Characterization and Existence of Gröbner Bases

Christoph Schwarzweller
University of Tübingen

Abstract

Summary. We continue the Mizar formalization of Gröbner bases following [8]. In this article we prove a number of characterizations of Gröbner bases among them that Gröbner bases are convergent rewriting systems. We also show the existence and uniqueness of reduced Gröbner bases.

MML Identifier: GROEB_1.

The papers [24], [31], [33], [32], [10], [5], [17], [29], [28], [11], [13], [4], [2], [30], [9], [7], [15], [16], [12], [20], [19], [25], [27], [18], [1], [6], [14], [22], [26], [23], [3], and [21] provide the terminology and notation for this paper.

1. Preliminaries

Let n be an ordinal number, let L be a right zeroed add-associative right complementable unital distributive non trivial double loop structure, and let p be a

We now state several propositions:
(1) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and f, p, g be polynomials of n, L. Suppose f reduces to g, p, T. Then there exists a monomial m of n, L such that $g=f-m * p$.
(2) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and f, p, g be polynomials of n, L. Suppose
f reduces to g, p, T. Then there exists a monomial m of n, L such that $g=f-m * p$ and $\mathrm{HT}(m * p, T) \notin$ Support g and $\mathrm{HT}(m * p, T) \leqslant_{T} \operatorname{HT}(f, T)$.
(3) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, f,
 $P \subseteq Q$, then if f reduces to g, P, T, then f reduces to g, Q, T.
(4) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and P, Q be subsets of Polynom-Ring (n, L). If $P \subseteq Q$, then $\operatorname{PolyRedRel}(P, T) \subseteq \operatorname{PolyRedRel}(Q, T)$.
(5) Let n be an ordinal number, L be a right zeroed add-associative right complementable non empty double loop structure, and p be a polynomial of n, L. Then Support $(-p)=\operatorname{Support} p$.
(6) Let n be an ordinal number, T be a connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, and p be a polynomial of n, L. Then $\mathrm{HT}(-p, T)=\operatorname{HT}(p, T)$.
(7) Let n be an ordinal number, T be an admissible connected term order of n, L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, and p, q be polynomials of n, L. Then $\operatorname{HT}(p-q, T) \leqslant_{T} \max _{T}(\operatorname{HT}(p, T), \operatorname{HT}(q, T))$.
(8) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and p, q be polynomials of n, L. If Support $q \subseteq$ Support p, then $q \leqslant_{T} p$.
(9) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and f, p be non-zero polynomials of n, L. If f is reducible wrt p, T, then $\operatorname{HT}(p, T) \leqslant_{T} \operatorname{HT}(f, T)$.

2. Characterization of Gröbner Bases

Next we state two propositions:
(10) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non trivial double
loop structure, and p be a polynomial of n, L. Then $\operatorname{PolyRedRel}(\{p\}, T)$ is locally-confluent.
(11) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and P be a subset of $\operatorname{Polynom-Ring}(n, L)$. Given a polynomial p of n, L such that $p \in P$ and P-ideal $=\{p\}$-ideal. Then $\operatorname{PolyRedRel}(P, T)$ is locally-confluent.
Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, and let P be a subset of $\operatorname{Polynom-Ring}(n, L)$. The functor $\mathrm{HT}(P, T)$ yields a subset of Bags n and is defined as follows:
(Def. 1) $\mathrm{HT}(P, T)=\{\mathrm{HT}(p, T) ; p$ ranges over polynomials of $n, L: p \in P \wedge p \neq$ $\left.0_{n} L\right\}$.
Let n be an ordinal number and let S be a subset of Bags n. The functor multiples (S) yields a subset of Bags n and is defined by:
(Def. 2) multiples $(S)=\left\{b ; b\right.$ ranges over elements of Bags $n: \bigvee_{b^{\prime}: \text { bag of } n}\left(b^{\prime} \in\right.$ $\left.\left.S \wedge b^{\prime} \mid b\right)\right\}$.
We now state several propositions:
(12) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and P be a subset of $\operatorname{Polynom-Ring}(n, L)$. If $\operatorname{PolyRedRel}(P, T)$ is locally-confluent, then $\operatorname{PolyRedRel}(P, T)$ is confluent.
(13) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure,
 ent, then $\operatorname{PolyRedRel}(P, T)$ has unique normal form property.
(14) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and P be a subset of Polynom-Ring (n, L). Suppose $\operatorname{PolyRedRel}(P, T)$ has unique normal form property. Then PolyRedRel (P, T) has Church-Rosser property.
(15) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and P be a non empty subset of Polynom-Ring (n, L). Suppose PolyRedRel (P, T) has Church-

Rosser property. Let f be a polynomial of n, L. If $f \in P$-ideal, then $\operatorname{PolyRedRel}(P, T)$ reduces f to $0_{n} L$.
(16) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and P be a subset of Polynom-Ring (n, L). Suppose that for every polynomial f of n, L such that $f \in P$-ideal holds $\operatorname{PolyRedRel}(P, T)$ reduces f to $0_{n} L$. Let f be a non-zero polynomial of n, L. If $f \in P$-ideal, then f is reducible wrt P, T.
(17) Let n be a natural number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, and P be a subset of Polynom-Ring (n, L). Suppose that for every non-zero polynomial f of n, L such that $f \in$ P-ideal holds f is reducible wrt P, T. Let f be a non-zero polynomial of n, L. If $f \in P$-ideal, then f is top reducible wrt P, T.
(18) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and P be a subset of Polynom-Ring (n, L). Suppose that for every non-zero polynomial f of n, L such that $f \in P$-ideal holds f is top reducible wrt P, T. Let b be a bag of n. If $b \in \mathrm{HT}(P$-ideal, $T)$, then there exists a bag b^{\prime} of n such that $b^{\prime} \in \mathrm{HT}(P, T)$ and $b^{\prime} \mid b$.
(19) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and P be a subset of Polynom-Ring (n, L). Suppose that for every bag b of n such that $b \in \mathrm{HT}(P$-ideal, $T)$ there exists a bag b^{\prime} of n such that $b^{\prime} \in \mathrm{HT}(P, T)$ and $b^{\prime} \mid b$. Then $\mathrm{HT}(P$-ideal, $T) \subseteq$ multiples $(\mathrm{HT}(P, T))$.
(20) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and P be a subset of $\operatorname{Polynom-Ring}(n, L)$. If $\mathrm{HT}(P$-ideal,$T) \subseteq$ multiples $(\mathrm{HT}(P, T))$, then $\operatorname{PolyRedRel}(P, T)$ is locallyconfluent.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and let G be a subset of Polynom-Ring (n, L). We say that G is a Groebner basis wrt T if and only if:
(Def. 3) PolyRedRel (G, T) is locally-confluent.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and let G, I be subsets of Polynom-Ring (n, L). We say that G is a Groebner basis of I, T if and only if:
(Def. 4) $\quad G$-ideal $=I$ and $\operatorname{PolyRedRel}(G, T)$ is locally-confluent.
One can prove the following propositions:
(21) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and G, P be non empty subsets of Polynom-Ring (n, L). If G is a Groebner basis of P, T, then $\operatorname{PolyRedRel}(G, T)$ is a completion of $\operatorname{PolyRedRel}(P, T)$.
(22) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, p, q be elements of $\operatorname{Polynom}-\operatorname{Ring}(n, L)$, and G be a non empty subset of Polynom-Ring (n, L). Suppose G is a Groebner basis wrt T. Then $p \equiv q\left(\bmod G\right.$-ideal) if and only if $\operatorname{nf}_{\operatorname{PolyRedRel}(G, T)}(p)=$ $\mathrm{nf}_{\text {PolyRedRel }(G, T)}(q)$.
(23) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, f be a polynomial of n, L, and P be a non empty subset of Polynom-Ring (n, L). Suppose P is a Groebner basis wrt T. Then $f \in P$-ideal if and only if $\operatorname{PolyRedRel}(P, T)$ reduces f to $0_{n} L$.
(24) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, I be a subset of $\operatorname{Polynom-\operatorname {Ring}(n,L)\text {,}}$ and G be a non empty subset of Polynom-Ring (n, L). Suppose G is a Groebner basis of I, T. Let f be a polynomial of n, L. If $f \in I$, then PolyRedRel (G, T) reduces f to $0_{n} L$.
(25) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and G, I be subsets of Polynom-Ring (n, L). Suppose that for every polynomial f of n, L such that $f \in I$ holds $\operatorname{PolyRedRel}(G, T)$ reduces f to $0_{n} L$. Let f be a non-zero polynomial of n, L. If $f \in I$, then f is reducible wrt G, T.
(26) Let n be a natural number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, I be an add closed left ideal subset of Polynom-Ring (n, L), and G be a subset of $\operatorname{Polynom-Ring~}(n, L)$. Suppose $G \subseteq I$. Suppose that for every non-zero polynomial f of n, L such that $f \in I$ holds f is reducible wrt G, T. Let f be a non-zero polynomial of n, L. If $f \in I$, then f is top reducible wrt G, T.
(27) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and G, I be subsets of Polynom-Ring (n, L). Suppose that for every non-zero polynomial f of n, L such that $f \in I$ holds f is top reducible wrt G, T. Let b be a bag of n. If $b \in \operatorname{HT}(I, T)$, then there exists a bag b^{\prime} of n such that $b^{\prime} \in \operatorname{HT}(G, T)$ and $b^{\prime} \mid b$.
(28) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non trivial double loop structure, and G, I be subsets of $\operatorname{Polynom-Ring}(n, L)$. Suppose that for every bag b of n such that $b \in \operatorname{HT}(I, T)$ there exists a bag b^{\prime} of n such that $b^{\prime} \in \operatorname{HT}(G, T)$ and $b^{\prime} \mid b$. Then $\mathrm{HT}(I, T) \subseteq$ multiples $(\mathrm{HT}(G, T))$.
(29) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, I be an add closed left ideal non empty subset of $\operatorname{Polynom}-\operatorname{Ring}(n, L)$, and G be a non empty subset of Polynom-Ring (n, L). If $G \subseteq I$, then if $\operatorname{HT}(I, T) \subseteq$ multiples $(\operatorname{HT}(G, T))$, then G is a Groebner basis of I, T.

3. Existence of Gröbner Bases

Next we state four propositions:
(30) Let n be a natural number, T be a connected admissible term order of n, and L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non trivial double loop structure. Then $\left\{0_{n} L\right\}$ is a Groebner basis of $\left\{0_{n} L\right\}, T$.
(31) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non trivial double loop structure, and p be a polynomial of n, L. Then $\{p\}$ is a Groebner basis of $\{p\}$-ideal, T.
(32) Let T be an admissible connected term order of \emptyset, L be an addassociative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, I be an add closed left ideal non empty subset of Polynom-Ring (\emptyset, L), and P be a non empty subset of Polynom-Ring (\emptyset, L). If $P \subseteq I$ and $P \neq\left\{0_{\emptyset} L\right\}$, then P is a Groebner basis of I, T.
(33) Let n be a non empty ordinal number, T be an admissible connected term order of n, and L be an add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure. Then there exists a subset P of Polynom-Ring (n, L) such that P is not a Groebner basis wrt T.
Let n be an ordinal number. The functor $\operatorname{DivOrder}(n)$ yields an order in Bags n and is defined by:
(Def. 5) For all bags b_{1}, b_{2} of n holds $\left\langle b_{1}, b_{2}\right\rangle \in \operatorname{DivOrder}(n)$ iff $b_{1} \mid b_{2}$.
Let n be a natural number. One can check that $\langle\operatorname{Bags} n, \operatorname{Div} \operatorname{Order}(n)\rangle$ is Dickson.

The following propositions are true:
(34) For every natural number n and for every subset N of the carrier of $\langle\operatorname{Bags} n$, $\operatorname{DivOrder}(n)\rangle$ holds there exists a finite subset of Bags n which is Dickson basis of N,\langle Bags n, DivOrder $(n)\rangle$.
(35) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and I be an add closed left ideal non empty subset of Polynom-Ring (n, L). Then there exists a finite subset of Polynom-Ring (n, L) which is a Groebner basis of I, T.
(36) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and I be an add closed left ideal non empty subset of Polynom-Ring (n, L). Suppose $I \neq\left\{0_{n} L\right\}$. Then there exists a finite subset G of $\operatorname{Polynom}-\operatorname{Ring}(n, L)$ such that G is a Groebner basis of I, T and $0_{n} L \notin G$.
Let n be an ordinal number, let T be a connected term order of n, let L be a non empty multiplicative loop with zero structure, and let p be a polynomial of n, L. We say that p is monic wrt T if and only if:
(Def. 6) $\mathrm{HC}(p, T)=\mathbf{1}_{L}$.
Let n be an ordinal number, let T be a connected term order of n, let L be a right zeroed add-associative right complementable commutative associative well unital distributive field-like non trivial non empty double loop structure, and
let P be a subset of Polynom-Ring (n, L). We say that P is reduced wrt T if and only if:
(Def. 7) For every polynomial p of n, L such that $p \in P$ holds p is monic wrt T and irreducible wrt $P \backslash\{p\}, T$.
We introduce P is autoreduced wrt T as a synonym of P is reduced wrt T.
Next we state four propositions:
(37) Let n be an ordinal number, T be an admissible connected term order of n, L be an add-associative right complementable right zeroed commutative associative well unital distributive Abelian field-like non degenerated non empty double loop structure, I be an add closed left ideal subset of Polynom-Ring $(n, L), m$ be a monomial of n, L, and f, g be polynomials of n, L. Suppose $f \in I$ and $g \in I$ and $\operatorname{HM}(f, T)=m$ and $\operatorname{HM}(g, T)=m$. Suppose that
(i) it is not true that there exists a polynomial p of n, L such that $p \in I$ and $p<_{T} f$ and $\operatorname{HM}(p, T)=m$, and
(ii) it is not true that there exists a polynomial p of n, L such that $p \in I$ and $p<_{T} g$ and $\operatorname{HM}(p, T)=m$. Then $f=g$.
(38) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, I be an add closed left ideal non empty subset of Polynom-Ring $(n, L), G$ be a subset of $\operatorname{Polynom-Ring}(n, L), p$ be a polynomial of n, L, and q be a non-zero polynomial of n, L. Suppose $p \in G$ and $q \in G$ and $p \neq q$ and $\operatorname{HT}(q, T) \mid \operatorname{HT}(p, T)$. If G is a Groebner basis of I, T, then $G \backslash\{p\}$ is a Groebner basis of I, T.
(39) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, and I be an add closed left ideal non empty subset of Polynom-Ring (n, L). If $I \neq\left\{0_{n} L\right\}$, then there exists a finite subset G of $\operatorname{Polynom-Ring}(n, L)$ which is a Groebner basis of I, T and reduced wrt T.
(40) Let n be a natural number, T be a connected admissible term order of n, L be an Abelian add-associative right complementable right zeroed commutative associative well unital distributive field-like non degenerated non empty double loop structure, I be an add closed left ideal non empty subset of Polynom-Ring (n, L), and G_{1}, G_{2} be non empty finite subsets of Polynom-Ring (n, L). Suppose G_{1} is a Groebner basis of I, T and reduced wrt T and G_{2} is a Groebner basis of I, T and reduced wrt T. Then $G_{1}=G_{2}$.

References

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Springer-Verlag, New York, Berlin, 1993.
[9] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Gilbert Lee and Piotr Rudnicki. Dickson's lemma. Formalized Mathematics, 10(1):29-37, 2002.
[14] Gilbert Lee and Piotr Rudnicki. On ordering of bags. Formalized Mathematics, 10(1):3946, 2002.
[15] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103108, 1993.
[16] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[17] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
[18] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[19] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
[20] Christoph Schwarzweller. More on multivariate polynomials: Monomials and constant polynomials. Formalized Mathematics, 9(4):849-855, 2001.
[21] Christoph Schwarzweller. Polynomial reduction. Formalized Mathematics, 11(1):113-123, 2003.
[22] Christoph Schwarzweller. Term orders. Formalized Mathematics, 11(1):105-111, 2003.
[23] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[27] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[33] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received June 11, 2003

