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S-Polynomials and Standard
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Summary. We continue the Mizar formalization of Gröbner bases follo-
wing [6]. In this article we introduce S-polynomials and standard representations

and show how these notions can be used to characterize Gröbner bases.

MML Identifier: GROEB 2.

The notation and terminology used here are introduced in the following papers:

[24], [31], [32], [34], [33], [8], [3], [15], [30], [29], [9], [7], [5], [14], [12], [19], [18],

[25], [28], [17], [1], [4], [13], [22], [21], [27], [26], [16], [10], [23], [2], [20], [11], and

[35].

1. Preliminaries

One can prove the following propositions:

(1) For every set X and for every finite sequence p of elements of X such

that p 6= ∅ holds p↾1 = 〈p1〉.

(2) Let L be a non empty loop structure, p be a finite sequence of elements

of L, and n, m be natural numbers. If m ¬ n, then p↾n↾m = p↾m.

(3) Let L be an add-associative right zeroed right complementable non

empty loop structure, p be a finite sequence of elements of L, and n be

a natural number. Suppose that for every natural number k such that

k ∈ dom p and k > n holds p(k) = 0L. Then
∑

p =
∑

(p↾n).

(4) Let L be an add-associative right zeroed Abelian non empty loop struc-

ture, f be a finite sequence of elements of L, and i, j be natural numbers.

Then
∑
Swap(f, i, j) =

∑
f.
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(5) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be

bags of n. If b1 ¬T b3 and b2 ¬T b3, then maxT (b1, b2) ¬T b3.

(6) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be

bags of n. If b3 ¬T b1 and b3 ¬T b2, then b3 ¬T minT (b1, b2).

Let X be a set and let b1, b2 be bags of X. Let us assume that b2 | b1. The

functor b1
b2
yields a bag of X and is defined by:

(Def. 1) b2 + b1
b2

= b1.

Let X be a set and let b1, b2 be bags of X. The functor lcm(b1, b2) yields a

bag of X and is defined as follows:

(Def. 2) For every set k holds lcm(b1, b2)(k) = max(b1(k), b2(k)).

Let us observe that the functor lcm(b1, b2) is commutative and idempotent. We

introduce lcm(b1, b2) as a synonym of lcm(b1, b2).

Let X be a set and let b1, b2 be bags of X. We say that b1, b2 are disjoint if

and only if:

(Def. 3) For every set i holds b1(i) = 0 or b2(i) = 0.

We introduce b1, b2 are non disjoint as an antonym of b1, b2 are disjoint.

We now state several propositions:

(7) For every set X and for all bags b1, b2 of X holds b1 | lcm(b1, b2) and

b2 | lcm(b1, b2).

(8) For every set X and for all bags b1, b2, b3 of X such that b1 | b3 and

b2 | b3 holds lcm(b1, b2) | b3.

(9) Let X be a set, T be a term order of X, and b1, b2 be bags of X. Then

b1, b2 are disjoint if and only if lcm(b1, b2) = b1 + b2.

(10) For every set X and for every bag b of X holds b
b

= EmptyBagX.

(11) For every set X and for all bags b1, b2 of X holds b2 | b1 iff lcm(b1, b2) =

b1.

(12) For every set X and for all bags b1, b2, b3 of X such that b1 | lcm(b2, b3)

holds lcm(b2, b1) | lcm(b2, b3).

(13) For every set X and for all bags b1, b2, b3 of X such that lcm(b2, b1) |

lcm(b2, b3) holds lcm(b1, b3) | lcm(b2, b3).

(14) For every set n and for all bags b1, b2, b3 of n such that lcm(b1, b3) |

lcm(b2, b3) holds b1 | lcm(b2, b3).

(15) Let n be a natural number, T be a connected admissible term order of

n, and P be a non empty subset of Bagsn. Then there exists a bag b of n

such that b ∈ P and for every bag b′ of n such that b′ ∈ P holds b ¬T b′.

Let L be an add-associative right zeroed right complementable non trivial

loop structure and let a be a non-zero element of L. Note that −a is non-zero.

Let X be a set, let L be a left zeroed right zeroed add-cancelable distributive

non empty double loop structure, let m be a monomial of X, L, and let a be an
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element of L. One can verify that a ·m is monomial-like.

Let n be an ordinal number, let L be a left zeroed right zeroed add-cancelable

distributive integral domain-like non trivial double loop structure, let p be a non-

zero polynomial of n, L, and let a be a non-zero element of L. One can verify

that a · p is non-zero.

Next we state several propositions:

(16) Let n be an ordinal number, T be a term order of n, L be a right zeroed

right distributive non empty double loop structure, p, q be series of n, L,

and b be a bag of n. Then b ∗ (p + q) = b ∗ p + b ∗ q.

(17) Let n be an ordinal number, T be a term order of n, L be an add-

associative right zeroed right complementable non empty loop structure,

p be a series of n, L, and b be a bag of n. Then b ∗ −p = −b ∗ p.

(18) Let n be an ordinal number, T be a term order of n, L be a left zeroed

add-right-cancelable right distributive non empty double loop structure,

p be a series of n, L, b be a bag of n, and a be an element of L. Then

b ∗ (a · p) = a · (b ∗ p).

(19) Let n be an ordinal number, T be a term order of n, L be a right

distributive non empty double loop structure, p, q be series of n, L, and

a be an element of L. Then a · (p + q) = a · p + a · q.

(20) Let X be a set, L be an add-associative right zeroed right complemen-

table non empty double loop structure, and a be an element of L. Then

−(a (X, L)) = −a (X,L).

2. S-Polynomials

The following proposition is true

(21) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and P be a subset of Polynom-Ring(n,L).

Suppose 0nL /∈ P. Suppose that for all polynomials p1, p2 of n, L such

that p1 6= p2 and p1 ∈ P and p2 ∈ P and for all monomials m1, m2 of

n, L such that HM(m1 ∗ p1, T ) = HM(m2 ∗ p2, T ) holds PolyRedRel(P, T )

reduces m1 ∗ p1 −m2 ∗ p2 to 0nL. Then P is a Groebner basis wrt T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let p1, p2

be polynomials of n, L. The functor S-Poly(p1, p2, T ) yielding a polynomial of

n, L is defined by:
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(Def. 4) S-Poly(p1, p2, T ) = HC(p2, T ) · ( lcm(HT(p1,T ),HT(p2,T ))
HT(p1,T ) ∗ p1) − HC(p1, T ) ·

( lcm(HT(p1,T ),HT(p2,T ))
HT(p2,T ) ∗ p2).

One can prove the following propositions:

(22) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like Abelian non trivial double loop

structure, P be a subset of Polynom-Ring(n,L), and p1, p2 be polyno-

mials of n, L. If p1 ∈ P and p2 ∈ P, then S-Poly(p1, p2, T ) ∈ P–ideal.

(23) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non trivial double loop structure, and

p1, p2 be polynomials of n, L. If p1 = p2, then S-Poly(p1, p2, T ) = 0nL.

(24) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and m1, m2 be monomials of n, L. Then S-Poly(m1,m2, T ) = 0nL.

(25) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative as-

sociative well unital distributive field-like non trivial double loop struc-

ture, and p be a polynomial of n, L. Then S-Poly(p, 0nL, T ) = 0nL and

S-Poly(0nL, p, T ) = 0nL.

(26) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive field-like non trivial double loop

structure, and p1, p2 be polynomials of n, L. Then S-Poly(p1, p2, T ) = 0nL

or HT(S-Poly(p1, p2, T ), T ) <T lcm(HT(p1, T ),HT(p2, T )).

(27) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and p1, p2 be non-zero polynomials of n, L. If HT(p2, T ) | HT(p1, T ), then

HC(p2, T ) · p1 top reduces to S-Poly(p1, p2, T ), p2, T .

(28) Let n be a natural number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and G be a subset of Polynom-Ring(n,L).

Suppose G is a Groebner basis wrt T . Let g1, g2, h be polynomials of n,

L. If g1 ∈ G and g2 ∈ G and h is a normal form of S-Poly(g1, g2, T ) w.r.t.

PolyRedRel(G,T ), then h = 0nL.

(29) Let n be a natural number, T be a connected admissible term order of n,

L be an Abelian add-associative right complementable right zeroed com-
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mutative associative well unital distributive field-like non degenerated non

empty double loop structure, and G be a subset of Polynom-Ring(n,L).

Suppose that for all polynomials g1, g2, h of n, L such that g1 ∈ G and

g2 ∈ G and h is a normal form of S-Poly(g1, g2, T ) w.r.t. PolyRedRel(G, T )

holds h = 0nL. Let g1, g2 be polynomials of n, L. If g1 ∈ G and g2 ∈ G,

then PolyRedRel(G,T ) reduces S-Poly(g1, g2, T ) to 0nL.

(30) Let n be a natural number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and G be a subset of Polynom-Ring(n,L).

Suppose 0nL /∈ G. Suppose that for all polynomials g1, g2 of n, L such

that g1 ∈ G and g2 ∈ G holds PolyRedRel(G, T ) reduces S-Poly(g1, g2, T )

to 0nL. Then G is a Groebner basis wrt T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let P be

a subset of Polynom-Ring(n,L). The functor S-Poly(P, T ) yielding a subset of

Polynom-Ring(n,L) is defined by:

(Def. 5) S-Poly(P, T ) = {S-Poly(p1, p2, T ); p1 ranges over polynomials of n, L, p2

ranges over polynomials of n, L: p1 ∈ P ∧ p2 ∈ P}.

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let P be

a finite subset of Polynom-Ring(n,L). One can check that S-Poly(P, T ) is finite.

One can prove the following proposition

(31) Let n be a natural number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, and G be a subset of Polynom-Ring(n,L).

Suppose 0nL /∈ G and for every polynomial g of n, L such that g ∈ G

holds g is a monomial of n, L. Then G is a Groebner basis wrt T .

3. Standard Representations

The following three propositions are true:

(32) Let L be a non empty multiplicative loop structure, P be a non empty

subset of L, A be a left linear combination of P , and i be a natural number.

Then A↾i is a left linear combination of P .

(33) Let L be a non empty multiplicative loop structure, P be a non empty

subset of L, A be a left linear combination of P , and i be a natural number.

Then A⇂i is a left linear combination of P .
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(34) Let L be a non empty multiplicative loop structure, P , Q be non empty

subsets of the carrier of L, and A be a left linear combination of P . If

P ⊆ Q, then A is a left linear combination of Q.

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure,

let P be a non empty subset of Polynom-Ring(n,L), and let A, B be left linear

combinations of P . Then A a B is a left linear combination of P .

Let n be an ordinal number, let L be a right zeroed add-associative right com-

plementable unital distributive non trivial non empty double loop structure, let

f be a polynomial of n, L, let P be a non empty subset of Polynom-Ring(n,L),

and let A be a left linear combination of P . We say that A is a monomial

representation of f if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i)
∑

A = f, and

(ii) for every natural number i such that i ∈ domA there exists a monomial

m of n, L and there exists a polynomial p of n, L such that p ∈ P and

Ai = m ∗ p.

Next we state two propositions:

(35) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double

loop structure, f be a polynomial of n, L, P be a non empty subset of

Polynom-Ring(n, L), and A be a left linear combination of P . Suppose A is

a monomial representation of f . Then Support f ⊆
⋃
{Support(m ∗ p);m

ranges over monomials of n, L, p ranges over polynomials of n, L:
∨

i :natural number (i ∈ domA ∧ Ai = m ∗ p)}.

(36) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop

structure, f , g be polynomials of n, L, P be a non empty subset of

Polynom-Ring(n, L), and A, B be left linear combinations of P . Suppose

A is a monomial representation of f and B is a monomial representation

of g. Then A a B is a monomial representation of f + g.

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, let f be a polynomial of n, L, let P be

a non empty subset of Polynom-Ring(n,L), let A be a left linear combination

of P , and let b be a bag of n. We say that A is a standard representation of f ,

P , b, T if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i)
∑

A = f, and

(ii) for every natural number i such that i ∈ domA there exists a non-zero

monomial m of n, L and there exists a non-zero polynomial p of n, L such

that p ∈ P and Ai = m ∗ p and HT(m ∗ p, T ) ¬T b.



construction of gröbner bases. . . . 309

Let n be an ordinal number, let T be a connected term order of n, let L be a

right zeroed add-associative right complementable unital distributive non trivial

non empty double loop structure, let f be a polynomial of n, L, let P be a non

empty subset of Polynom-Ring(n,L), and let A be a left linear combination of

P . We say that A is a standard representation of f , P , T if and only if:

(Def. 8) A is a standard representation of f , P , HT(f, T ), T .

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, let f be a polynomial of n, L, let P

be a non empty subset of Polynom-Ring(n, L), and let b be a bag of n. We say

that f has a standard representation of P , b, T if and only if:

(Def. 9) There exists a left linear combination of P which is a standard represen-

tation of f , P , b, T .

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, let f be a polynomial of n, L, and let

P be a non empty subset of Polynom-Ring(n,L). We say that f has a standard

representation of P , T if and only if:

(Def. 10) There exists a left linear combination of P which is a standard represen-

tation of f , P , T .

One can prove the following propositions:

(37) Let n be an ordinal number, T be a connected term order of n, L be a

right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, f be a polynomial of n, L, P be

a non empty subset of Polynom-Ring(n,L), A be a left linear combination

of P , and b be a bag of n. Suppose A is a standard representation of f ,

P , b, T . Then A is a monomial representation of f .

(38) Let n be an ordinal number, T be a connected term order of n, L be a

right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, f , g be polynomials of n, L, P be a

non empty subset of Polynom-Ring(n,L), A, B be left linear combinations

of P , and b be a bag of n. Suppose A is a standard representation of f ,

P , b, T and B is a standard representation of g, P , b, T . Then A a B is a

standard representation of f + g, P , b, T .

(39) Let n be an ordinal number, T be a connected term order of n, L be

a right zeroed add-associative right complementable unital distributive

non trivial non empty double loop structure, f , g be polynomials of n,

L, P be a non empty subset of Polynom-Ring(n,L), A, B be left linear

combinations of P , b be a bag of n, and i be a natural number. Suppose A

is a standard representation of f , P , b, T and B = A↾i and g =
∑

(A⇂i).
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Then B is a standard representation of f − g, P , b, T .

(40) Let n be an ordinal number, T be a connected term order of n, L be an

Abelian right zeroed add-associative right complementable unital distri-

butive non trivial non empty double loop structure, f , g be polynomials of

n, L, P be a non empty subset of Polynom-Ring(n,L), A, B be left linear

combinations of P , b be a bag of n, and i be a natural number. Suppose

A is a standard representation of f , P , b, T and B = A⇂i and g =
∑

(A↾i)

and i ¬ lenA. Then B is a standard representation of f − g, P , b, T .

(41) Let n be an ordinal number, T be a connected term order of n, L be a

right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, f be a non-zero polynomial of n,

L, P be a non empty subset of Polynom-Ring(n,L), and A be a left linear

combination of P . Suppose A is a monomial representation of f . Then

there exists a natural number i and there exists a non-zero monomial

m of n, L and there exists a non-zero polynomial p of n, L such that

i ∈ domA and p ∈ P and A(i) = m ∗ p and HT(f, T ) ¬T HT(m ∗ p, T ).

(42) Let n be an ordinal number, T be a connected term order of n, L be a

right zeroed add-associative right complementable unital distributive non

trivial non empty double loop structure, f be a non-zero polynomial of n,

L, P be a non empty subset of Polynom-Ring(n,L), and A be a left linear

combination of P . Suppose A is a standard representation of f , P , T . Then

there exists a natural number i and there exists a non-zero monomial m

of n, L and there exists a non-zero polynomial p of n, L such that p ∈ P

and i ∈ domA and Ai = m ∗ p and HT(f, T ) = HT(m ∗ p, T ).

(43) Let n be an ordinal number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, f be a polynomial of n, L, and P be a non

empty subset of Polynom-Ring(n,L) such that PolyRedRel(P, T ) reduces

f to 0nL. Then f has a standard representation of P , T .

(44) Let n be an ordinal number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive field-like non trivial double loop

structure, f be a non-zero polynomial of n, L, and P be a non empty

subset of Polynom-Ring(n, L). If f has a standard representation of P , T ,

then f is top reducible wrt P , T .

(45) Let n be a natural number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive Abelian field-like non degenera-

ted non empty double loop structure, and G be a non empty subset of

Polynom-Ring(n, L). Then G is a Groebner basis wrt T if and only if for
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every non-zero polynomial f of n, L such that f ∈ G–ideal holds f has a

standard representation of G, T .
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