
FORMALIZED MATHEMATICS

Volume 11, Number 3, 2003

University of Białystok

Dijkstra’s Shortest Path Algorithm

Jing-Chao Chen

Donghua University

Shanghai

Summary. The article formalizes Dijkstra’s shortest path algorithm [11].
A path from a source vertex v to a target vertex u is said to be the shortest path

if its total cost is minimum among all v-to-u paths. Dijkstra’s algorithm is based

on the following assumptions:

• All edge costs are non-negative.

• The number of vertices is finite.

• The source is a single vertex, but the target may be all other vertices.

The underlying principle of the algorithm may be described as follows: the al-

gorithm starts with the source; it visits the vertices in order of increasing cost,

and maintains a set V of visited vertices (denoted by UsedVx in the article)

whose cost from the source has been computed, and a tentative cost D(u) to

each unvisited vertex u. In the article, the set of all unvisited vertices is denoted

by UnusedVx. D(u) is the cost of the shortest path from the source to u in the

subgraph induced by V ∪ {u}. We denote the set of all unvisited vertices whose

D-values are not infinite (i.e. in the subgraph each of which has a path from the

source to itself) by OuterVx. Dijkstra’s algorithm repeatedly searches OuterVx

for the vertex with minimum tentative cost (this procedure is called findmin in

the article), adds it to the set V and modifies D-values by a procedure, called

Relax. Suppose the unvisited vertex with minimum tentative cost is x, the proce-

dure Relax replaces D(u) with min{D(u), D(u) + cost(x, u)} where u is a vertex

in UnusedVx, and cost(x, u) is the cost of edge (x, u). In the Mizar library, there

are several computer models, e.g. SCMFSA and SCMPDS etc. However, it is

extremely difficult to use these models to formalize the algorithm. Instead, we

adopt functions in the Mizar library, which seem to be pseudo-codes, and are si-

milar to those in the functional programming language, e.g. Lisp. To date, there

is no rigorous justification with respect to the correctness of Dijkstra’s algorithm.

The article presents first the rigorous justification.

MML Identifier: GRAPHSP.

237
c© 2003 University of Białystok

ISSN 1426–2630



238 jing-chao chen

The papers [12], [2], [20], [19], [22], [23], [6], [3], [5], [21], [1], [10], [13], [7], [15],

[9], [16], [18], [8], [14], [17], and [4] provide the terminology and notation for this

paper.

1. Preliminaries

For simplicity, we adopt the following rules: X denotes a set, i, j, k, m, n

denote natural numbers, p denotes a finite sequence of elements of X, and i1
denotes an integer.

We now state three propositions:

(1) For every finite sequence p and for every set x holds x /∈ rng p and p is

one-to-one iff p a 〈x〉 is one-to-one.

(2) If 1 ¬ i1 and i1 ¬ len p, then p(i1) ∈ X.

(3) If 1 ¬ i1 and i1 ¬ len p, then pi1 = p(i1).

For simplicity, we adopt the following rules: G denotes a graph, p1, q1 denote

finite sequences of elements of the edges of G, p, q denote oriented chains of G,

W denotes a function, U , V , e, e1 denote sets, and v1, v2, v3, v4 denote vertices

of G.

We now state three propositions:

(4) If W is weight of G and len p1 = 1, then cost(p1,W ) = W (p1(1)).

(5) If e ∈ the edges of G, then 〈e〉 is a Simple oriented chain of G.

(6) Let p be a Simple oriented chain of G. Suppose p = p1
a q1 and

len p1 ­ 1 and len q1 ­ 1. Then (the target of G)(p(len p)) 6= (the target

of G)(p1(len p1)) and (the source of G)(p(1)) 6= (the source of G)(q1(1)).

2. The Fundamental Properties of Directed Paths and Shortest

Paths

We now state several propositions:

(7) p is oriented path from v1 to v2 in V iff p is oriented path from v1 to v2

in V ∪ {v2}.

(8) p is shortest path from v1 to v2 in V w.r.t. W iff p is shortest path from

v1 to v2 in V ∪ {v2} w.r.t. W .

(9) Suppose p is shortest path from v1 to v2 in V w.r.t. W and q is shortest

path from v1 to v2 in V w.r.t. W . Then cost(p,W ) = cost(q, W ).

(10) Let G be an oriented graph, v1, v2 be vertices of G, and e2, e3 be sets.

Suppose e2 ∈ the edges of G and e3 ∈ the edges of G and e2 orientedly

joins v1, v2 and e3 orientedly joins v1, v2. Then e2 = e3.



dijkstra’s shortest path algorithm 239

(11) Suppose that

(i) the vertices of G = U ∪ V,

(ii) v1 ∈ U,

(iii) v2 ∈ V, and

(iv) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there

exists e such that e ∈ the edges of G and e orientedly joins v3, v4.

Then there exists no p which is oriented path from v1 to v2.

(12) Suppose that

(i) the vertices of G = U ∪ V,

(ii) v1 ∈ U,

(iii) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there

exists e such that e ∈ the edges of G and e orientedly joins v3, v4, and

(iv) p is oriented path from v1 to v2.

Then p is oriented path from v1 to v2 in U .

3. The Basic Theorems for Dijkstra’s Shortest Path Algorithm

(continue)

We adopt the following convention: G is a finite graph, P , Q are oriented

chains of G, and v1, v2, v3 are vertices of G.

Next we state the proposition

(13) Suppose that W is nonnegative weight of G and P is shortest path from

v1 to v2 in V w.r.t. W and v1 6= v2 and v1 6= v3 and Q is shortest path

from v1 to v3 in V w.r.t. W and it is not true that there exists e such

that e ∈ the edges of G and e orientedly joins v2, v3 and P is longest in

shortest path from v1 in V w.r.t. W . Then Q is shortest path from v1 to

v3 in V ∪ {v2} w.r.t. W .

For simplicity, we adopt the following rules: G is a finite oriented graph, P ,

Q are oriented chains of G, W is a function from the edges of G into R­0, and

v1, v2, v3, v4 are vertices of G.

One can prove the following three propositions:

(14) Suppose e ∈ the edges of G and v1 6= v2 and P = 〈e〉 and e orientedly

joins v1, v2. Then P is shortest path from v1 to v2 in {v1} w.r.t. W .

(15) Suppose that e ∈ the edges of G and P is shortest path from v1 to v2 in

V w.r.t. W and v1 6= v3 and Q = P a 〈e〉 and e orientedly joins v2, v3 and

v1 ∈ V and for every v4 such that v4 ∈ V it is not true that there exists

e1 such that e1 ∈ the edges of G and e1 orientedly joins v4, v3. Then Q is

shortest path from v1 to v3 in V ∪ {v2} w.r.t. W .

(16) Suppose that

(i) the vertices of G = U ∪ V,



240 jing-chao chen

(ii) v1 ∈ U, and

(iii) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there

exists e such that e ∈ the edges of G and e orientedly joins v3, v4.

Then P is shortest path from v1 to v2 in U w.r.t. W if and only if P is

shortest path from v1 to v2 in W .

4. The Definition of Assignment Statement

Let f be a function and let i, x be sets. We introduce fi:=x as a synonym

of f +· (i, x).

We now state the proposition

(17) For all sets x, y and for every function f holds rng(fx:=y) ⊆ rng f ∪{y}.

Let f be a finite sequence of elements of R, let x be a set, and let r be a real

number. Then fx:=r is a finite sequence of elements of R.

Let i, k be natural numbers, let f be a finite sequence of elements of R, and

let r be a real number. The functor (f, i) := (k, r) yielding a finite sequence of

elements of R is defined by:

(Def. 1) (f, i) := (k, r) = fi:=kk:=r.

In the sequel f , g, h denote elements of R∗ and r denotes a real number.

One can prove the following propositions:

(18) If i 6= k and i ∈ dom f, then ((f, i) := (k, r))(i) = k.

(19) If m 6= i and m 6= k and m ∈ dom f, then ((f, i) := (k, r))(m) = f(m).

(20) If k ∈ dom f, then ((f, i) := (k, r))(k) = r.

(21) dom((f, i) := (k, r)) = dom f.

5. The Definition of Pascal–Like “while” - “do” Statement

Let X be a set. Then idX is an element of X
X .

Let X be a set and let f , g be functions from X into X. Then g · f is a

function from X into X.

Let X be a set and let f , g be elements of XX . Then g · f is an element of

XX .

Let X be a set, let f be an element of XX , and let g be an element of X.

Then f(g) is an element of X.

Let X be a set and let f be an element of XX . The functor repeat f yields

a function from N into XX and is defined by:

(Def. 2) (repeat f)(0) = idX and for every natural number i and for every element

x of XX such that x = (repeat f)(i) holds (repeat f)(i + 1) = f · x.

Next we state two propositions:



dijkstra’s shortest path algorithm 241

(22) For every element F of (R∗)R
∗

and for every element f of R∗ and for all

natural numbers n, i holds (repeatF )(0)(f) = f.

(23) Let F , G be elements of (R∗)R
∗

, f be an element of R∗, and i be a natural

number. Then (repeat(F ·G))(i + 1)(f) = F (G((repeat(F ·G))(i)(f))).

Let g be an element of (R∗)R
∗

and let f be an element of R∗. Then g(f) is

an element of R∗.

Let f be an element of R
∗ and let n be a natural number. The functor

OuterVx(f, n) yielding a subset of N is defined by:

(Def. 3) OuterVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) 6= −1 ∧ f(n+i) 6=

−1}.

Let f be an element of (R∗)R
∗

, let g be an element of R
∗, and let

n be a natural number. Let us assume that there exists i such that

OuterVx((repeat f)(i)(g), n) = ∅. The functor LifeSpan(f, g, n) yielding a natu-

ral number is defined by:

(Def. 4) OuterVx((repeat f)(LifeSpan(f, g, n))(g), n) = ∅ and for every na-

tural number k such that OuterVx((repeat f)(k)(g), n) = ∅ holds

LifeSpan(f, g, n) ¬ k.

Let f be an element of (R∗)R
∗

and let n be a natural number. The functor

WhileDo(f, n) yielding an element of (R∗)R
∗

is defined as follows:

(Def. 5) domWhileDo(f, n) = R
∗ and for every element h of R

∗ holds

(WhileDo(f, n))(h) = (repeat f)(LifeSpan(f, h, n))(h).

6. Defining a Weight Function for an Oriented Graph

Let G be an oriented graph and let v1, v2 be vertices of G. Let us assume

that there exists a set e such that e ∈ the edges of G and e orientedly joins v1,

v2. The functor Edge(v1, v2) is defined as follows:

(Def. 6) There exists a set e such that Edge(v1, v2) = e and e ∈ the edges of G

and e orientedly joins v1, v2.

Let G be an oriented graph, let v1, v2 be vertices of G, and let W be a

function. The functor Weight(v1, v2, W ) is defined as follows:

(Def. 7) Weight(v1, v2, W ) =















W (Edge(v1, v2)), if there exists a set e such

that e ∈ the edges of G and e orientedly joins

v1, v2,

−1, otherwise.

LetG be an oriented graph, let v1, v2 be vertices ofG, and letW be a function

from the edges of G into R­0. Then Weight(v1, v2,W ) is a real number.

In the sequel G is an oriented graph, v1, v2 are vertices of G, and W is a

function from the edges of G into R­0.

We now state three propositions:



242 jing-chao chen

(24) Weight(v1, v2,W ) ­ 0 iff there exists a set e such that e ∈ the edges of

G and e orientedly joins v1, v2.

(25) Weight(v1, v2,W ) = −1 iff it is not true that there exists a set e such

that e ∈ the edges of G and e orientedly joins v1, v2.

(26) If e ∈ the edges of G and e orientedly joins v1, v2, then

Weight(v1, v2,W ) = W (e).

7. Basic Operations for Dijkstra’s Shortest Path Algorithm

Let f be an element of R
∗ and let n be a natural number. The functor

UnusedVx(f, n) yields a subset of N and is defined as follows:

(Def. 8) UnusedVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) 6= −1}.

Let f be an element of R
∗ and let n be a natural number. The functor

UsedVx(f, n) yielding a subset of N is defined as follows:

(Def. 9) UsedVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) = −1}.

The following proposition is true

(27) UnusedVx(f, n) ⊆ Seg n.

Let f be an element of R
∗ and let n be a natural number. One can verify

that UnusedVx(f, n) is finite.

Next we state two propositions:

(28) OuterVx(f, n) ⊆ UnusedVx(f, n).

(29) OuterVx(f, n) ⊆ Seg n.

Let f be an element of R
∗ and let n be a natural number. Observe that

OuterVx(f, n) is finite.

Let X be a finite subset of N, let f be an element of R∗, and let us consider

n. The functor Argmin(X, f, n) yielding a natural number is defined by the

conditions (Def. 10).

(Def. 10)(i) If X 6= ∅, then there exists i such that i = Argmin(X, f, n) and i ∈ X

and for every k such that k ∈ X holds f2·n+i ¬ f2·n+k and for every k

such that k ∈ X and f2·n+i = f2·n+k holds i ¬ k, and

(ii) if X = ∅, then Argmin(X, f, n) = 0.

We now state two propositions:

(30) If OuterVx(f, n) 6= ∅ and j = Argmin(OuterVx(f, n), f, n), then j ∈

dom f and 1 ¬ j and j ¬ n and f(j) 6= −1 and f(n + j) 6= −1.

(31) Argmin(OuterVx(f, n), f, n) ¬ n.

Let n be a natural number. The functor findminn yields an element of (R∗)R
∗

and is defined as follows:

(Def. 11) domfindminn = R
∗ and for every element f of R∗ holds (findminn)(f) =

(f, n · n + 3 · n + 1) := (Argmin(OuterVx(f, n), f, n),−1).



dijkstra’s shortest path algorithm 243

Next we state four propositions:

(32) If i ∈ dom f and i > n and i 6= n · n + 3 · n + 1, then (findminn)(f)(i) =

f(i).

(33) If i ∈ dom f and f(i) = −1 and i 6= n·n+3·n+1, then (findminn)(f)(i) =

−1.

(34) dom(findminn)(f) = dom f.

(35) If OuterVx(f, n) 6= ∅, then there exists j such that j ∈ OuterVx(f, n)

and 1 ¬ j and j ¬ n and (findminn)(f)(j) = −1.

Let f be an element of R
∗ and let n, k be natural numbers. The functor

newpathcost(f, n, k) yielding a real number is defined as follows:

(Def. 12) newpathcost(f, n, k) = f2·n+fn·n+3·n+1
+ f2·n+n·fn·n+3·n+1+k.

Let n, k be natural numbers and let f be an element of R∗. We say that f

has better path at n, k if and only if:

(Def. 13) f(n+k) = −1 or f2·n+k > newpathcost(f, n, k) but f2·n+n·fn·n+3·n+1+k ­

0 but f(k) 6= −1.

Let f be an element of R
∗ and let n be a natural number. The functor

Relax(f, n) yields an element of R∗ and is defined by the conditions (Def. 14).

(Def. 14)(i) domRelax(f, n) = dom f, and

(ii) for every natural number k such that k ∈ dom f holds if n < k and

k ¬ 2 · n, then if f has better path at n, k −′ n, then (Relax(f, n))(k) =

fn·n+3·n+1 and if f does not have better path at n, k −′ n, then

(Relax(f, n))(k) = f(k) and if 2 · n < k and k ¬ 3 · n, then if f has better

path at n, k−′2·n, then (Relax(f, n))(k) = newpathcost(f, n, k−′2·n) and

if f does not have better path at n, k−′ 2 ·n, then (Relax(f, n))(k) = f(k)

and if k ¬ n or k > 3 · n, then (Relax(f, n))(k) = f(k).

Let n be a natural number. The functor Relaxn yields an element of (R∗)R
∗

and is defined by:

(Def. 15) domRelaxn = R
∗ and for every element f of R

∗ holds (Relaxn)(f) =

Relax(f, n).

One can prove the following propositions:

(36) dom(Relaxn)(f) = dom f.

(37) If i ¬ n or i > 3 · n and if i ∈ dom f, then (Relaxn)(f)(i) = f(i).

(38) dom(repeat(Relaxn·findminn))(i)(f) = dom(repeat(Relaxn·findminn))

(i + 1)(f).

(39) If OuterVx((repeat(Relaxn · findminn))(i)(f), n) 6= ∅, then

UnusedVx((repeat(Relaxn ·findminn))(i+1)(f), n) ⊂ UnusedVx((repeat

(Relaxn · findminn))(i)(f), n).

(40) If g = (repeat(Relaxn · findminn))(i)(f) and h = (repeat(Relaxn ·

findminn))(i + 1)(f) and k = Argmin(OuterVx(g, n), g, n) and



244 jing-chao chen

OuterVx(g, n) 6= ∅, then UsedVx(h, n) = UsedVx(g, n) ∪ {k} and k /∈

UsedVx(g, n).

(41) There exists i such that i ¬ n and OuterVx((repeat(Relaxn ·

findminn))(i)(f), n) = ∅.

(42) dom f = dom(repeat(Relaxn · findminn))(i)(f).

Let f , g be elements of R
∗ and let us consider m, n. We say that f , g are

equal at m, n if and only if:

(Def. 16) dom f = dom g and for every k such that k ∈ dom f and m ¬ k and

k ¬ n holds f(k) = g(k).

One can prove the following propositions:

(43) f , f are equal at m, n.

(44) If f , g are equal at m, n and g, h are equal at m, n, then f , h are equal

at m, n.

(45) (repeat(Relaxn ·findminn))(i)(f), (repeat(Relaxn ·findminn))(i+1)(f)

are equal at 3 · n + 1, n · n + 3 · n.

(46) Let F be an element of (R∗)R
∗

, f be an element of R∗, and n, i be natural

numbers. If i < LifeSpan(F, f, n), then OuterVx((repeatF )(i)(f), n) 6= ∅.

(47) f , (repeat(Relaxn · findminn))(i)(f) are equal at 3 · n + 1, n · n + 3 · n.

(48) Suppose that

(i) 1 ¬ n,

(ii) 1 ∈ dom f,

(iii) f(n + 1) 6= −1,

(iv) for every i such that 1 ¬ i and i ¬ n holds f(i) = 1, and

(v) for every i such that 2 ¬ i and i ¬ n holds f(n + i) = −1.

Then 1 = Argmin(OuterVx(f, n), f, n) and UsedVx(f, n) = ∅ and {1} =

UsedVx((repeat(Relaxn · findminn))(1)(f), n).

(49) If g = (repeat(Relaxn · findminn))(1)(f) and h = (repeat(Relaxn ·

findminn))(i)(f) and 1 ¬ i and i ¬ LifeSpan(Relaxn ·findminn, f, n) and

m ∈ UsedVx(g, n), then m ∈ UsedVx(h, n).

Let p be a finite sequence of elements of N, let f be an element of R
∗, and

let i, n be natural numbers. We say that p is vertex sequence at f , i, n if and

only if:

(Def. 17) p(len p) = i and for every k such that 1 ¬ k and k < len p holds p(len p−

k) = f(n + p(len p−k)+1).

Let p be a finite sequence of elements of N, let f be an element of R
∗, and

let i, n be natural numbers. We say that p is simple vertex sequence at f , i, n

if and only if:

(Def. 18) p(1) = 1 and len p > 1 and p is vertex sequence at f , i, n and one-to-one.

Next we state the proposition



dijkstra’s shortest path algorithm 245

(50) Let p, q be finite sequences of elements of N, f be an element of R∗, and

i, n be natural numbers. Suppose p is simple vertex sequence at f , i, n

and q is simple vertex sequence at f , i, n. Then p = q.

Let G be a graph, let p be a finite sequence of elements of the edges of G,

and let v5 be a finite sequence. We say that p is oriented edge sequence at v5 if

and only if:

(Def. 19) len v5 = len p + 1 and for every n such that 1 ¬ n and n ¬ len p holds

(the source of G)(p(n)) = v5(n) and (the target of G)(p(n)) = v5(n + 1).

One can prove the following two propositions:

(51) Let G be an oriented graph, v5 be a finite sequence, and p, q be oriented

chains of G. Suppose p is oriented edge sequence at v5 and q is oriented

edge sequence at v5. Then p = q.

(52) Let G be a graph, v6, v7 be finite sequences, and p be an oriented chain

of G. Suppose p is oriented edge sequence at v6 and oriented edge sequence

at v7 and len p ­ 1. Then v6 = v7.

8. Data Structure for Dijkstra’s Shortest Path Algorithm

Let f be an element of R
∗, let G be an oriented graph, let n be a natural

number, and letW be a function from the edges of G into R­0. We say that f is

input of Dijkstra algorithm G to n in W if and only if the conditions (Def. 20)

are satisfied.

(Def. 20)(i) len f = n · n + 3 · n + 1,

(ii) Segn = the vertices of G,

(iii) for every i such that 1 ¬ i and i ¬ n holds f(i) = 1 and f(2 ·n+ i) = 0,

(iv) f(n + 1) = 0,

(v) for every i such that 2 ¬ i and i ¬ n holds f(n + i) = −1, and

(vi) for all vertices i, j of G and for all k, m such that k = i and m = j

holds f(2 · n + n · k + m) =Weight(i, j, W ).

9. The Definition of Dijkstra’s Shortest Path Algorithm

Let n be a natural number. The functor DijkstraAlgorithmn yielding an

element of (R∗)R
∗

is defined as follows:

(Def. 21) DijkstraAlgorithmn =WhileDo(Relaxn · findminn, n).



246 jing-chao chen

10. Justifying the Correctness of Dijkstra’s Shortest Path

Algorithm

For simplicity, we adopt the following rules: p is a finite sequence of elements

of N, G is a finite oriented graph, P , Q are oriented chains of G,W is a function

from the edges of G into R­0, and v1, v2 are vertices of G.

We now state the proposition

(53) Suppose f is input of Dijkstra algorithm G to n in W and v1 = 1 and

1 6= v2 and v2 = i and n ­ 1 and g = (DijkstraAlgorithmn)(f). Then

(i) the vertices of G = UsedVx(g, n) ∪UnusedVx(g, n),

(ii) if v2 ∈ UsedVx(g, n), then there exist p, P such that p is simple vertex

sequence at g, i, n and P is oriented edge sequence at p and shortest path

from v1 to v2 in W and cost(P, W ) = g(2 · n + i), and

(iii) if v2 ∈ UnusedVx(g, n), then there exists no Q which is oriented path

from v1 to v2.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[9] Jing-Chao Chen and Yatsuka Nakamura. The underlying principle of Dijkstra’s shortest
path algorithm. Formalized Mathematics, 11(2):143–152, 2003.

[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] E. W. Dijkstra. A note on two problems in connection with graphs. Numer. Math.,
1:269–271, 1959.

[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[13] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.
[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[15] Yatsuka Nakamura and Piotr Rudnicki. Oriented chains. Formalized Mathematics,
7(2):189–192, 1998.

[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[17] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.



dijkstra’s shortest path algorithm 247

[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received March 17, 2003


