Construction of Gröbner bases. S-Polynomials and Standard Representations

Christoph Schwarzweller
University of Tübingen

Abstract

Summary. We continue the Mizar formalization of Gröbner bases following [6]. In this article we introduce S-polynomials and standard representations and show how these notions can be used to characterize Gröbner bases.

MML Identifier: GROEB_2.

The notation and terminology used here are introduced in the following papers: [24], [31], [32], [34], [33], [8], [3], [15], [30], [29], [9], [7], [5], [14], [12], [19], [18], [25], [28], [17], [1], [4], [13], [22], [21], [27], [26], [16], [10], [23], [2], [20], [11], and [35].

1. Preliminaries

One can prove the following propositions:
(1) For every set X and for every finite sequence p of elements of X such that $p \neq \emptyset$ holds $p \upharpoonright 1=\left\langle p_{1}\right\rangle$.
(2) Let L be a non empty loop structure, p be a finite sequence of elements of L, and n, m be natural numbers. If $m \leqslant n$, then $p \upharpoonright n \upharpoonright m=p \upharpoonright m$.
(3) Let L be an add-associative right zeroed right complementable non empty loop structure, p be a finite sequence of elements of L, and n be a natural number. Suppose that for every natural number k such that $k \in \operatorname{dom} p$ and $k>n$ holds $p(k)=0_{L}$. Then $\sum p=\sum(p \upharpoonright n)$.
(4) Let L be an add-associative right zeroed Abelian non empty loop structure, f be a finite sequence of elements of L, and i, j be natural numbers. Then $\sum \operatorname{Swap}(f, i, j)=\sum f$.
(5) Let n be an ordinal number, T be a term order of n, and b_{1}, b_{2}, b_{3} be bags of n. If $b_{1} \leqslant_{T} b_{3}$ and $b_{2} \leqslant_{T} b_{3}$, then $\max _{T}\left(b_{1}, b_{2}\right) \leqslant_{T} b_{3}$.
(6) Let n be an ordinal number, T be a term order of n, and b_{1}, b_{2}, b_{3} be bags of n. If $b_{3} \leqslant_{T} b_{1}$ and $b_{3} \leqslant_{T} b_{2}$, then $b_{3} \leqslant_{T} \min _{T}\left(b_{1}, b_{2}\right)$.
Let X be a set and let b_{1}, b_{2} be bags of X. Let us assume that $b_{2} \mid b_{1}$. The functor $\frac{b_{1}}{b_{2}}$ yields a bag of X and is defined by:
(Def. 1) $b_{2}+\frac{b_{1}}{b_{2}}=b_{1}$.
Let X be a set and let b_{1}, b_{2} be bags of X. The functor $\operatorname{lcm}\left(b_{1}, b_{2}\right)$ yields a bag of X and is defined as follows:
(Def. 2) For every set k holds $\operatorname{lcm}\left(b_{1}, b_{2}\right)(k)=\max \left(b_{1}(k), b_{2}(k)\right)$.
Let us observe that the functor $\operatorname{lcm}\left(b_{1}, b_{2}\right)$ is commutative and idempotent. We introduce $\operatorname{lcm}\left(b_{1}, b_{2}\right)$ as a synonym of $\operatorname{lcm}\left(b_{1}, b_{2}\right)$.

Let X be a set and let b_{1}, b_{2} be bags of X. We say that b_{1}, b_{2} are disjoint if and only if:
(Def. 3) For every set i holds $b_{1}(i)=0$ or $b_{2}(i)=0$.
We introduce b_{1}, b_{2} are non disjoint as an antonym of b_{1}, b_{2} are disjoint.
We now state several propositions:
(7) For every set X and for all bags b_{1}, b_{2} of X holds $b_{1} \mid \operatorname{lcm}\left(b_{1}, b_{2}\right)$ and $b_{2} \mid \operatorname{lcm}\left(b_{1}, b_{2}\right)$.
(8) For every set X and for all bags b_{1}, b_{2}, b_{3} of X such that $b_{1} \mid b_{3}$ and $b_{2} \mid b_{3}$ holds $\operatorname{lcm}\left(b_{1}, b_{2}\right) \mid b_{3}$.
(9) Let X be a set, T be a term order of X, and b_{1}, b_{2} be bags of X. Then b_{1}, b_{2} are disjoint if and only if $\operatorname{lcm}\left(b_{1}, b_{2}\right)=b_{1}+b_{2}$.
(10) For every set X and for every bag b of X holds $\frac{b}{b}=\operatorname{EmptyBag} X$.
(11) For every set X and for all bags b_{1}, b_{2} of X holds $b_{2} \mid b_{1}$ iff $\operatorname{lcm}\left(b_{1}, b_{2}\right)=$ b_{1}.
(12) For every set X and for all bags b_{1}, b_{2}, b_{3} of X such that $b_{1} \mid \operatorname{lcm}\left(b_{2}, b_{3}\right)$ holds $\operatorname{lcm}\left(b_{2}, b_{1}\right) \mid \operatorname{lcm}\left(b_{2}, b_{3}\right)$.
(13) For every set X and for all bags b_{1}, b_{2}, b_{3} of X such that $\operatorname{lcm}\left(b_{2}, b_{1}\right) \mid$ $\operatorname{lcm}\left(b_{2}, b_{3}\right)$ holds $\operatorname{lcm}\left(b_{1}, b_{3}\right) \mid \operatorname{lcm}\left(b_{2}, b_{3}\right)$.
(14) For every set n and for all bags b_{1}, b_{2}, b_{3} of n such that $\operatorname{lcm}\left(b_{1}, b_{3}\right) \mid$ $\operatorname{lcm}\left(b_{2}, b_{3}\right)$ holds $b_{1} \mid \operatorname{lcm}\left(b_{2}, b_{3}\right)$.
(15) Let n be a natural number, T be a connected admissible term order of n, and P be a non empty subset of Bags n. Then there exists a bag b of n such that $b \in P$ and for every bag b^{\prime} of n such that $b^{\prime} \in P$ holds $b \leqslant_{T} b^{\prime}$.
Let L be an add-associative right zeroed right complementable non trivial loop structure and let a be a non-zero element of L. Note that $-a$ is non-zero.

Let X be a set, let L be a left zeroed right zeroed add-cancelable distributive non empty double loop structure, let m be a monomial of X, L, and let a be an
element of L. One can verify that $a \cdot m$ is monomial-like.
Let n be an ordinal number, let L be a left zeroed right zeroed add-cancelable distributive integral domain-like non trivial double loop structure, let p be a nonzero polynomial of n, L, and let a be a non-zero element of L. One can verify that $a \cdot p$ is non-zero.

Next we state several propositions:
(16) Let n be an ordinal number, T be a term order of n, L be a right zeroed right distributive non empty double loop structure, p, q be series of n, L, and b be a bag of n. Then $b *(p+q)=b * p+b * q$.
(17) Let n be an ordinal number, T be a term order of n, L be an addassociative right zeroed right complementable non empty loop structure, p be a series of n, L, and b be a bag of n. Then $b *-p=-b * p$.
(18) Let n be an ordinal number, T be a term order of n, L be a left zeroed add-right-cancelable right distributive non empty double loop structure, p be a series of n, L, b be a bag of n, and a be an element of L. Then $b *(a \cdot p)=a \cdot(b * p)$.
(19) Let n be an ordinal number, T be a term order of n, L be a right distributive non empty double loop structure, p, q be series of n, L, and a be an element of L. Then $a \cdot(p+q)=a \cdot p+a \cdot q$.
(20) Let X be a set, L be an add-associative right zeroed right complementable non empty double loop structure, and a be an element of L. Then $-\left(a_{-}(X, L)\right)=-a_{-}(X, L)$.

2. S-Polynomials

The following proposition is true
(21) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and P be a subset of $\operatorname{Polynom-\operatorname {Ring}(n,L)\text {.}}$ Suppose $0_{n} L \notin P$. Suppose that for all polynomials p_{1}, p_{2} of n, L such that $p_{1} \neq p_{2}$ and $p_{1} \in P$ and $p_{2} \in P$ and for all monomials m_{1}, m_{2} of n, L such that $\operatorname{HM}\left(m_{1} * p_{1}, T\right)=\operatorname{HM}\left(m_{2} * p_{2}, T\right)$ holds $\operatorname{PolyRedRel}(P, T)$ reduces $m_{1} * p_{1}-m_{2} * p_{2}$ to $0_{n} L$. Then P is a Groebner basis wrt T.
Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and let p_{1}, p_{2} be polynomials of n, L. The functor $\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right)$ yielding a polynomial of n, L is defined by:
(Def. 4) $\quad \operatorname{S}-\operatorname{Poly}\left(p_{1}, p_{2}, T\right)=\mathrm{HC}\left(p_{2}, T\right) \cdot\left(\frac{\operatorname{lcm}\left(\operatorname{HT}\left(p_{1}, T\right), \operatorname{HT}\left(p_{2}, T\right)\right)}{\operatorname{HT}\left(p_{1}, T\right)} * p_{1}\right)-\mathrm{HC}\left(p_{1}, T\right)$. $\left(\frac{\operatorname{lcm}\left(\mathrm{HT}\left(p_{1}, T\right), \mathrm{HT}\left(p_{2}, T\right)\right)}{\mathrm{HT}\left(p_{2}, T\right)} * p_{2}\right)$.
One can prove the following propositions:
(22) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like Abelian non trivial double loop structure, P be a subset of Polynom-Ring (n, L), and p_{1}, p_{2} be polynomials of n, L. If $p_{1} \in P$ and $p_{2} \in P$, then $\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right) \in P$-ideal.
(23) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and p_{1}, p_{2} be polynomials of n, L. If $p_{1}=p_{2}$, then $\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right)=0_{n} L$.
(24) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and m_{1}, m_{2} be monomials of n, L. Then $\operatorname{S-Poly}\left(m_{1}, m_{2}, T\right)=0_{n} L$.
(25) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and p be a polynomial of n, L. Then $\operatorname{S-Poly}\left(p, 0_{n} L, T\right)=0_{n} L$ and $\mathrm{S}-\mathrm{Poly}\left(0_{n} L, p, T\right)=0_{n} L$.
(26) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and p_{1}, p_{2} be polynomials of n, L. Then $\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right)=0_{n} L$ or $\operatorname{HT}\left(\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right), T\right)<_{T} \operatorname{lcm}\left(\operatorname{HT}\left(p_{1}, T\right), \operatorname{HT}\left(p_{2}, T\right)\right)$.
(27) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and p_{1}, p_{2} be non-zero polynomials of n, L. If $\operatorname{HT}\left(p_{2}, T\right) \mid \operatorname{HT}\left(p_{1}, T\right)$, then $\mathrm{HC}\left(p_{2}, T\right) \cdot p_{1}$ top reduces to $\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right), p_{2}, T$.
(28) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and G be a subset of Polynom-Ring (n, L). Suppose G is a Groebner basis wrt T. Let g_{1}, g_{2}, h be polynomials of n, L. If $g_{1} \in G$ and $g_{2} \in G$ and h is a normal form of $\operatorname{S-Poly}\left(g_{1}, g_{2}, T\right)$ w.r.t. $\operatorname{PolyRedRel}(G, T)$, then $h=0_{n} L$.
(29) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed com-
mutative associative well unital distributive field-like non degenerated non empty double loop structure, and G be a subset of $\operatorname{Polynom-Ring}(n, L)$. Suppose that for all polynomials g_{1}, g_{2}, h of n, L such that $g_{1} \in G$ and $g_{2} \in G$ and h is a normal form of $\operatorname{S-Poly}\left(g_{1}, g_{2}, T\right)$ w.r.t. $\operatorname{PolyRedRel}(G, T)$ holds $h=0_{n} L$. Let g_{1}, g_{2} be polynomials of n, L. If $g_{1} \in G$ and $g_{2} \in G$, then $\operatorname{PolyRedRel}(G, T)$ reduces $\operatorname{S-Poly}\left(g_{1}, g_{2}, T\right)$ to $0_{n} L$.
(30) Let n be a natural number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and G be a subset of Polynom-Ring (n, L). Suppose $0_{n} L \notin G$. Suppose that for all polynomials g_{1}, g_{2} of n, L such that $g_{1} \in G$ and $g_{2} \in G$ holds $\operatorname{PolyRedRel}(G, T)$ reduces $\operatorname{S-Poly}\left(g_{1}, g_{2}, T\right)$ to $0_{n} L$. Then G is a Groebner basis wrt T.
Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and let P be a subset of Polynom-Ring (n, L). The functor $\operatorname{S-Poly}(P, T)$ yielding a subset of Polynom-Ring (n, L) is defined by:
(Def. 5) \quad S-Poly $(P, T)=\left\{\operatorname{S-Poly}\left(p_{1}, p_{2}, T\right) ; p_{1}\right.$ ranges over polynomials of n, L, p_{2} ranges over polynomials of $\left.n, L: p_{1} \in P \wedge p_{2} \in P\right\}$.
Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and let P be a finite subset of Polynom-Ring (n, L). One can check that $\operatorname{S-Poly}(P, T)$ is finite.

One can prove the following proposition
(31) Let n be a natural number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and G be a subset of Polynom-Ring (n, L). Suppose $0_{n} L \notin G$ and for every polynomial g of n, L such that $g \in G$ holds g is a monomial of n, L. Then G is a Groebner basis wrt T.

3. Standard Representations

The following three propositions are true:
(32) Let L be a non empty multiplicative loop structure, P be a non empty subset of L, A be a left linear combination of P, and i be a natural number. Then $A \upharpoonright i$ is a left linear combination of P.
(33) Let L be a non empty multiplicative loop structure, P be a non empty subset of L, A be a left linear combination of P, and i be a natural number. Then $A_{1 i}$ is a left linear combination of P.
(34) Let L be a non empty multiplicative loop structure, P, Q be non empty subsets of the carrier of L, and A be a left linear combination of P. If $P \subseteq Q$, then A is a left linear combination of Q.
Let n be an ordinal number, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let P be a non empty subset of Polynom-Ring (n, L), and let A, B be left linear combinations of P. Then $A^{\wedge} B$ is a left linear combination of P.

Let n be an ordinal number, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let
 and let A be a left linear combination of P. We say that A is a monomial representation of f if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) $\quad \sum A=f$, and
(ii) for every natural number i such that $i \in \operatorname{dom} A$ there exists a monomial m of n, L and there exists a polynomial p of n, L such that $p \in P$ and $A_{i}=m * p$.
Next we state two propositions:
(35) Let n be an ordinal number, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f be a polynomial of n, L, P be a non empty subset of Polynom-Ring (n, L), and A be a left linear combination of P. Suppose A is a monomial representation of f. Then Support $f \subseteq \bigcup\{\operatorname{Support}(m * p) ; m$ ranges over monomials of n, L, p ranges over polynomials of n, L : $\left.\bigvee_{i: \text { natural number }}\left(i \in \operatorname{dom} A \wedge A_{i}=m * p\right)\right\}$.
(36) Let n be an ordinal number, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f, g be polynomials of n, L, P be a non empty subset of Polynom-Ring (n, L), and A, B be left linear combinations of P. Suppose A is a monomial representation of f and B is a monomial representation of g. Then $A^{\wedge} B$ is a monomial representation of $f+g$.

Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let f be a polynomial of n, L, let P be a non empty subset of Polynom- $\operatorname{Ring}(n, L)$, let A be a left linear combination of P, and let b be a bag of n. We say that A is a standard representation of f, P, b, T if and only if the conditions (Def. 7) are satisfied.
(Def. 7)(i) $\quad \sum A=f$, and
(ii) for every natural number i such that $i \in \operatorname{dom} A$ there exists a non-zero monomial m of n, L and there exists a non-zero polynomial p of n, L such that $p \in P$ and $A_{i}=m * p$ and $\operatorname{HT}(m * p, T) \leqslant_{T} b$.

Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let f be a polynomial of n, L, let P be a non empty subset of Polynom-Ring (n, L), and let A be a left linear combination of P. We say that A is a standard representation of f, P, T if and only if:
(Def. 8) A is a standard representation of $f, P, \operatorname{HT}(f, T), T$.
Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let f be a polynomial of n, L, let P be a non empty subset of Polynom-Ring (n, L), and let b be a bag of n. We say that f has a standard representation of P, b, T if and only if:
(Def. 9) There exists a left linear combination of P which is a standard representation of f, P, b, T.
Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, let f be a polynomial of n, L, and let P be a non empty subset of Polynom-Ring (n, L). We say that f has a standard representation of P, T if and only if:
(Def. 10) There exists a left linear combination of P which is a standard representation of f, P, T.
One can prove the following propositions:
(37) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f be a polynomial of n, L, P be a non empty subset of Polynom-Ring $(n, L), A$ be a left linear combination of P, and b be a bag of n. Suppose A is a standard representation of f, P, b, T. Then A is a monomial representation of f.
(38) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f, g be polynomials of n, L, P be a non empty subset of Polynom-Ring $(n, L), A, B$ be left linear combinations of P, and b be a bag of n. Suppose A is a standard representation of f, P, b, T and B is a standard representation of g, P, b, T. Then $A^{\wedge} B$ is a standard representation of $f+g, P, b, T$.
(39) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f, g be polynomials of n, L, P be a non empty subset of Polynom-Ring $(n, L), A, B$ be left linear combinations of P, b be a bag of n, and i be a natural number. Suppose A is a standard representation of f, P, b, T and $B=A \upharpoonright i$ and $g=\sum\left(A_{\mid i}\right)$.

Then B is a standard representation of $f-g, P, b, T$.
(40) Let n be an ordinal number, T be a connected term order of n, L be an Abelian right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f, g be polynomials of n, L, P be a non empty subset of Polynom-Ring $(n, L), A, B$ be left linear combinations of P, b be a bag of n, and i be a natural number. Suppose A is a standard representation of f, P, b, T and $B=A_{\downarrow i}$ and $g=\sum(A \upharpoonright i)$ and $i \leqslant \operatorname{len} A$. Then B is a standard representation of $f-g, P, b, T$.
(41) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f be a non-zero polynomial of n,
 combination of P. Suppose A is a monomial representation of f. Then there exists a natural number i and there exists a non-zero monomial m of n, L and there exists a non-zero polynomial p of n, L such that $i \in \operatorname{dom} A$ and $p \in P$ and $A(i)=m * p$ and $\operatorname{HT}(f, T) \leqslant_{T} \operatorname{HT}(m * p, T)$.
(42) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, f be a non-zero polynomial of n,
 combination of P. Suppose A is a standard representation of f, P, T. Then there exists a natural number i and there exists a non-zero monomial m of n, L and there exists a non-zero polynomial p of n, L such that $p \in P$ and $i \in \operatorname{dom} A$ and $A_{i}=m * p$ and $\operatorname{HT}(f, T)=\operatorname{HT}(m * p, T)$.
(43) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, f be a polynomial of n, L, and P be a non empty subset of Polynom-Ring (n, L) such that $\operatorname{PolyRedRel}(P, T)$ reduces f to $0_{n} L$. Then f has a standard representation of P, T.
(44) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, f be a non-zero polynomial of n, L, and P be a non empty subset of Polynom-Ring (n, L). If f has a standard representation of P, T, then f is top reducible wrt P, T.
(45) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and G be a non empty subset of Polynom-Ring (n, L). Then G is a Groebner basis wrt T if and only if for
every non-zero polynomial f of n, L such that $f \in G$-ideal holds f has a standard representation of G, T.

References

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Springer-Verlag, New York, Berlin, 1993.
[7] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Gilbert Lee and Piotr Rudnicki. On ordering of bags. Formalized Mathematics, 10(1):3946, 2002.
[14] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[15] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[19] Christoph Schwarzweller. More on multivariate polynomials: Monomials and constant polynomials. Formalized Mathematics, 9(4):849-855, 2001.
[20] Christoph Schwarzweller. Characterization and existence of Gröbner bases. Formalized Mathematics, 11(3):293-301, 2003.
[21] Christoph Schwarzweller. Polynomial reduction. Formalized Mathematics, 11(1):113-123, 2003.
[22] Christoph Schwarzweller. Term orders. Formalized Mathematics, 11(1):105-111, 2003.
[23] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[26] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[27] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[28] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[34] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
[35] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.

Received June 11, 2003

