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Summary. In this article, there are two themes. One of them is the proof
that convex hull of a given subset M consists of all convex combinations of M.

Another is definitions of cone and convex cone and some properties of them.

MML Identifier: CONVEX3.

The terminology and notation used in this paper are introduced in the following

articles: [8], [11], [7], [2], [12], [3], [5], [1], [4], [10], [9], and [6].

1. Equality of Convex Hull and Set of Convex Combinations

Let V be a real linear space. The functor ConvexComb(V ) yielding a set is

defined by:

(Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination

of V .

Let V be a real linear space and let M be a non empty subset of V . The

functor ConvexComb(M) yielding a set is defined as follows:

(Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination

of M .

We now state several propositions:

(1) Let V be a real linear space and v be a vector of V . Then there exists a

convex combination L of V such that
∑

L = v and for every non empty

subset A of V such that v ∈ A holds L is a convex combination of A.
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(2) Let V be a real linear space and v1, v2 be vectors of V . Suppose v1 6= v2.

Then there exists a convex combination L of V such that for every non

empty subset A of V if {v1, v2} ⊆ A, then L is a convex combination of

A.

(3) Let V be a real linear space and v1, v2, v3 be vectors of V . Suppose

v1 6= v2 and v1 6= v3 and v2 6= v3. Then there exists a convex combination

L of V such that for every non empty subset A of V if {v1, v2, v3} ⊆ A,

then L is a convex combination of A.

(4) Let V be a real linear space and M be a non empty subset of V . Then

M is convex if and only if {
∑

L; L ranges over convex combinations ofM :

L ∈ ConvexComb(V )} ⊆M.

(5) Let V be a real linear space and M be a non empty subset of V .

Then convM = {
∑

L; L ranges over convex combinations of M : L ∈

ConvexComb(V )}.

2. Cone and Convex Cone

Let V be a non empty RLS structure and let M be a subset of V . We say

that M is cone if and only if:

(Def. 3) For every real number r and for every vector v of V such that r > 0 and

v ∈M holds r · v ∈M.

One can prove the following proposition

(6) For every non empty RLS structure V and for every subsetM of V such

that M = ∅ holds M is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of

V which is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of

V which is empty and cone.

Let V be a real linear space. Observe that there exists a subset of V which

is non empty and cone.

The following propositions are true:

(7) Let V be a non empty RLS structure and M be a cone subset of V .

Suppose V is real linear space-like. Then M is convex if and only if for all

vectors u, v of V such that u ∈M and v ∈M holds u + v ∈M.

(8) Let V be a real linear space and M be a subset of V . Then M is convex

and cone if and only if for every linear combination L of M such that the

support of L 6= ∅ and for every vector v of V such that v ∈ the support of

L holds L(v) > 0 holds
∑

L ∈M.

(9) For every non empty RLS structure V and for all subsets M , N of V

such that M is cone and N is cone holds M ∩N is cone.
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