Convex Hull, Set of Convex Combinations and Convex Cone

Noboru Endou Gifu National College of Technology Yasunari Shidama Shinshu University Nagano

Summary. In this article, there are two themes. One of them is the proof that convex hull of a given subset M consists of all convex combinations of M. Another is definitions of cone and convex cone and some properties of them.

MML Identifier: CONVEX3.

The terminology and notation used in this paper are introduced in the following articles: [8], [11], [7], [2], [12], [3], [5], [1], [4], [10], [9], and [6].

1. Equality of Convex Hull and Set of Convex Combinations

Let V be a real linear space. The functor $\operatorname{ConvexComb}(V)$ yielding a set is defined by:

(Def. 1) For every set L holds $L \in \text{ConvexComb}(V)$ iff L is a convex combination of V.

Let V be a real linear space and let M be a non empty subset of V. The functor ConvexComb(M) yielding a set is defined as follows:

(Def. 2) For every set L holds $L \in \text{ConvexComb}(M)$ iff L is a convex combination of M.

We now state several propositions:

(1) Let V be a real linear space and v be a vector of V. Then there exists a convex combination L of V such that $\sum L = v$ and for every non empty subset A of V such that $v \in A$ holds L is a convex combination of A.

- (2) Let V be a real linear space and v_1 , v_2 be vectors of V. Suppose $v_1 \neq v_2$. Then there exists a convex combination L of V such that for every non empty subset A of V if $\{v_1, v_2\} \subseteq A$, then L is a convex combination of A.
- (3) Let V be a real linear space and v_1 , v_2 , v_3 be vectors of V. Suppose $v_1 \neq v_2$ and $v_1 \neq v_3$ and $v_2 \neq v_3$. Then there exists a convex combination L of V such that for every non empty subset A of V if $\{v_1, v_2, v_3\} \subseteq A$, then L is a convex combination of A.
- (4) Let V be a real linear space and M be a non empty subset of V. Then M is convex if and only if $\{\sum L; L \text{ ranges over convex combinations of } M$: $L \in \text{ConvexComb}(V)\} \subseteq M$.
- (5) Let V be a real linear space and M be a non empty subset of V. Then $\operatorname{conv} M = \{ \sum L; L \text{ ranges over convex combinations of } M : L \in \operatorname{ConvexComb}(V) \}.$

2. Cone and Convex Cone

Let V be a non empty RLS structure and let M be a subset of V. We say that M is cone if and only if:

(Def. 3) For every real number r and for every vector v of V such that r > 0 and $v \in M$ holds $r \cdot v \in M$.

One can prove the following proposition

(6) For every non empty RLS structure V and for every subset M of V such that $M = \emptyset$ holds M is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of V which is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of V which is empty and cone.

Let V be a real linear space. Observe that there exists a subset of V which is non empty and cone.

The following propositions are true:

- (7) Let V be a non empty RLS structure and M be a cone subset of V. Suppose V is real linear space-like. Then M is convex if and only if for all vectors u, v of V such that $u \in M$ and $v \in M$ holds $u + v \in M$.
- (8) Let V be a real linear space and M be a subset of V. Then M is convex and cone if and only if for every linear combination L of M such that the support of $L \neq \emptyset$ and for every vector v of V such that $v \in$ the support of L holds L(v) > 0 holds $\sum L \in M$.
- (9) For every non empty RLS structure V and for all subsets M, N of V such that M is cone and N is cone holds $M \cap N$ is cone.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- $[4] \ \ Czesław \ Byliński. \ Functions \ from \ a set \ to \ a set. \ \textit{Formalized Mathematics}, \ 1(\textbf{1}):153-164,$ 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
- Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
- Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(**3**):581–588, 1990.
- [10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received June 16, 2003