be a natural number, x be a finite

sequence of elements of the carrier of X, y be a finite sequence of elements

of the carrier of Y , and z be a finite sequence of elements of the carrier of

ProdRLS(X,Y ). Suppose lenx = n and len y = n and len z = n and for

every natural number i such that i ∈ Seg n holds z(i) = 〈〈x(i), y(i)〉〉. Then
∑

z = 〈〈
∑

x,
∑

y〉〉.
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2. Real Linear Space of Real Numbers

The non empty RLS structure RRLS is defined as follows:

(Def. 4) RRLS = 〈R, 0,+R, ·R〉.

Let us note that RRLS is Abelian, add-associative, right zeroed, right com-

plementable, and real linear space-like.

3. Sum of Finite Sequence of Extended Real Numbers

Let F be a finite sequence of elements of R. The functor
∑

F yields an

extended real number and is defined by the condition (Def. 5).

(Def. 5) There exists a function f from N into R such that
∑

F = f(lenF )

and f(0) = 0
R
and for every natural number i such that i < lenF holds

f(i + 1) = f(i) + F (i + 1).

We now state several propositions:

(4)
∑

(ε
R
) = 0

R
.

(5) For every extended real number a holds
∑
〈a〉 = a.

(6) For all extended real numbers a, b holds
∑
〈a, b〉 = a + b.

(7) For all finite sequences F , G of elements of R such that −∞ /∈ rngF

and −∞ /∈ rngG holds
∑

(F a G) =
∑

F +
∑

G.

(8) Let F , G be finite sequences of elements of R and s be a permutation of

domF. If G = F · s and −∞ /∈ rngF, then
∑

F =
∑

G.

4. Definition of Convex Function

Let X be a non empty RLS structure and let f be a function from the carrier

of X into R. The functor epigraph f yielding a subset of ProdRLS(X, RRLS) is

defined as follows:

(Def. 6) epigraph f = {〈〈x, y〉〉; x ranges over elements ofX, y ranges over elements

of R: f(x) ¬ R(y)}.

Let X be a non empty RLS structure and let f be a function from the carrier

of X into R. We say that f is convex if and only if:

(Def. 7) epigraph f is convex.

The following two propositions are true:

(9) LetX be a non empty RLS structure and f be a function from the carrier

of X into R. Suppose that for every vector x of X holds f(x) 6= −∞.

Then f is convex if and only if for all vectors x1, x2 of X and for every

real number p such that 0 < p and p < 1 holds f(p · x1 + (1 − p) · x2) ¬

R(p) · f(x1) + R(1− p) · f(x2).
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(10) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then

f is convex if and only if for all vectors x1, x2 of X and for every real

number p such that 0 ¬ p and p ¬ 1 holds f(p · x1 + (1 − p) · x2) ¬

R(p) · f(x1) + R(1− p) · f(x2).

5. Relation between Notions “function is convex”

and “function is convex on set”

We now state the proposition

(11) Let f be a partial function from R to R, g be a function from the carrier

of RRLS into R, and X be a subset of RRLS. Suppose X ⊆ dom f and for

every real number x holds if x ∈ X, then g(x) = f(x) and if x /∈ X, then

g(x) = +∞. Then g is convex if and only if the following conditions are

satisfied:

(i) f is convex on X, and

(ii) X is convex.

6. Theorem 6 from [15] in Other Words

One can prove the following proposition

(12) Let X be a real linear space and M be a subset of X. Then M is convex

if and only if for every non empty natural number n and for every finite

sequence p of elements of R and for all finite sequences y, z of elements

of the carrier of X such that len p = n and len y = n and len z = n and
∑

p = 1 and for every natural number i such that i ∈ Seg n holds p(i) > 0

and z(i) = p(i) · yi and yi ∈M holds
∑

z ∈M.

7. Jensen’s Inequality

One can prove the following two propositions:

(13) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then f

is convex if and only if for every non empty natural number n and for

every finite sequence p of elements of R and for every finite sequence F

of elements of R and for all finite sequences y, z of elements of the carrier

of X such that len p = n and lenF = n and len y = n and len z = n and
∑

p = 1 and for every natural number i such that i ∈ Seg n holds p(i) > 0

and z(i) = p(i) · yi and F (i) = R(p(i)) · f(yi) holds f(
∑

z) ¬
∑

F.
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(14) Let X be a real linear space and f be a function from the carrier of X

into R. Suppose that for every vector x of X holds f(x) 6= −∞. Then f

is convex if and only if for every non empty natural number n and for

every finite sequence p of elements of R and for every finite sequence F

of elements of R and for all finite sequences y, z of elements of the carrier

of X such that len p = n and lenF = n and len y = n and len z = n and
∑

p = 1 and for every natural number i such that i ∈ Segn holds p(i) ­ 0

and z(i) = p(i) · yi and F (i) = R(p(i)) · f(yi) holds f(
∑

z) ¬
∑

F.
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