On the Two Short Axiomatizations of Ortholattices

Wioletta Truszkowska
University of Białystok

Adam Grabowski ${ }^{1}$
University of Białystok

Abstract

Summary. In the paper, two short axiom systems for Boolean algebras are introduced. In the first section we show that the single axiom $\left(\mathrm{DN}_{1}\right)$ proposed in [2] in terms of disjunction and negation characterizes Boolean algebras. To prove that $\left(\mathrm{DN}_{1}\right)$ is a single axiom for Robbins algebras (that is, Boolean algebras as well), we use the Otter theorem prover. The second section contains proof that the two classical axioms (Meredith ${ }_{1}$), (Meredith ${ }_{2}$) proposed by Meredith [3] may also serve as a basis for Boolean algebras. The results will be used to characterize ortholattices.

MML Identifier: ROBBINS2.

The terminology and notation used in this paper have been introduced in the following articles: [4], [5], and [1].

1. Single Axiom for Boolean Algebras

Let L be a non empty complemented lattice structure. We say that L satisfies $\left(\mathrm{DN}_{1}\right)$ if and only if:
(Def. 1) For all elements x, y, z, u of the carrier of L holds $\left(\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}+(x+\right.$ $\left.\left.\left(z^{\mathrm{c}}+(z+u)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=z$.
Let us observe that TrivComplLat satisfies $\left(\mathrm{DN}_{1}\right)$ and TrivOrtLat satisfies (DN_{1}).

Let us observe that there exists a non empty complemented lattice structure which is join-commutative and join-associative and satisfies $\left(\mathrm{DN}_{1}\right)$.

Next we state a number of propositions:

[^0](1) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z, u, v be elements of the carrier of L. Then $\left((x+y)^{\text {c }}+(((z+\right.$ $\left.\left.\left.u)^{\mathrm{c}}+x\right)^{\mathrm{c}}+\left(y^{\mathrm{c}}+(y+v)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(2) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z, u be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left((z+x)^{\mathrm{c}}+\right.\right.$ $\left.\left.\left(y^{\mathrm{c}}+(y+u)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(3) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x be an element of the carrier of L. Then $\left(\left(x+x^{\mathrm{c}}\right)^{\mathrm{c}}+x\right)^{\mathrm{c}}=x^{\mathrm{c}}$.
(4) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z, u be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left((z+x)^{\mathrm{c}}+\right.\right.$ $\left.\left.\left(\left(\left(y+y^{\mathrm{c}}\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}+(y+u)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(5) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left((z+x)^{\mathrm{c}}+y\right)^{\mathrm{c}}\right)^{\mathrm{c}}=$ y.
(6) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left(x^{\mathrm{c}}+y\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(7) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}+(x+y)^{\mathrm{c}}\right)^{\mathrm{c}}=$ x.
(8) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left(x+\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $(x+y)^{\mathrm{c}}$.
(9) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}+(x+z)^{\mathrm{c}}\right)^{\mathrm{c}}=$ z.
(10) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left(x+\left((y+z)^{\mathrm{c}}+(y+x)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $(y+x)^{\mathrm{c}}$.
(11) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left(\left(\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}+\left(x^{\mathrm{c}}+\right.\right.\right.$ $\left.\left.y)^{\mathrm{c}}\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}=\left(x^{\mathrm{c}}+y\right)^{\mathrm{c}}$.
(12) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left(x+\left((y+z)^{\mathrm{c}}+(z+x)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $(z+x)^{\mathrm{c}}$.
(13) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z, u be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left((z+x)^{\mathrm{c}}+\right.\right.$ $\left.\left.\left(y^{\mathrm{c}}+(u+y)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(14) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $(x+y)^{\mathrm{c}}=(y+x)^{\mathrm{c}}$.
(15) Let L be a non empty complemented lattice structure satisfying (DN_{1})
and x, y, z be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+(y+z)^{\mathrm{c}}\right)^{\mathrm{c}}+z\right)^{\mathrm{c}}=$ $(y+z)^{\mathrm{c}}$.
(16) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(\left(x+\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}\right)^{\mathrm{c}}+z\right)^{\mathrm{c}}=$ $\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}$.
(17) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}=(y+y)^{\mathrm{c}}$.
(18) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left(x^{\mathrm{c}}+(y+x)^{\mathrm{c}}\right)^{\mathrm{c}}=x$.
(19) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+y^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(20) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left(x+\left(y+x^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=x^{\mathrm{c}}$.
(21) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x be an element of the carrier of L. Then $(x+x)^{\mathrm{c}}=x^{\mathrm{c}}$.
(22) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}=y^{\mathrm{c}}$.
(23) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x be an element of the carrier of L. Then $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}=x$.
(24) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}+y=\left(y^{\mathrm{c}}\right)^{\mathrm{c}}$.
(25) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}\right)^{\mathrm{c}}=y+x$.
(26) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x+\left((y+z)^{\mathrm{c}}+(y+x)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $\left((y+x)^{\mathrm{c}}\right)^{\mathrm{c}}$.
(27) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $x+y=y+x$.
One can verify that every non empty complemented lattice structure which satisfies $\left(\mathrm{DN}_{1}\right)$ is also join-commutative.

Next we state a number of propositions:
(28) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}+y=y$.
(29) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+y\right)^{\mathrm{c}}+x=x$.
(30) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y be elements of the carrier of L. Then $x+\left((y+x)^{\mathrm{c}}+y\right)^{\mathrm{c}}=x$.
(31) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left(x+y^{\mathrm{c}}\right)^{\mathrm{c}}+\left(y^{\mathrm{c}}+y\right)^{\mathrm{c}}=\left(x+y^{\mathrm{c}}\right)^{\mathrm{c}}$.
(32) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $(x+y)^{\mathrm{c}}+\left(y+y^{\mathrm{c}}\right)^{\mathrm{c}}=(x+y)^{\mathrm{c}}$.
(33) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $(x+y)^{\mathrm{c}}+\left(y^{\mathrm{c}}+y\right)^{\mathrm{c}}=(x+y)^{\mathrm{c}}$.
(34) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left(\left(\left(x+y^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}=\left(y^{\mathrm{c}}+y\right)^{\mathrm{c}}$.
(35) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left(x+y^{\mathrm{c}}+y\right)^{\mathrm{c}}=\left(y^{\mathrm{c}}+y\right)^{\mathrm{c}}$.
(36) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(\left(\left(x+y^{\mathrm{c}}+z\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}+\right.$ $\left.\left(y^{\mathrm{c}}+y\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(37) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x+\left((y+z)^{\mathrm{c}}+(y+x)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $y+x$.
(38) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x+\left(y+\left((z+y)^{\mathrm{c}}+x\right)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $(z+y)^{\mathrm{c}}+x$.
(39) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x+\left((y+x)^{\mathrm{c}}+(y+z)^{\mathrm{c}}\right)^{\mathrm{c}}=$ $y+x$.
(40) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+\left((x+y)^{\mathrm{c}}+\right.\right.$ $\left.\left.(x+z)^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}+y=y$.
(41) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(\left(\left(x+y^{\mathrm{c}}+z\right)^{\mathrm{c}}+y\right)^{\mathrm{c}}\right)^{\mathrm{c}}=y$.
(42) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $x+\left(y+x^{\mathrm{c}}+z\right)^{\mathrm{c}}=x$.
(43) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x^{\mathrm{c}}+(y+x+z)^{\mathrm{c}}=x^{\mathrm{c}}$.
(44) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $(x+y)^{\mathrm{c}}+x=x+y^{\mathrm{c}}$.
(45) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y be elements of the carrier of L. Then $\left(x+\left(x+y^{\mathrm{c}}\right)^{\mathrm{c}}\right)^{\mathrm{c}}=(x+y)^{\mathrm{c}}$.
(46) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left((x+y)^{\mathrm{c}}+(x+z)\right)^{\mathrm{c}}+y=y$.
(47) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}+\left(x^{\mathrm{c}}+\right.\right.$ $\left.y)^{\mathrm{c}}\right)^{\mathrm{c}}+y=\left(\left(x^{\mathrm{c}}+y\right)^{\mathrm{c}}\right)^{\mathrm{c}}$.
(48) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$
and x, y, z be elements of the carrier of L. Then $\left(\left((x+y)^{\mathrm{c}}+z\right)^{\mathrm{c}}+\left(x^{\mathrm{c}}+\right.\right.$ $\left.y)^{\mathrm{c}}\right)^{\mathrm{c}}+y=x^{\mathrm{c}}+y$.
(49) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $\left(x^{\mathrm{c}}+\left(\left((y+x)^{\mathrm{c}}\right)^{\mathrm{c}}+(y+\right.\right.$ $\left.z))^{\mathrm{c}}\right)^{\mathrm{c}}+(y+z)=\left((y+x)^{\mathrm{c}}\right)^{\mathrm{c}}+(y+z)$.
(50) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(x^{\mathrm{c}}+(y+x+(y+z))^{\mathrm{c}}\right)^{\mathrm{c}}+$ $(y+z)=\left((y+x)^{\mathrm{c}}\right)^{\mathrm{c}}+(y+z)$.
(51) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(x^{\mathrm{c}}+(y+x+(y+z))^{\mathrm{c}}\right)^{\mathrm{c}}+$ $(y+z)=(y+x)+(y+z)$.
(52) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}+(y+z)=(y+$ $x)+(y+z)$.
(53) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $(x+y)+(x+z)=y+(x+z)$.
(54) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $(x+y)+(x+z)=z+(x+y)$.
(55) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $x+(y+z)=z+(y+x)$.
(56) Let L be a non empty complemented lattice structure satisfying $\left(\mathrm{DN}_{1}\right)$ and x, y, z be elements of the carrier of L. Then $x+(y+z)=y+(z+x)$.
(57) Let L be a non empty complemented lattice structure satisfying (DN_{1}) and x, y, z be elements of the carrier of L. Then $(x+y)+z=x+(y+z)$.
Let us observe that every non empty complemented lattice structure which satisfies $\left(\mathrm{DN}_{1}\right)$ is also join-associative and every non empty complemented lattice structure which satisfies $\left(\mathrm{DN}_{1}\right)$ is also Robbins.

One can prove the following propositions:
(58) Let L be a non empty complemented lattice structure and x, z be elements of the carrier of L. Suppose L is join-commutative, join-associative, and Huntington. Then $(z+x) *\left(z+x^{\mathrm{c}}\right)=z$.
(59) Let L be a non empty complemented lattice structure such that L is join-commutative, join-associative, and Robbins. Then L satisfies $\left(\mathrm{DN}_{1}\right)$.
Let us mention that every non empty complemented lattice structure which is join-commutative, join-associative, and Robbins satisfies also $\left(\mathrm{DN}_{1}\right)$.

Let us observe that there exists a pre-ortholattice which is de Morgan and satisfies $\left(\mathrm{DN}_{1}\right)$.

One can verify that every pre-ortholattice which is de Morgan satisfies (DN_{1}) is also Boolean and every well-complemented pre-ortholattice which is Boolean satisfies also $\left(\mathrm{DN}_{1}\right)$.

2. Meredith Two Axioms for Boolean Algebras

Let L be a non empty complemented lattice structure. We say that L satisfies (Meredith ${ }_{1}$) if and only if:
(Def. 2) For all elements x, y of the carrier of L holds $\left(x^{\mathrm{c}}+y\right)^{\mathrm{c}}+x=x$.
We say that L satisfies $\left(\right.$ Meredith $\left._{2}\right)$ if and only if:
(Def. 3) For all elements x, y, z of the carrier of L holds $\left(x^{\mathrm{c}}+y\right)^{\mathrm{c}}+(z+y)=$ $y+(z+x)$.
Let us note that every non empty complemented lattice structure which satisfies $\left(\right.$ Meredith $\left._{1}\right)$ and (Meredith h_{2}) is also join-commutative, join-associative, and Huntington and every non empty complemented lattice structure which is join-commutative, join-associative, and Huntington satisfies also (Meredith ${ }_{1}$) and (Meredith ${ }_{2}$).

Let us note that there exists a pre-ortholattice which is de Morgan and satisfies $\left(\right.$ Meredith $\left._{1}\right)$, $\left(\right.$ Meredith $\left._{2}\right)$, and $\left(\mathrm{DN}_{1}\right)$.

Let us observe that every pre-ortholattice which is de Morgan satisfies (Meredith ${ }_{1}$) and (Meredith ${ }_{2}$) is also Boolean and every well-complemented preortholattice which is Boolean satisfies also (Meredith ${ }_{1}$) and (Meredith 2).

References

[1] Adam Grabowski. Robbins algebras vs. Boolean algebras. Formalized Mathematics, 9(4):681-690, 2001.
[2] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, and L. Wos. Short single axioms for Boolean algebra. Journal of Automated Reasoning, 29(1):1-16, 2002.
[3] C. A. Meredith and A. N. Prior. Equational logic. Notre Dame Journal of Formal Logic, 9:212-226, 1968.
[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[5] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990.

Received June 28, 2003

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

