General Fashoda Meet Theorem for Unit Circle and Square

Yatsuka Nakamura Shinshu University Nagano

Summary. Here we will prove Fashoda meet theorem for the unit circle and for a square, when 4 points on the boundary are ordered cyclically. Also, the concepts of general rectangle and general circle are defined.

MML Identifier: JGRAPH_6.

The articles [8], [22], [26], [3], [4], [25], [1], [9], [2], [6], [13], [23], [19], [18], [16], [17], [11], [24], [7], [14], [15], [21], [20], [10], [5], and [12] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (2)¹ For all real numbers a, b, r such that $0 \leq r$ and $r \leq 1$ and $a \leq b$ holds $a \leq (1-r) \cdot a + r \cdot b$ and $(1-r) \cdot a + r \cdot b \leq b$.
- (3) For all real numbers a, b such that $a \ge 0$ and b > 0 or a > 0 and $b \ge 0$ holds a + b > 0.
- (4) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds $a^2 \cdot b^2 \leq 1$.
- (5) For all real numbers a, b such that $a \ge 0$ and $b \ge 0$ holds $a \cdot \sqrt{b} = \sqrt{a^2 \cdot b}$.
- (6) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds $(-b) \cdot \sqrt{1+a^2} \leq \sqrt{1+b^2}$ and $-\sqrt{1+b^2} \leq b \cdot \sqrt{1+a^2}$.

C 2003 University of Białystok ISSN 1426-2630

¹The proposition (1) has been removed.

- (7) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds $b \cdot \sqrt{1+a^2} \leq \sqrt{1+b^2}$.
- (8) For all real numbers a, b such that $a \ge b$ holds $a \cdot \sqrt{1+b^2} \ge b \cdot \sqrt{1+a^2}$.
- (9) Let a, c, d be real numbers and p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $c \leq d$ and $p \in \mathcal{L}([a, c], [a, d])$, then $p_1 = a$ and $c \leq p_2$ and $p_2 \leq d$.
- (10) For all real numbers a, c, d and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that c < d and $p_1 = a$ and $c \leq p_2$ and $p_2 \leq d$ holds $p \in \mathcal{L}([a, c], [a, d])$.
- (11) Let a, b, d be real numbers and p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $a \leq b$ and $p \in \mathcal{L}([a, d], [b, d])$, then $p_2 = d$ and $a \leq p_1$ and $p_1 \leq b$.
- (12) For all real numbers a, b and for every subset B of \mathbb{I} such that B = [a, b] holds B is closed.
- (13) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and g be a map from X into Z. Then dom f = dom g and dom f = the carrier of X and dom $f = \Omega_X$.
- (14) Let X be a non empty topological space and B be a non empty subset of X. Then there exists a map f from $X \upharpoonright B$ into X such that for every point p of $X \upharpoonright B$ holds f(p) = p and f is continuous.
- (15) Let X be a non empty topological space, f_1 be a map from X into \mathbb{R}^1 , and a be a real number. Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = r_1 - a$ and g is continuous.
- (16) Let X be a non empty topological space, f_1 be a map from X into \mathbb{R}^1 , and a be a real number. Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = a - r_1$ and g is continuous.
- (17) Let X be a non empty topological space, n be a natural number, p be a point of $\mathcal{E}_{\mathrm{T}}^n$, and f be a map from X into \mathbb{R}^1 . Suppose f is continuous. Then there exists a map g from X into $\mathcal{E}_{\mathrm{T}}^n$ such that for every point r of X holds $g(r) = f(r) \cdot p$ and g is continuous.
- (18) $\operatorname{SqCirc}([-1,0]) = [-1,0].$
- (19) For every compact non empty subset P of \mathcal{E}_{T}^{2} such that $P = \{p; p \text{ ranges} over points of <math>\mathcal{E}_{T}^{2}$: $|p| = 1\}$ holds $\operatorname{SqCirc}([-1, 0]) = W$ -min P.
- (20) Let X be a non empty topological space, n be a natural number, and g_1 , g_2 be maps from X into \mathcal{E}_T^n . Suppose g_1 is continuous and g_2 is continuous. Then there exists a map g from X into \mathcal{E}_T^n such that for every point r of X holds $g(r) = g_1(r) + g_2(r)$ and g is continuous.
- (21) Let X be a non empty topological space, n be a natural number, p_1 , p_2 be points of \mathcal{E}_T^n , and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous. Then there exists a map g from X into \mathcal{E}_T^n such that for every point r of X holds $g(r) = f_1(r) \cdot p_1 + f_2(r) \cdot p_2$ and

214

g is continuous.

(22) For every function f and for every set A such that f is one-to-one and $A \subseteq \text{dom } f$ holds $(f^{-1})^{\circ} f^{\circ} A = A$.

2. General Fashoda Theorem for Unit Circle

In the sequel p, p_1 , p_2 , p_3 , q, q_1 , q_2 are points of $\mathcal{E}_{\mathrm{T}}^2$. One can prove the following propositions:

- (23) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, C_0 , K_1 , K_2 , K_3 , K_4 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leq (q_1)_1 \land (q_1)_2 \geq -(q_1)_1\}$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_2| = 1 \land (q_2)_2 \geq (q_2)_1 \land (q_2)_2 \leq -(q_2)_1\}$ and $K_3 = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_3| = 1 \land (q_3)_2 \geq (q_3)_1 \land (q_3)_2 \geq -(q_3)_1\}$ and $K_4 = \{q_4; q_4 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1\}$ and $f(O) \in K_1$ and $f(I) \in K_2$ and $g(O) \in K_3$ and $g(I) \in K_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (24) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2, C_0, K_1, K_2, K_3, K_4$ be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $K_1 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leq (q_1)_1 \land (q_1)_2 \geq -(q_1)_1\}$ and $K_2 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_2| = 1 \land (q_2)_2 \geq (q_2)_1 \land (q_2)_2 \leq -(q_2)_1\}$ and $K_3 = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_3| = 1 \land (q_3)_2 \geq (q_3)_1 \land (q_3)_2 \geq -(q_3)_1\}$ and $K_4 = \{q_4; q_4 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1\}$ and $f(O) \in K_1$ and $f(I) \in K_2$ and $g(O) \in K_4$ and $g(I) \in K_3$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.
- (25) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and $LE(p_1, p_2, P)$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p_8; p_8 \text{ ranges over points of } \mathcal{E}_T^2: |p_8| \leq 1\}$ and $f(0) = p_3$ and $f(1) = p_1$ and $g(0) = p_2$ and $g(1) = p_4$ and rng $f \subseteq C_0$ and rng $g \subseteq C_0$. Then rng f meets rng g.
- (26) Let p_1 , p_2 , p_3 , p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$, P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, and C_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $|p| = 1\}$ and $\mathrm{LE}(p_1, p_2, P)$ and $\mathrm{LE}(p_2, p_3, P)$ and $\mathrm{LE}(p_3, p_4, P)$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p_8; p_8 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$.

 $|p_8| \leq 1$ and $f(0) = p_3$ and $f(1) = p_1$ and $g(0) = p_4$ and $g(1) = p_2$ and rng $f \subseteq C_0$ and rng $g \subseteq C_0$. Then rng f meets rng g.

(27) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 , P be a compact non empty subset of \mathcal{E}_T^2 , and C_0 be a subset of \mathcal{E}_T^2 . Suppose $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $|p| = 1\}$ and p_1, p_2, p_3, p_4 are in this order on P. Let f, g be maps from \mathbb{I} into \mathcal{E}_T^2 . Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p_8; p_8 \text{ ranges over points of } \mathcal{E}_T^2: |p_8| \leq 1\}$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

3. General Rectangles and Circles

Let a, b, c, d be real numbers. The functor Rectangle(a, b, c, d) yielding a subset of \mathcal{E}_{T}^{2} is defined by the condition (Def. 1).

- (Def. 1) Rectangle $(a, b, c, d) = \{p : p_1 = a \land c \leq p_2 \land p_2 \leq d \lor p_2 = d \land a \leq p_1 \land p_1 \leq b \lor p_1 = b \land c \leq p_2 \land p_2 \leq d \lor p_2 = c \land a \leq p_1 \land p_1 \leq b\}.$ The following proposition is true
 - (28) Let a, b, c, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $a \leq b$ and $c \leq d$ and $p \in \mathrm{Rectangle}(a, b, c, d)$, then $a \leq p_1$ and $p_1 \leq b$ and $c \leq p_2$ and $p_2 \leq d$.

Let a, b, c, d be real numbers. The functor InsideOfRectangle(a, b, c, d) yields a subset of \mathcal{E}_{T}^{2} and is defined as follows:

- (Def. 2) InsideOfRectangle $(a, b, c, d) = \{p : a < p_1 \land p_1 < b \land c < p_2 \land p_2 < d\}$. Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle(a, b, c, d) yielding a subset of \mathcal{E}^2_{T} is defined as follows:
- (Def. 3) ClosedInsideOfRectangle $(a, b, c, d) = \{p : a \leq p_1 \land p_1 \leq b \land c \leq p_2 \land p_2 \leq d\}.$

Let a, b, c, d be real numbers. The functor OutsideOfRectangle(a, b, c, d) yields a subset of \mathcal{E}_{T}^{2} and is defined by:

 $(\text{Def. 4}) \quad \text{OutsideOfRectangle}(a, b, c, d) = \{ p : a \not\leq p_1 \lor p_1 \not\leq b \lor c \not\leq p_2 \lor p_2 \not\leq d \}.$

Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle(a, b, c, d) yielding a subset of \mathcal{E}_{T}^{2} is defined by:

Next we state four propositions:

(29) Let a, b, r be real numbers and K_5, C_1 be subsets of \mathcal{E}_T^2 . Suppose $r \ge 0$ and $K_5 = \{q : |q| = 1\}$ and $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: |p_2 - [a, b]| = r\}$. Then (AffineMap(r, a, r, b))° $K_5 = C_1$.

- (30) Let P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^2$. Suppose there exists a map from $\mathcal{E}_{\mathrm{T}}^2 \upharpoonright P$ into $\mathcal{E}_{\mathrm{T}}^2 \upharpoonright Q$ which is a homeomorphism and P is a simple closed curve. Then Q is a simple closed curve.
- (31) For every subset P of $\mathcal{E}_{\mathrm{T}}^2$ such that P satisfies conditions of simple closed curve holds P is compact.
- (32) Let a, b, r be real numbers and C_1 be a subset of $\mathcal{E}^2_{\mathrm{T}}$. Suppose r > 0 and $C_1 = \{p; p \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}} \colon |p [a, b]| = r\}$. Then C_1 is a simple closed curve.

Let a, b, r be real numbers. Let us assume that r > 0. The functor $\operatorname{Circle}(a, b, r)$ yielding a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

(Def. 6) Circle $(a, b, r) = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: |p - [a, b]| = r\}.$

Let a, b, r be real numbers. The functor InsideOfCircle(a, b, r) yielding a subset of \mathcal{E}^2_{T} is defined by:

- (Def. 7) InsideOfCircle $(a, b, r) = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: |p [a, b]| < r\}.$ Let a, b, r be real numbers. The functor ClosedInsideOfCircle(a, b, r) yields a subset of \mathcal{E}_{T}^{2} and is defined as follows:
- (Def. 8) ClosedInsideOfCircle $(a, b, r) = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |p [a, b]| \leq r\}.$

Let a, b, r be real numbers. The functor OutsideOfCircle(a, b, r) yielding a subset of \mathcal{E}^2_T is defined by:

- (Def. 9) OutsideOfCircle $(a, b, r) = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |p [a, b]| > r\}.$ Let a, b, r be real numbers. The functor ClosedOutsideOfCircle(a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:
- (Def. 10) ClosedOutsideOfCircle $(a, b, r) = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: |p [a, b]| \ge r\}.$

One can prove the following propositions:

- (33) Let r be a real number. Then InsideOfCircle $(0, 0, r) = \{p : |p| < r\}$ and if r > 0, then Circle $(0, 0, r) = \{p_2 : |p_2| = r\}$ and OutsideOfCircle $(0, 0, r) = \{p_3 : |p_3| > r\}$ and ClosedInsideOfCircle $(0, 0, r) = \{q : |q| \le r\}$ and ClosedOutsideOfCircle $(0, 0, r) = \{q_2 : |q_2| \ge r\}$.
- (34) Let K_5 , C_1 be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $K_5 = \{p : -1 < p_1 \land p_1 < 1 \land -1 < p_2 \land p_2 < 1\}$ and $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: |p_2| < 1\}$. Then SqCirc[°] $K_5 = C_1$.
- (35) Let K_5 , C_1 be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $K_5 = \{p : -1 \not\leq p_1 \lor p_1 \not\leq 1 \lor -1 \not\leq p_2 \lor p_2 \not\leq 1\}$ and $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: |p_2| > 1\}$. Then SqCirc[°] $K_5 = C_1$.
- (36) Let K_5 , C_1 be subsets of \mathcal{E}_T^2 . Suppose $K_5 = \{p : -1 \leq p_1 \land p_1 \leq 1 \land -1 \leq p_2 \land p_2 \leq 1\}$ and $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: |p_2| \leq 1\}$. Then SqCirc[°] $K_5 = C_1$.

- (37) Let K_5 , C_1 be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $K_5 = \{p : -1 \not< p_1 \lor p_1 \not< 1 \lor -1 \not< p_2 \lor p_2 \not< 1\}$ and $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: |p_2| \ge 1\}$. Then SqCirc[°] $K_5 = C_1$.
- (38) Let P_0 , P_1 , P_2 , P_{11} , K_0 , K_6 , K_7 , K_{11} be subsets of \mathcal{E}_T^2 , P, K be non empty compact subsets of \mathcal{E}_T^2 , and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose that P = Circle(0,0,1) and $P_0 = \text{InsideOfCircle}(0,0,1)$ and $P_1 =$ OutsideOfCircle(0,0,1) and $P_2 = \text{ClosedInsideOfCircle}(0,0,1)$ and $P_{11} =$ ClosedOutsideOfCircle(0,0,1) and K = Rectangle(-1,1,-1,1) and $K_0 =$ InsideOfRectangle(-1,1,-1,1) and $K_6 = \text{OutsideOfRectangle}(-1,1,-1,1)$ and $K_7 = \text{ClosedInsideOfRectangle}(-1,1,-1,1)$ and $K_{11} = \text{ClosedOutsideOfRectangle}(-1,1,-1,1)$ and f = SqCirc. Then $f^{\circ}K = P$ and $(f^{-1})^{\circ}P = K$ and $f^{\circ}K_0 = P_0$ and $(f^{-1})^{\circ}P_0 = K_0$ and $f^{\circ}K_6 = P_1$ and $(f^{-1})^{\circ}P_1 = K_6$ and $f^{\circ}K_7 = P_2$ and $f^{\circ}K_{11} = P_{11}$ and $(f^{-1})^{\circ}P_2 = K_7$ and $(f^{-1})^{\circ}P_{11} = K_{11}$.

4. Order of Points on Rectangle

The following propositions are true:

(39) Let a, b, c, d be real numbers. Suppose $a \leq b$ and $c \leq d$. Then

- (i) $\mathcal{L}([a,c],[a,d]) = \{p_1 : (p_1)_1 = a \land (p_1)_2 \leq d \land (p_1)_2 \geq c\},\$
- (ii) $\mathcal{L}([a,d],[b,d]) = \{p_2 : (p_2)_1 \leq b \land (p_2)_1 \geq a \land (p_2)_2 = d\},\$
- (iii) $\mathcal{L}([a,c],[b,c]) = \{q_1 : (q_1)_1 \leq b \land (q_1)_1 \geq a \land (q_1)_2 = c\}, \text{ and }$
- (iv) $\mathcal{L}([b,c],[b,d]) = \{q_2 : (q_2)_1 = b \land (q_2)_2 \leq d \land (q_2)_2 \geq c\}.$
- (40) Let a, b, c, d be real numbers. Suppose $a \leq b$ and $c \leq d$. Then $\{p : p_1 = a \land c \leq p_2 \land p_2 \leq d \lor p_2 = d \land a \leq p_1 \land p_1 \leq b \lor p_1 = b \land c \leq p_2 \land p_2 \leq d \lor p_2 = c \land a \leq p_1 \land p_1 \leq b\} = \mathcal{L}([a, c], [a, d]) \cup \mathcal{L}([a, d], [b, d])) \cup (\mathcal{L}([a, c], [b, c]) \cup \mathcal{L}([b, c], [b, d])).$
- (41) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c], [a, d]) \cap \mathcal{L}([a, c], [b, c]) = \{[a, c]\}.$
- (42) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c], [b, c]) \cap \mathcal{L}([b, c], [b, d]) = \{[b, c]\}.$
- (43) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, d], [b, d]) \cap \mathcal{L}([b, c], [b, d]) = \{[b, d]\}.$
- (44) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c], [a, d]) \cap \mathcal{L}([a, d], [b, d]) = \{[a, d]\}.$

218

- (46) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} and a, b, c, d be real numbers. If K = Rectangle(a, b, c, d) and $a \leq b$ and $c \leq d$, then W-bound K = a.
- (47) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} and a, b, c, d be real numbers. If K = Rectangle(a, b, c, d) and $a \leq b$ and $c \leq d$, then N-bound K = d.
- (48) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then E-bound K = b.
- (49) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} and a, b, c, d be real numbers. If K = Rectangle(a, b, c, d) and $a \leq b$ and $c \leq d$, then S-bound K = c.
- (50) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then NW-corner K = [a, d].
- (51) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then NE-corner K = [b, d].
- (52) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then SW-corner K = [a, c].
- (53) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then SE-corner K = [b, c].
- (54) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then W-most $K = \mathcal{L}([a, c], [a, d])$.
- (55) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then E-most $K = \mathcal{L}([b, c], [b, d])$.
- (56) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then W-min K = [a, c] and E-max K = [b, d].
- (57) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. Suppose $K = \operatorname{Rectangle}(a, b, c, d)$ and a < b and c < d. Then $\mathcal{L}([a, c], [a, d]) \cup \mathcal{L}([a, d], [b, d])$ is an arc from W-min K to E-max K and $\mathcal{L}([a, c], [b, c]) \cup \mathcal{L}([b, c], [b, d])$ is an arc from E-max K to W-min K.
- (58) Let P, P_1, P_3 be subsets of $\mathcal{E}^2_{\mathrm{T}}$, a, b, c, d be real numbers, f_1, f_2 be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$, and p_0, p_1, p_5, p_{10} be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that a < b and c < d and $P = \{p : p_1 = a \land c \leq p_2 \land p_2 \leq d \lor p_2 = d \land a \leq p_1 \land p_1 \leq b \lor p_1 = b \land c \leq p_2 \land p_2 \leq d \lor p_2 = c \land a \leq p_1 \land p_1 \leq b \}$ and $p_0 = [a, c]$ and $p_1 = [b, d]$ and $p_5 = [a, c]$

d] and $p_{10} = [b, c]$ and $f_1 = \langle p_0, p_5, p_1 \rangle$ and $f_2 = \langle p_0, p_{10}, p_1 \rangle$. Then f_1 is a special sequence and $\widetilde{\mathcal{L}}(f_1) = \mathcal{L}(p_0, p_5) \cup \mathcal{L}(p_5, p_1)$ and f_2 is a special sequence and $\widetilde{\mathcal{L}}(f_2) = \mathcal{L}(p_0, p_{10}) \cup \mathcal{L}(p_{10}, p_1)$ and $P = \widetilde{\mathcal{L}}(f_1) \cup \widetilde{\mathcal{L}}(f_2)$ and $\widetilde{\mathcal{L}}(f_1) \cap \widetilde{\mathcal{L}}(f_2) = \{p_0, p_1\}$ and $(f_1)_1 = p_0$ and $(f_1)_{\text{len } f_1} = p_1$ and $(f_2)_1 = p_0$ and $(f_2)_{\text{len } f_2} = p_1$.

- (59) Let P, P_1, P_3 be subsets of \mathcal{E}_T^2 , a, b, c, d be real numbers, f_1, f_2 be finite sequences of elements of \mathcal{E}_T^2 , and p_1, p_2 be points of \mathcal{E}_T^2 . Suppose that a < band c < d and $P = \{p : p_1 = a \land c \leq p_2 \land p_2 \leq d \lor p_2 = d \land a \leq p_1 \land p_1 \leq b \lor p_1 = b \land c \leq p_2 \land p_2 \leq d \lor p_2 = c \land a \leq p_1 \land p_1 \leq b\}$ and $p_1 = [a, c]$ and $p_2 = [b, d]$ and $f_1 = \langle [a, c], [a, d], [b, d] \rangle$ and $f_2 = \langle [a, c], [b, c], [b, d] \rangle$ and $P_1 = \widetilde{\mathcal{L}}(f_1)$ and $P_3 = \widetilde{\mathcal{L}}(f_2)$. Then P_1 is an arc from p_1 to p_2 and P_3 is an arc from p_1 to p_2 and P_1 is non empty and P_3 is non empty and $P = P_1 \cup P_3$ and $P_1 \cap P_3 = \{p_1, p_2\}$.
- (60) For all real numbers a, b, c, d such that a < b and c < d holds Rectangle(a, b, c, d) is a simple closed curve.
- (61) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and a < b and c < d, then UpperArc $K = \mathcal{L}([a, c], [a, d]) \cup \mathcal{L}([a, d], [b, d]).$
- (62) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$ and a, b, c, d be real numbers. If $K = \operatorname{Rectangle}(a, b, c, d)$ and a < b and c < d, then LowerArc $K = \mathcal{L}([a, c], [b, c]) \cup \mathcal{L}([b, c], [b, d])$.
- (63) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$, a, b, c, d be real numbers, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $K = \operatorname{Rectangle}(a, b, c, d)$ and a < band c < d. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_{\mathrm{T}}^2)$ UpperArc K such that

 $f \text{ is a homeomorphism and } f(0) = \text{W-min } K \text{ and } f(1) = \text{E-max } K \text{ and } \\ \text{rng } f = \text{UpperArc } K \text{ and for every real number } r \text{ such that } r \in [0, \frac{1}{2}] \text{ holds } \\ f(r) = (1 - 2 \cdot r) \cdot [a, c] + 2 \cdot r \cdot [a, d] \text{ and for every real number } r \text{ such that } \\ r \in [\frac{1}{2}, 1] \text{ holds } f(r) = (1 - (2 \cdot r - 1)) \cdot [a, d] + (2 \cdot r - 1) \cdot [b, d] \text{ and for every } \\ \text{point } p \text{ of } \mathcal{E}_{\mathrm{T}}^{2} \text{ such that } p \in \mathcal{L}([a, c], [a, d]) \text{ holds } 0 \leqslant \frac{\frac{p_{2} - c}{d-c}}{2} \text{ and } \frac{\frac{p_{2} - c}{d-c}}{2} \leqslant 1 \\ \text{and } f(\frac{\frac{p_{2} - c}{d-c}}{2}) = p \text{ and for every point } p \text{ of } \mathcal{E}_{\mathrm{T}}^{2} \text{ such that } p \in \mathcal{L}([a, d], [b, d]) \\ \text{holds } 0 \leqslant \frac{\frac{p_{1} - a}{2}}{2} + \frac{1}{2} \text{ and } \frac{\frac{p_{1} - a}{2}}{2} + \frac{1}{2} \leqslant 1 \text{ and } f(\frac{\frac{p_{1} - a}{2}}{2} + \frac{1}{2}) = p. \end{aligned}$

(64) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^2$, a, b, c, d be real numbers, and p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $K = \operatorname{Rectangle}(a, b, c, d)$ and a < band c < d. Then there exists a map f from I into $(\mathcal{E}_{\mathrm{T}}^2)$ LowerArc K such that

f is a homeomorphism and f(0) = E-max K and f(1) = W-min K and rng f = LowerArc K and for every real number r such that $r \in [0, \frac{1}{2}]$ holds $f(r) = (1 - 2 \cdot r) \cdot [b, d] + 2 \cdot r \cdot [b, c]$ and for every real number r such that $r \in [\frac{1}{2}, 1]$ holds $f(r) = (1 - (2 \cdot r - 1)) \cdot [b, c] + (2 \cdot r - 1) \cdot [a, c]$ and for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathcal{L}([b,d],[b,c])$ holds $0 \leqslant \frac{\frac{p_2-d}{c-d}}{2}$ and $\frac{\frac{p_2-d}{c-d}}{2} \leqslant 1$ and $f(\frac{\frac{p_2-d}{c-d}}{2}) = p$ and for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathcal{L}([b,c],[a,c])$ holds $0 \leqslant \frac{\frac{p_1-b}{2}}{2} + \frac{1}{2}$ and $\frac{\frac{p_1-b}{2}}{2} + \frac{1}{2} \leqslant 1$ and $f(\frac{\frac{p_1-b}{2}}{2} + \frac{1}{2}) = p$.

- (65) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < b and c < d and $p_{1} \in \mathcal{L}([a, c], [a, d])$ and $p_{2} \in \mathcal{L}([a, c], [a, d])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if $(p_{1})_{2} \leq (p_{2})_{2}$.
- (66) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < b and c < d and $p_{1} \in \mathcal{L}([a, d], [b, d])$ and $p_{2} \in \mathcal{L}([a, d], [b, d])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if $(p_{1})_{1} \leq (p_{2})_{1}$.
- (67) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < b and c < d and $p_{1} \in \mathcal{L}([b, c], [b, d])$ and $p_{2} \in \mathcal{L}([b, c], [b, d])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if $(p_{1})_{2} \ge (p_{2})_{2}$.
- (68) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1}, p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < b and c < d and $p_{1} \in \mathcal{L}([a, c], [b, c])$ and $p_{2} \in \mathcal{L}([a, c], [b, c])$. Then $\text{LE}(p_{1}, p_{2}, K)$ and $p_{1} \neq \text{W-min } K$ if and only if $(p_{1})_{1} \geq (p_{2})_{1}$ and $p_{2} \neq \text{W-min } K$.
- (69) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1} , p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < band c < d and $p_{1} \in \mathcal{L}([a, c], [a, d])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if one of the following conditions is satisfied:
 - (i) $p_2 \in \mathcal{L}([a,c], [a,d])$ and $(p_1)_2 \leq (p_2)_2$, or
- (ii) $p_2 \in \mathcal{L}([a, d], [b, d])$, or
- (iii) $p_2 \in \mathcal{L}([b,d],[b,c]), \text{ or }$
- (iv) $p_2 \in \mathcal{L}([b,c],[a,c])$ and $p_2 \neq W$ -min K.
- (70) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1} , p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < band c < d and $p_{1} \in \mathcal{L}([a, d], [b, d])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if one of the following conditions is satisfied:
 - (i) $p_2 \in \mathcal{L}([a,d],[b,d])$ and $(p_1)_1 \leq (p_2)_1$, or
- (ii) $p_2 \in \mathcal{L}([b, d], [b, c]), \text{ or }$
- (iii) $p_2 \in \mathcal{L}([b,c],[a,c])$ and $p_2 \neq W$ -min K.
- (71) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1} , p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < band c < d and $p_{1} \in \mathcal{L}([b, d], [b, c])$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if one of the following conditions is satisfied:
 - (i) $p_2 \in \mathcal{L}([b,d], [b,c])$ and $(p_1)_2 \ge (p_2)_2$, or

- (ii) $p_2 \in \mathcal{L}([b,c],[a,c])$ and $p_2 \neq W$ -min K.
- (72) Let K be a non empty compact subset of \mathcal{E}_{T}^{2} , a, b, c, d be real numbers, and p_{1} , p_{2} be points of \mathcal{E}_{T}^{2} . Suppose K = Rectangle(a, b, c, d) and a < band c < d and $p_{1} \in \mathcal{L}([b, c], [a, c])$ and $p_{1} \neq \text{W-min } K$. Then $\text{LE}(p_{1}, p_{2}, K)$ if and only if the following conditions are satisfied:
 - (i) $p_2 \in \mathcal{L}([b,c],[a,c]),$
 - (ii) $(p_1)_1 \ge (p_2)_1$, and
- (iii) $p_2 \neq W \text{-min } K$.
- (73) Let x be a set and a, b, c, d be real numbers. Suppose $x \in$ Rectangle(a, b, c, d) and a < b and c < d. Then $x \in \mathcal{L}([a, c], [a, d])$ or $x \in \mathcal{L}([a, d], [b, d])$ or $x \in \mathcal{L}([b, d], [b, c])$ or $x \in \mathcal{L}([b, c], [a, c])$.

5. General Fashoda Theorem for Square

The following propositions are true:

- (74) Let p_1, p_2 be points of \mathcal{E}^2_T and K be a non empty compact subset of \mathcal{E}^2_T . Suppose K = Rectangle(-1, 1, -1, 1) and $\text{LE}(p_1, p_2, K)$ and $p_1 \in \mathcal{L}([-1, -1], [-1, 1])$. Then $p_2 \in \mathcal{L}([-1, -1], [-1, 1])$ and $(p_2)_2 \ge (p_1)_2$ or $p_2 \in \mathcal{L}([-1, 1], [1, 1])$ or $p_2 \in \mathcal{L}([1, 1], [1, -1])$ or $p_2 \in \mathcal{L}([1, -1], [-1, -1])$ and $p_2 \ne [-1, -1]$.
- (75) Let p_1 , p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$, P, K be non empty compact subsets of $\mathcal{E}^2_{\mathrm{T}}$, and f be a map from $\mathcal{E}^2_{\mathrm{T}}$ into $\mathcal{E}^2_{\mathrm{T}}$. Suppose $P = \mathrm{Circle}(0,0,1)$ and $K = \mathrm{Rectangle}(-1,1,-1,1)$ and $f = \mathrm{SqCirc}$ and $p_1 \in \mathcal{L}([-1,-1],[-1,1])$ and $(p_1)_2 \ge 0$ and $\mathrm{LE}(p_1,p_2,K)$. Then $\mathrm{LE}(f(p_1),f(p_2),P)$.
- (76) Let p_1, p_2, p_3 be points of \mathcal{E}_T^2 , P, K be non empty compact subsets of \mathcal{E}_T^2 , and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose P = Circle(0, 0, 1) and K = Rectangle(-1, 1, -1, 1) and $f = \text{SqCirc and } p_1 \in \mathcal{L}([-1, -1], [-1, 1])$ and $(p_1)_2 \ge 0$ and $\text{LE}(p_1, p_2, K)$ and $\text{LE}(p_2, p_3, K)$. Then $\text{LE}(f(p_2), f(p_3), P)$.
- (77) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$ and f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. If $f = \mathrm{SqCirc}$ and $p_1 = -1$ and $p_2 < 0$, then $f(p)_1 < 0$ and $f(p)_2 < 0$.
- (78) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$, P, K be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. If P = Circle(0,0,1) and K = Rectangle(-1,1,-1,1) and f = SqCirc, then $f(p)_1 \ge 0$ iff $p_1 \ge 0$.
- (79) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$, P, K be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. If $P = \mathrm{Circle}(0,0,1)$ and $K = \mathrm{Rectangle}(-1,1,-1,1)$ and $f = \mathrm{SqCirc}$, then $f(p)_2 \ge 0$ iff $p_2 \ge 0$.
- (80) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^2$ and f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. If $f = \operatorname{SqCirc}$ and $p \in \mathcal{L}([-1, -1], [-1, 1])$ and $q \in \mathcal{L}([1, -1], [-1, -1])$, then $f(p)_{\mathbf{1}} \leq f(q)_{\mathbf{1}}$.

- (81) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^2$ and f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. Suppose $f = \operatorname{SqCirc}$ and $p \in \mathcal{L}([-1, -1], [-1, 1])$ and $q \in \mathcal{L}([-1, -1], [-1, 1])$ and $p_2 \ge q_2$ and $p_2 < 0$. Then $f(p)_2 \ge f(q)_2$.
- (82) Let p_1 , p_2 , p_3 , p_4 be points of \mathcal{E}_T^2 , P, K be non empty compact subsets of \mathcal{E}_T^2 , and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose P = Circle(0,0,1) and K = Rectangle(-1,1,-1,1) and f = SqCirc. Suppose $\text{LE}(p_1,p_2,K)$ and $\text{LE}(p_2,p_3,K)$ and $\text{LE}(p_3,p_4,K)$. Then $f(p_1)$, $f(p_2)$, $f(p_3)$, $f(p_4)$ are in this order on P.
- (83) Let p_1 , p_2 be points of \mathcal{E}_T^2 and P be a non empty compact subset of \mathcal{E}_T^2 . If P is a simple closed curve and $p_1 \in P$ and $p_2 \in P$ and not $\text{LE}(p_1, p_2, P)$, then $\text{LE}(p_2, p_1, P)$.
- (84) Let p_1, p_2, p_3 be points of \mathcal{E}_T^2 and P be a non empty compact subset of \mathcal{E}_T^2 . Suppose P is a simple closed curve and $p_1 \in P$ and $p_2 \in P$ and $p_3 \in P$. Then $\operatorname{LE}(p_1, p_2, P)$ and $\operatorname{LE}(p_2, p_3, P)$ or $\operatorname{LE}(p_1, p_3, P)$ and $\operatorname{LE}(p_3, p_2, P)$ or $\operatorname{LE}(p_2, p_1, P)$ and $\operatorname{LE}(p_1, p_3, P)$ or $\operatorname{LE}(p_2, p_3, P)$ and $\operatorname{LE}(p_3, p_1, P)$ or $\operatorname{LE}(p_3, p_1, P)$ and $\operatorname{LE}(p_1, p_2, P)$ or $\operatorname{LE}(p_3, p_2, P)$ and $\operatorname{LE}(p_2, p_1, P)$.
- (85) Let p_1, p_2, p_3 be points of \mathcal{E}_T^2 and P be a non-empty compact subset of \mathcal{E}_T^2 . Suppose P is a simple closed curve and $p_1 \in P$ and $p_2 \in P$ and $p_3 \in P$ and $\operatorname{LE}(p_2, p_3, P)$. Then $\operatorname{LE}(p_1, p_2, P)$ or $\operatorname{LE}(p_2, p_1, P)$ and $\operatorname{LE}(p_1, p_3, P)$ or $\operatorname{LE}(p_3, p_1, P)$.
- (86) Let p_1, p_2, p_3, p_4 be points of \mathcal{E}_T^2 and P be a non empty compact subset of \mathcal{E}_T^2 . Suppose P is a simple closed curve and $p_1 \in P$ and $p_2 \in P$ and $p_3 \in P$ and $p_4 \in P$ and $LE(p_2, p_3, P)$ and $LE(p_3, p_4, P)$. Then $LE(p_1, p_2, P)$ or $LE(p_2, p_1, P)$ and $LE(p_1, p_3, P)$ or $LE(p_3, p_1, P)$ and $LE(p_1, p_4, P)$ or $LE(p_4, p_1, P)$.
- (87) Let p_1 , p_2 , p_3 , p_4 be points of \mathcal{E}_T^2 , P, K be non empty compact subsets of \mathcal{E}_T^2 , and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose P = Circle(0,0,1) and K = Rectangle(-1,1,-1,1) and f = SqCirc and $\text{LE}(f(p_1), f(p_2), P)$ and $\text{LE}(f(p_2), f(p_3), P)$ and $\text{LE}(f(p_3), f(p_4), P)$. Then p_1, p_2, p_3, p_4 are in this order on K.
- (88) Let p_1 , p_2 , p_3 , p_4 be points of \mathcal{E}_T^2 , P, K be non empty compact subsets of \mathcal{E}_T^2 , and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose P = Circle(0, 0, 1) and K = Rectangle(-1, 1, -1, 1) and f = SqCirc. Then p_1 , p_2 , p_3 , p_4 are in this order on K if and only if $f(p_1)$, $f(p_2)$, $f(p_3)$, $f(p_4)$ are in this order on P.
- (89) Let p_1, p_2, p_3, p_4 be points of $\mathcal{E}_{\mathrm{T}}^2$, K be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$, and K_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $K = \operatorname{Rectangle}(-1, 1, -1, 1)$ and p_1, p_2, p_3, p_4 are in this order on K. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $K_0 = \operatorname{ClosedInsideOfRectangle}(-1, 1, -1, 1)$ and $f(0) = p_1$ and $f(1) = p_3$ and $g(0) = p_2$ and $g(1) = p_4$ and $\operatorname{rng} f \subseteq K_0$ and $\operatorname{rng} g \subseteq K_0$.

Then $\operatorname{rng} f$ meets $\operatorname{rng} g$.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [14] Artur Korniłowicz. The ordering of points on a curve. Part III. Formalized Mathematics, 10(3):169–171, 2002.
- [15] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Formalized Mathematics, 9(4):697–704, 2001.
- [16] Yatsuka Nakamura. On the simple closed curve property of the circle and the Fashoda Meet Theorem. Formalized Mathematics, 9(4):801–808, 2001.
- [17] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [20] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{E}_{T}^{N} . Formalized Mathematics, 5(1):93–96, 1996.
- [21] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received February 25, 2003