General Fashoda Meet Theorem for Unit Circle and Square

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. Here we will prove Fashoda meet theorem for the unit circle and for a square, when 4 points on the boundary are ordered cyclically. Also, the concepts of general rectangle and general circle are defined.

MML Identifier: JGRAPH_6.

The articles [8], [22], [26], [3], [4], [25], [1], [9], [2], [6], [13], [23], [19], [18], [16], [17], [11], [24], [7], [14], [15], [21], [20], [10], [5], and [12] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:
(2) ${ }^{1}$ For all real numbers a, b, r such that $0 \leqslant r$ and $r \leqslant 1$ and $a \leqslant b$ holds $a \leqslant(1-r) \cdot a+r \cdot b$ and $(1-r) \cdot a+r \cdot b \leqslant b$.
(3) For all real numbers a, b such that $a \geqslant 0$ and $b>0$ or $a>0$ and $b \geqslant 0$ holds $a+b>0$.
(4) For all real numbers a, b such that $-1 \leqslant a$ and $a \leqslant 1$ and $-1 \leqslant b$ and $b \leqslant 1$ holds $a^{2} \cdot b^{2} \leqslant 1$.
(5) For all real numbers a, b such that $a \geqslant 0$ and $b \geqslant 0$ holds $a \cdot \sqrt{b}=\sqrt{a^{2} \cdot b}$.
(6) For all real numbers a, b such that $-1 \leqslant a$ and $a \leqslant 1$ and $-1 \leqslant b$ and $b \leqslant 1$ holds $(-b) \cdot \sqrt{1+a^{2}} \leqslant \sqrt{1+b^{2}}$ and $-\sqrt{1+b^{2}} \leqslant b \cdot \sqrt{1+a^{2}}$.

[^0](7) For all real numbers a, b such that $-1 \leqslant a$ and $a \leqslant 1$ and $-1 \leqslant b$ and $b \leqslant 1$ holds $b \cdot \sqrt{1+a^{2}} \leqslant \sqrt{1+b^{2}}$.
(8) For all real numbers a, b such that $a \geqslant b$ holds $a \cdot \sqrt{1+b^{2}} \geqslant b \cdot \sqrt{1+a^{2}}$.
(9) Let a, c, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $c \leqslant d$ and $p \in \mathcal{L}([a$, $c],[a, d])$, then $p_{1}=a$ and $c \leqslant p_{2}$ and $p_{2} \leqslant d$.
(10) For all real numbers a, c, d and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $c<d$ and $p_{1}=a$ and $c \leqslant p_{2}$ and $p_{2} \leqslant d$ holds $p \in \mathcal{L}([a, c],[a, d])$.
(11) Let a, b, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $a \leqslant b$ and $p \in \mathcal{L}([a$, $d],[b, d])$, then $p_{2}=d$ and $a \leqslant p_{1}$ and $p_{1} \leqslant b$.
(12) For all real numbers a, b and for every subset B of \mathbb{I} such that $B=[a, b]$ holds B is closed.
(13) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and g be a map from X into Z. Then $\operatorname{dom} f=\operatorname{dom} g$ and $\operatorname{dom} f=$ the carrier of X and $\operatorname{dom} f=\Omega_{X}$.
(14) Let X be a non empty topological space and B be a non empty subset of X. Then there exists a map from $X \upharpoonright B$ into X such that for every point p of $X \upharpoonright B$ holds $f(p)=p$ and f is continuous.
(15) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=r_{1}-a$ and g is continuous.
(16) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=a-r_{1}$ and g is continuous.
(17) Let X be a non empty topological space, n be a natural number, p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and f be a map from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f is continuous. Then there exists a map g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=f(r) \cdot p$ and g is continuous.
(18) $\quad \operatorname{SqCirc}([-1,0])=[-1,0]$.
(19) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ holds $\operatorname{SqCirc}([-1,0])=\mathrm{W}-\min P$.
(20) Let X be a non empty topological space, n be a natural number, and g_{1}, g_{2} be maps from X into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose g_{1} is continuous and g_{2} is continuous. Then there exists a map g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=g_{1}(r)+g_{2}(r)$ and g is continuous.
(21) Let X be a non empty topological space, n be a natural number, p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous. Then there exists a map g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=f_{1}(r) \cdot p_{1}+f_{2}(r) \cdot p_{2}$ and
g is continuous.
(22) For every function f and for every set A such that f is one-to-one and $A \subseteq \operatorname{dom} f$ holds $\left(f^{-1}\right)^{\circ} f^{\circ} A=A$.

2. General Fashoda Theorem for Unit Circle

In the sequel $p, p_{1}, p_{2}, p_{3}, q, q_{1}, q_{2}$ are points of $\mathcal{E}_{\mathrm{T}}^{2}$.
One can prove the following propositions:
(23) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \leqslant 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{2} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leqslant-\left(q_{2}\right)_{\mathbf{1}}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{2} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{2} \leqslant-\left(q_{4}\right)_{1}\right\}$ and $f(O) \in K_{1}$ and $f(I) \in K_{2}$ and $g(O) \in K_{3}$ and $g(I) \in K_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(24) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \leqslant 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{2} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{1} \wedge\left(q_{2}\right)_{2} \leqslant-\left(q_{2}\right)_{1}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{1}$ and $f(I) \in K_{2}$ and $g(O) \in K_{4}$ and $g(I) \in K_{3}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(25) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{8}\right| \leqslant 1\right\}$ and $f(0)=p_{3}$ and $f(1)=p_{1}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(26) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$:
$\left.\left|p_{8}\right| \leqslant 1\right\}$ and $f(0)=p_{3}$ and $f(1)=p_{1}$ and $g(0)=p_{4}$ and $g(1)=p_{2}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.
(27) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ and $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on P. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{8}\right| \leqslant 1\right\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng f meets rng g.

3. General Rectangles and Circles

Let a, b, c, d be real numbers. The functor $\operatorname{Rectangle}(a, b, c, d)$ yielding a subset of $\mathcal{E}_{\text {T }}^{2}$ is defined by the condition (Def. 1).
(Def. 1) Rectangle $(a, b, c, d)=\left\{p: p_{1}=a \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=d \wedge a \leqslant\right.$ $\left.p_{1} \wedge p_{1} \leqslant b \vee p_{1}=b \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=c \wedge a \leqslant p_{1} \wedge p_{1} \leqslant b\right\}$.
The following proposition is true
(28) Let a, b, c, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $a \leqslant b$ and $c \leqslant d$ and $p \in \operatorname{Rectangle}(a, b, c, d)$, then $a \leqslant p_{\mathbf{1}}$ and $p_{\mathbf{1}} \leqslant b$ and $c \leqslant p_{\mathbf{2}}$ and $p_{2} \leqslant d$.
Let a, b, c, d be real numbers. The functor InsideOfRectangle (a, b, c, d) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 2) InsideOfRectangle $(a, b, c, d)=\left\{p: a<p_{1} \wedge p_{1}<b \wedge c<p_{2} \wedge p_{2}<d\right\}$.
Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle (a, b, c, d) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 3) ClosedInsideOfRectangle $(a, b, c, d)=\left\{p: a \leqslant p_{1} \wedge p_{1} \leqslant b \wedge c \leqslant\right.$ $\left.p_{2} \wedge p_{2} \leqslant d\right\}$.
Let a, b, c, d be real numbers. The functor OutsideOfRectangle (a, b, c, d) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 4) OutsideOfRectangle $(a, b, c, d)=\left\{p: a \nless p_{\mathbf{1}} \vee p_{\mathbf{1}} \nless b \vee c \nless p_{\mathbf{2}} \vee p_{\mathbf{2}} \nless\right.$ $d\}$.
Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle (a, b, c, d) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 5) ClosedOutsideOfRectangle $(a, b, c, d)=\left\{p: a \nless p_{\mathbf{1}} \vee p_{\mathbf{1}} \nless b \vee c \nless\right.$ $\left.p_{2} \vee p_{2} \nless d\right\}$.
Next we state four propositions:
(29) Let a, b, r be real numbers and K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathbb{T}}^{2}$. Suppose $r \geqslant 0$ and $K_{5}=\{q:|q|=1\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: \mid p_{2}-[a$, $b] \mid=r\}$. Then $(\operatorname{AffineMap}(r, a, r, b))^{\circ} K_{5}=C_{1}$.
(30) Let P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose there exists a map from $\mathcal{E}_{\mathrm{T}}^{2} \upharpoonright P$ into $\mathcal{E}_{\mathrm{T}}^{2} \upharpoonright Q$ which is a homeomorphism and P is a simple closed curve. Then Q is a simple closed curve.
(31) For every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P satisfies conditions of simple closed curve holds P is compact.
(32) Let a, b, r be real numbers and C_{1} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $r>0$ and $C_{1}=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|=r\right\}$. Then C_{1} is a simple closed curve.
Let a, b, r be real numbers. Let us assume that $r>0$. The functor $\operatorname{Circle}(a, b, r)$ yielding a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 6) $\operatorname{Circle}(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|=r\right\}$.
Let a, b, r be real numbers. The functor InsideOfCircle (a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 7) InsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|<r\right\}$.
Let a, b, r be real numbers. The functor ClosedInsideOfCircle (a, b, r) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 8) ClosedInsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: \mid p-[a$, $b] \mid \leqslant r\}$.
Let a, b, r be real numbers. The functor OutsideOfCircle (a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 9) OutsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|>r\right\}$.
Let a, b, r be real numbers. The functor ClosedOutsideOfCircle (a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 10) ClosedOutsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: \mid p-[a$, $b] \mid \geqslant r\}$.
One can prove the following propositions:
(33) Let r be a real number. Then InsideOfCircle $(0,0, r)=\{p:|p|<r\}$ and if $r>0$, then $\operatorname{Circle}(0,0, r)=\left\{p_{2}:\left|p_{2}\right|=r\right\}$ and OutsideOfCircle $(0,0, r)=$ $\left\{p_{3}:\left|p_{3}\right|>r\right\}$ and ClosedInsideOfCircle $(0,0, r)=\{q:|q| \leqslant r\}$ and ClosedOutsideOfCircle $(0,0, r)=\left\{q_{2}:\left|q_{2}\right| \geqslant r\right\}$.
(34) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1<p_{1} \wedge p_{1}<\right.$ $\left.1 \wedge-1<p_{2} \wedge p_{2}<1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{2}\right|<1\right\}$. Then $\mathrm{SqCirc}^{\circ} K_{5}=C_{1}$.
(35) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \nless p_{1} \vee p_{1} \nless\right.$ $\left.1 \vee-1 \nless p_{\mathbf{2}} \vee p_{2} \nless 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{2}\right|>1\right\}$. Then SqCirc ${ }^{\circ} K_{5}=C_{1}$.
(36) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \leqslant p_{1} \wedge p_{1} \leqslant\right.$ $\left.1 \wedge-1 \leqslant p_{2} \wedge p_{2} \leqslant 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{2}\right| \leqslant 1\right\}$. Then SqCirc $^{\circ} K_{5}=C_{1}$.
(37) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \nless p_{1} \vee p_{1} \nless\right.$ $\left.1 \vee-1 \nless p_{\mathbf{2}} \vee p_{\mathbf{2}} \nless 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{2}\right| \geqslant 1\right\}$. Then $\operatorname{SqCirc}^{\circ} K_{5}=C_{1}$.
(38) Let $P_{0}, P_{1}, P_{2}, P_{11}, K_{0}, K_{6}, K_{7}, K_{11}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=\operatorname{Circle}(0,0,1)$ and $P_{0}=\operatorname{InsideOfCircle}(0,0,1)$ and $P_{1}=$ OutsideOfCircle $(0,0,1)$ and $P_{2}=\operatorname{ClosedInsideOfCircle}(0,0,1)$ and $P_{11}=$ ClosedOutsideOfCircle $(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $K_{0}=$ InsideOfRectangle $(-1,1,-1,1)$ and $K_{6}=$ OutsideOfRectangle $(-1,1,-1,1)$ and $K_{7}=$ ClosedInsideOfRectangle $(-1,1,-1,1)$ and $K_{11}=$ ClosedOutsideOfRectangle $(-1,1,-1,1)$ and $f=$ SqCirc. Then $f^{\circ} K=P$ and $\left(f^{-1}\right)^{\circ} P=K$ and $f^{\circ} K_{0}=P_{0}$ and $\left(f^{-1}\right)^{\circ} P_{0}=K_{0}$ and $f^{\circ} K_{6}=P_{1}$ and $\left(f^{-1}\right)^{\circ} P_{1}=K_{6}$ and $f^{\circ} K_{7}=P_{2}$ and $f^{\circ} K_{11}=P_{11}$ and $\left(f^{-1}\right)^{\circ} P_{2}=K_{7}$ and $\left(f^{-1}\right)^{\circ} P_{11}=K_{11}$.

4. Order of Points on Rectangle

The following propositions are true:
(39) Let a, b, c, d be real numbers. Suppose $a \leqslant b$ and $c \leqslant d$. Then
(i) $\mathcal{L}([a, c],[a, d])=\left\{p_{1}:\left(p_{1}\right)_{\mathbf{1}}=a \wedge\left(p_{1}\right)_{\mathbf{2}} \leqslant d \wedge\left(p_{1}\right)_{\mathbf{2}} \geqslant c\right\}$,
(ii) $\mathcal{L}([a, d],[b, d])=\left\{p_{2}:\left(p_{2}\right)_{\mathbf{1}} \leqslant b \wedge\left(p_{2}\right)_{\mathbf{1}} \geqslant a \wedge\left(p_{2}\right)_{\mathbf{2}}=d\right\}$,
(iii) $\mathcal{L}([a, c],[b, c])=\left\{q_{1}:\left(q_{1}\right)_{\mathbf{1}} \leqslant b \wedge\left(q_{1}\right)_{\mathbf{1}} \geqslant a \wedge\left(q_{1}\right)_{\mathbf{2}}=c\right\}$, and
(iv) $\mathcal{L}([b, c],[b, d])=\left\{q_{2}:\left(q_{2}\right)_{\mathbf{1}}=b \wedge\left(q_{2}\right)_{\mathbf{2}} \leqslant d \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant c\right\}$.
(40) Let a, b, c, d be real numbers. Suppose $a \leqslant b$ and $c \leqslant d$. Then $\left\{p: p_{1}=\right.$ $a \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=d \wedge a \leqslant p_{1} \wedge p_{1} \leqslant b \vee p_{1}=b \wedge c \leqslant$ $\left.p_{2} \wedge p_{2} \leqslant d \vee p_{2}=c \wedge a \leqslant p_{1} \wedge p_{1} \leqslant b\right\}=\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b$, $d]) \cup(\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b, d]))$.
(41) For all real numbers a, b, c, d such that $a \leqslant b$ and $c \leqslant d$ holds $\mathcal{L}([a$, $c],[a, d]) \cap \mathcal{L}([a, c],[b, c])=\{[a, c]\}$.
(42) For all real numbers a, b, c, d such that $a \leqslant b$ and $c \leqslant d$ holds $\mathcal{L}([a, c],[b$, $c]) \cap \mathcal{L}([b, c],[b, d])=\{[b, c]\}$.
(43) For all real numbers a, b, c, d such that $a \leqslant b$ and $c \leqslant d$ holds $\mathcal{L}([a, d],[b$, $d]) \cap \mathcal{L}([b, c],[b, d])=\{[b, d]\}$.
(44) For all real numbers a, b, c, d such that $a \leqslant b$ and $c \leqslant d$ holds $\mathcal{L}([a$, $c],[a, d]) \cap \mathcal{L}([a, d],[b, d])=\{[a, d]\}$.
(45) $\left\{q:-1=q_{1} \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant 1 \vee q_{1}=1 \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant\right.$ $\left.1 \vee-1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1 \vee 1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1\right\}=\{p:$ $p_{1}=-1 \wedge-1 \leqslant p_{2} \wedge p_{2} \leqslant 1 \vee p_{2}=1 \wedge-1 \leqslant p_{1} \wedge p_{1} \leqslant 1 \vee p_{1}=$ $\left.1 \wedge-1 \leqslant p_{2} \wedge p_{2} \leqslant 1 \vee p_{2}=-1 \wedge-1 \leqslant p_{1} \wedge p_{1} \leqslant 1\right\}$.
(46) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then W-bound $K=a$.
(47) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then N-bound $K=d$.
(48) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then E-bound $K=b$.
(49) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then S-bound $K=c$.
(50) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then NW-corner $K=[a, d]$.
(51) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then NE-corner $K=[b, d]$.
(52) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then SW-corner $K=[a, c]$.
(53) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then SE-corner $K=[b, c]$.
(54) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then W-most $K=\mathcal{L}([a, c],[a, d])$.
(55) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then E-most $K=\mathcal{L}([b, c],[b, d])$.
(56) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a \leqslant b$ and $c \leqslant d$, then W -min $K=[a$, $c]$ and $\mathrm{E}-\max K=[b, d]$.
(57) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then $\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b, d])$ is an arc from $\mathrm{W}-\min K$ to $\mathrm{E}-$ max K and $\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b, d])$ is an arc from E-max K to W-min K.
(58) Let P, P_{1}, P_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, f_{1}, f_{2} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and $p_{0}, p_{1}, p_{5}, p_{10}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $P=\left\{p: p_{1}=a \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=\right.$ $d \wedge a \leqslant p_{1} \wedge p_{1} \leqslant b \vee p_{1}=b \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=$ $\left.c \wedge a \leqslant p_{\mathbf{1}} \wedge p_{\mathbf{1}} \leqslant b\right\}$ and $p_{0}=[a, c]$ and $p_{1}=[b, d]$ and $p_{5}=[a$,
$d]$ and $p_{10}=[b, c]$ and $f_{1}=\left\langle p_{0}, p_{5}, p_{1}\right\rangle$ and $f_{2}=\left\langle p_{0}, p_{10}, p_{1}\right\rangle$. Then f_{1} is a special sequence and $\widetilde{\mathcal{L}}\left(f_{1}\right)=\mathcal{L}\left(p_{0}, p_{5}\right) \cup \mathcal{L}\left(p_{5}, p_{1}\right)$ and f_{2} is a special sequence and $\widetilde{\mathcal{L}}\left(f_{2}\right)=\mathcal{L}\left(p_{0}, p_{10}\right) \cup \mathcal{L}\left(p_{10}, p_{1}\right)$ and $P=\widetilde{\mathcal{L}}\left(f_{1}\right) \cup \widetilde{\mathcal{L}}\left(f_{2}\right)$ and $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right)=\left\{p_{0}, p_{1}\right\}$ and $\left(f_{1}\right)_{1}=p_{0}$ and $\left(f_{1}\right)_{\operatorname{len} f_{1}}=p_{1}$ and $\left(f_{2}\right)_{1}=p_{0}$ and $\left(f_{2}\right)_{\operatorname{len} f_{2}}=p_{1}$.
(59) Let P, P_{1}, P_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, f_{1}, f_{2} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $P=\left\{p: p_{1}=a \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=d \wedge a \leqslant\right.$ $\left.p_{1} \wedge p_{1} \leqslant b \vee p_{1}=b \wedge c \leqslant p_{2} \wedge p_{2} \leqslant d \vee p_{2}=c \wedge a \leqslant p_{1} \wedge p_{1} \leqslant b\right\}$ and $p_{1}=[a, c]$ and $p_{2}=[b, d]$ and $f_{1}=\langle[a, c],[a, d],[b, d]\rangle$ and $f_{2}=\langle[a$, $c],[b, c],[b, d]\rangle$ and $P_{1}=\widetilde{\mathcal{L}}\left(f_{1}\right)$ and $P_{3}=\widetilde{\mathcal{L}}\left(f_{2}\right)$. Then P_{1} is an arc from p_{1} to p_{2} and P_{3} is an arc from p_{1} to p_{2} and P_{1} is non empty and P_{3} is non empty and $P=P_{1} \cup P_{3}$ and $P_{1} \cap P_{3}=\left\{p_{1}, p_{2}\right\}$.
(60) For all real numbers a, b, c, d such that $a<b$ and $c<d$ holds Rectangle (a, b, c, d) is a simple closed curve.
(61) Let K be a non empty compact subset of $\mathcal{E}_{\text {T }}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$, then UpperArc $K=\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b, d])$.
(62) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$, then LowerArc $K=\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b, d])$.
(63) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ UpperArc K such that
f is a homeomorphism and $f(0)=\mathrm{W}-\min K$ and $f(1)=\mathrm{E}-$ max K and $\operatorname{rng} f=$ UpperArc K and for every real number r such that $r \in\left[0, \frac{1}{2}\right]$ holds $f(r)=(1-2 \cdot r) \cdot[a, c]+2 \cdot r \cdot[a, d]$ and for every real number r such that $r \in\left[\frac{1}{2}, 1\right]$ holds $f(r)=(1-(2 \cdot r-1)) \cdot[a, d]+(2 \cdot r-1) \cdot[b, d]$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([a, c],[a, d])$ holds $0 \leqslant \frac{\frac{p_{2}-c}{d-c}}{2}$ and $\frac{\frac{p_{2}-c}{d-c}}{2} \leqslant 1$ and $f\left(\frac{\frac{p_{2}-c}{d-c}}{2}\right)=p$ and for every point p of $\mathcal{E}_{\text {T }}^{2}$ such that $p \in \mathcal{L}([a, d],[b, d])$ holds $0 \leqslant \frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2}$ and $\frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2} \leqslant 1$ and $f\left(\frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2}\right)=p$.
(64) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ LowerArc K such that
f is a homeomorphism and $f(0)=\mathrm{E}-\max K$ and $f(1)=\mathrm{W}-\min K$ and $\operatorname{rng} f=$ LowerArc K and for every real number r such that $r \in\left[0, \frac{1}{2}\right]$ holds $f(r)=(1-2 \cdot r) \cdot[b, d]+2 \cdot r \cdot[b, c]$ and for every real number r such that $r \in\left[\frac{1}{2}, 1\right]$ holds $f(r)=(1-(2 \cdot r-1)) \cdot[b, c]+(2 \cdot r-1) \cdot[a, c]$ and for every
point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([b, d],[b, c])$ holds $0 \leqslant \frac{\frac{p_{2}-d}{c-d}}{2}$ and $\frac{\frac{p_{2}-d}{c-d}}{2} \leqslant 1$ and $f\left(\frac{\frac{p_{2}-d}{c-d}}{2}\right)=p$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([b, c],[a, c])$ holds $0 \leqslant \frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2}$ and $\frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2} \leqslant 1$ and $f\left(\frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2}\right)=p$.
(65) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[a, d])$ and $p_{2} \in \mathcal{L}([a, c],[a, d])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if $\left(p_{1}\right)_{\mathbf{2}} \leqslant\left(p_{2}\right)_{\mathbf{2}}$.
(66) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, d],[b, d])$ and $p_{2} \in \mathcal{L}([a, d],[b, d])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if $\left(p_{1}\right)_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$.
(67) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, c],[b, d])$ and $p_{2} \in \mathcal{L}([b, c],[b, d])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if $\left(p_{1}\right)_{\mathbf{2}} \geqslant\left(p_{2}\right)_{\mathbf{2}}$.
(68) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[b, c])$ and $p_{2} \in \mathcal{L}([a, c],[b, c])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ and $p_{1} \neq \mathrm{W}-\min K$ if and only if $\left(p_{1}\right)_{\mathbf{1}} \geqslant\left(p_{2}\right)_{\mathbf{1}}$ and $p_{2} \neq \mathrm{W}-\min K$.
(69) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[a, d])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if one of the following conditions is satisfied:
(i) $\quad p_{2} \in \mathcal{L}([a, c],[a, d])$ and $\left(p_{1}\right)_{\mathbf{2}} \leqslant\left(p_{2}\right)_{\mathbf{2}}$, or
(ii) $p_{2} \in \mathcal{L}([a, d],[b, d])$, or
(iii) $p_{2} \in \mathcal{L}([b, d],[b, c])$, or
(iv) $p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}-\min K$.
(70) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, d],[b, d])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if one of the following conditions is satisfied:
(i) $\quad p_{2} \in \mathcal{L}([a, d],[b, d])$ and $\left(p_{1}\right)_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$, or
(ii) $\quad p_{2} \in \mathcal{L}([b, d],[b, c])$, or
(iii) $p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}-\min K$.
(71) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, d],[b, c])$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if one of the following conditions is satisfied:
(i) $p_{2} \in \mathcal{L}([b, d],[b, c])$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant\left(p_{2}\right)_{\mathbf{2}}$, or
(ii) $\quad p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}-\min K$.
(72) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, c],[a, c])$ and $p_{1} \neq \mathrm{W}-\min K$. Then $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ if and only if the following conditions are satisfied:
(i) $\quad p_{2} \in \mathcal{L}([b, c],[a, c])$,
(ii) $\left(p_{1}\right)_{\mathbf{1}} \geqslant\left(p_{2}\right)_{\mathbf{1}}$, and
(iii) $\quad p_{2} \neq \mathrm{W}-\min K$.
(73) Let x be a set and a, b, c, d be real numbers. Suppose $x \in$ Rectangle (a, b, c, d) and $a<b$ and $c<d$. Then $x \in \mathcal{L}([a, c],[a, d])$ or $x \in \mathcal{L}([a, d],[b, d])$ or $x \in \mathcal{L}([b, d],[b, c])$ or $x \in \mathcal{L}([b, c],[a, c])$.

5. General Fashoda Theorem for Square

The following propositions are true:
(74) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ and $p_{1} \in \mathcal{L}([-1$, $-1],[-1,1])$. Then $p_{2} \in \mathcal{L}([-1,-1],[-1,1])$ and $\left(p_{2}\right)_{2} \geqslant\left(p_{1}\right)_{2}$ or $p_{2} \in$ $\mathcal{L}([-1,1],[1,1])$ or $p_{2} \in \mathcal{L}([1,1],[1,-1])$ or $p_{2} \in \mathcal{L}([1,-1],[-1,-1])$ and $p_{2} \neq[-1,-1]$.
(75) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $p_{1} \in \mathcal{L}([-1,-1],[-1,1])$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$. Then $\operatorname{LE}\left(f\left(p_{1}\right), f\left(p_{2}\right), P\right)$.
(76) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=$ Rectangle $(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $p_{1} \in \mathcal{L}([-1,-1],[-1,1])$ and $\left(p_{1}\right)_{\mathbf{2}} \geqslant 0$ and $\operatorname{LE}\left(p_{1}, p_{2}, K\right)$ and $\operatorname{LE}\left(p_{2}, p_{3}, K\right)$. Then $\operatorname{LE}\left(f\left(p_{2}\right), f\left(p_{3}\right), P\right)$.
(77) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $f=\mathrm{SqCirc}$ and $p_{1}=-1$ and $p_{2}<0$, then $f(p)_{1}<0$ and $f(p)_{\mathbf{2}}<0$.
(78) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\operatorname{Circle}(0,0,1)$ and $K=$ Rectangle $(-1,1,-1,1)$ and $f=$ SqCirc, then $f(p)_{1} \geqslant 0$ iff $p_{\mathbf{1}} \geqslant 0$.
(79) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\operatorname{Circle}(0,0,1)$ and $K=$ Rectangle $(-1,1,-1,1)$ and $f=$ SqCirc, then $f(p)_{2} \geqslant 0$ iff $p_{2} \geqslant 0$.
(80) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $f=\mathrm{SqCirc}$ and $p \in \mathcal{L}([-1,-1],[-1,1])$ and $q \in \mathcal{L}([1,-1],[-1,-1])$, then $f(p)_{\mathbf{1}} \leqslant$ $f(q)_{1}$.
(81) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $f=\operatorname{SqCirc}$ and $p \in \mathcal{L}([-1,-1],[-1,1])$ and $q \in \mathcal{L}([-1,-1],[-1,1])$ and $p_{2} \geqslant q_{2}$ and $p_{2}<0$. Then $f(p)_{\mathbf{2}} \geqslant f(q)_{\mathbf{2}}$.
(82) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc} . \operatorname{Suppose} \operatorname{LE}\left(p_{1}, p_{2}, K\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, K\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, K\right)$. Then $f\left(p_{1}\right), f\left(p_{2}\right), f\left(p_{3}\right), f\left(p_{4}\right)$ are in this order on P.
(83) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and not $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$, then $\mathrm{LE}\left(p_{2}, p_{1}, P\right)$.
(84) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$. Then $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ or $\mathrm{LE}\left(p_{1}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{2}, P\right)$ or $\mathrm{LE}\left(p_{2}, p_{1}, P\right)$ and $\mathrm{LE}\left(p_{1}, p_{3}, P\right)$ or $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$ and $\mathrm{LE}\left(p_{3}, p_{1}, P\right)$ or $\mathrm{LE}\left(p_{3}, p_{1}, P\right)$ and $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ or $\mathrm{LE}\left(p_{3}, p_{2}, P\right)$ and $\mathrm{LE}\left(p_{2}, p_{1}, P\right)$.
(85) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$ and $\mathrm{LE}\left(p_{2}, p_{3}, P\right)$. Then $\mathrm{LE}\left(p_{1}, p_{2}, P\right)$ or $\mathrm{LE}\left(p_{2}, p_{1}, P\right)$ and $\mathrm{LE}\left(p_{1}, p_{3}, P\right)$ or $\operatorname{LE}\left(p_{3}, p_{1}, P\right)$.
(86) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$ and $p_{4} \in P$ and $\operatorname{LE}\left(p_{2}, p_{3}, P\right)$ and $\operatorname{LE}\left(p_{3}, p_{4}, P\right)$. Then $\operatorname{LE}\left(p_{1}, p_{2}, P\right)$ or $\mathrm{LE}\left(p_{2}, p_{1}, P\right)$ and $\mathrm{LE}\left(p_{1}, p_{3}, P\right)$ or $\mathrm{LE}\left(p_{3}, p_{1}, P\right)$ and $\mathrm{LE}\left(p_{1}, p_{4}, P\right)$ or $\mathrm{LE}\left(p_{4}, p_{1}, P\right)$.
(87) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $\operatorname{LE}\left(f\left(p_{1}\right), f\left(p_{2}\right), P\right)$ and $\mathrm{LE}\left(f\left(p_{2}\right), f\left(p_{3}\right), P\right)$ and $\mathrm{LE}\left(f\left(p_{3}\right), f\left(p_{4}\right), P\right)$. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on K.
(88) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=$ SqCirc. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on K if and only if $f\left(p_{1}\right), f\left(p_{2}\right), f\left(p_{3}\right), f\left(p_{4}\right)$ are in this order on P.
(89) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, K$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and K_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on K. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $K_{0}=$ ClosedInsideOfRectangle $(-1,1,-1,1)$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq K_{0}$ and $\mathrm{rng} g \subseteq K_{0}$.

Then rng f meets rng g.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[14] Artur Korniłowicz. The ordering of points on a curve. Part III. Formalized Mathematics, 10(3):169-171, 2002.
[15] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Formalized Mathematics, 9(4):697-704, 2001.
[16] Yatsuka Nakamura. On the simple closed curve property of the circle and the Fashoda Meet Theorem. Formalized Mathematics, 9(4):801-808, 2001.
[17] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[20] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[21] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ The proposition (1) has been removed.

