Some Properties for Convex Combinations

Noboru Endou
Gifu National College of Technology

Yasumasa Suzuki
Miyagi University

Yasunari Shidama
Shinshu University
Nagano

Abstract

Summary. This is a continuation of [6]. In this article, we proved that convex combination on convex family is convex.

MML Identifier: CONVEX2.

The notation and terminology used in this paper are introduced in the following articles: [13], [18], [12], [8], [2], [19], [3], [5], [1], [10], [4], [17], [16], [15], [14], [11], [7], [6], and [9].

1. Convex Combinations on Convex Family

The following propositions are true:
(1) For every non empty RLS structure V and for all convex subsets M, N of V holds $M \cap N$ is convex
(2) Let V be a real unitary space-like non empty unitary space structure, M be a subset of V, F be a finite sequence of elements of the carrier of V, and B be a finite sequence of elements of \mathbb{R}. Suppose $M=\{u ; u$ ranges over vectors of $V: \bigwedge_{i: \text { natural number }}\left(i \in \operatorname{dom} F \cap \operatorname{dom} B \Rightarrow \bigvee_{v: \text { vector of } V}(v=\right.$ $F(i) \wedge(u \mid v) \leqslant B(i)))\}$. Then M is convex.
(3) Let V be a real unitary space-like non empty unitary space structure, M be a subset of V, F be a finite sequence of elements of the carrier of V, and B be a finite sequence of elements of \mathbb{R}. Suppose $M=\{u ; u$ ranges over vectors of $V: \bigwedge_{i: \text { natural number }}\left(i \in \operatorname{dom} F \cap \operatorname{dom} B \Rightarrow \bigvee_{v: \text { vector of } V}(v=\right.$ $F(i) \wedge(u \mid v)<B(i)))\}$. Then M is convex.
(4) Let V be a real unitary space-like non empty unitary space structure, M be a subset of V, F be a finite sequence of elements of the carrier of V, and B be a finite sequence of elements of \mathbb{R}. Suppose $M=\{u ; u$ ranges over vectors of $V: \bigwedge_{i: \text { natural number }}\left(i \in \operatorname{dom} F \cap \operatorname{dom} B \Rightarrow \bigvee_{v: \text { vector of } V}(v=\right.$ $F(i) \wedge(u \mid v) \geqslant B(i)))\}$. Then M is convex.
(5) Let V be a real unitary space-like non empty unitary space structure, M be a subset of V, F be a finite sequence of elements of the carrier of V, and B be a finite sequence of elements of \mathbb{R}. Suppose $M=\{u ; u$ ranges over vectors of $V: \bigwedge_{i: \text { natural number }}\left(i \in \operatorname{dom} F \cap \operatorname{dom} B \Rightarrow \bigvee_{v: \text { vector of } V}(v=\right.$ $F(i) \wedge(u \mid v)>B(i)))\}$. Then M is convex.
(6) Let V be a real linear space and M be a subset of V. Then for every subset N of V and for every linear combination L of N such that L is convex and $N \subseteq M$ holds $\sum L \in M$ if and only if M is convex.
Let V be a real linear space and let M be a subset of V. The functor LC_{M} yielding a set is defined as follows:
(Def. 1) For every set L holds $L \in \mathrm{LC}_{M}$ iff L is a linear combination of M.
Let V be a real linear space. Observe that there exists a linear combination of V which is convex.

Let V be a real linear space. A convex combination of V is a convex linear combination of V.

Let V be a real linear space and let M be a non empty subset of V. One can verify that there exists a linear combination of M which is convex.

Let V be a real linear space and let M be a non empty subset of V. A convex combination of M is a convex linear combination of M.

The following propositions are true:
(7) For every real linear space V and for every subset M of V holds Convex-Family $M \neq \emptyset$.
(8) For every real linear space V and for every subset M of V holds $M \subseteq$ conv M.
(9) Let V be a real linear space, L_{1}, L_{2} be convex combinations of V, and r be a real number. If $0<r$ and $r<1$, then $r \cdot L_{1}+(1-r) \cdot L_{2}$ is a convex combination of V.
(10) Let V be a real linear space, M be a non empty subset of V, L_{1}, L_{2} be convex combinations of M, and r be a real number. If $0<r$ and $r<1$, then $r \cdot L_{1}+(1-r) \cdot L_{2}$ is a convex combination of M.
(11) For every real linear space V holds there exists a linear combination of V which is convex.
(12) For every real linear space V and for every non empty subset M of V holds there exists a linear combination of M which is convex.

2. Miscellaneous

We now state several propositions:
(13) For every real linear space V and for all subspaces W_{1}, W_{2} of V holds $\operatorname{Up}\left(W_{1}+W_{2}\right)=\operatorname{Up}\left(W_{1}\right)+\operatorname{Up}\left(W_{2}\right)$.
(14) For every real linear space V and for all subspaces W_{1}, W_{2} of V holds $\mathrm{Up}\left(W_{1} \cap W_{2}\right)=\mathrm{Up}\left(W_{1}\right) \cap \mathrm{Up}\left(W_{2}\right)$.
(15) Let V be a real linear space, L_{1}, L_{2} be convex combinations of V, and a, b be real numbers. Suppose $a \cdot b>0$. Then the support of $a \cdot L_{1}+b \cdot L_{2}=$ (the support of $\left.a \cdot L_{1}\right) \cup\left(\right.$ the support of $\left.b \cdot L_{2}\right)$.
(16) Let F, G be functions. Suppose F and G are fiberwise equipotent. Let x_{1}, x_{2} be sets. Suppose $x_{1} \in \operatorname{dom} F$ and $x_{2} \in \operatorname{dom} F$ and $x_{1} \neq x_{2}$. Then there exist sets z_{1}, z_{2} such that $z_{1} \in \operatorname{dom} G$ and $z_{2} \in \operatorname{dom} G$ and $z_{1} \neq z_{2}$ and $F\left(x_{1}\right)=G\left(z_{1}\right)$ and $F\left(x_{2}\right)=G\left(z_{2}\right)$.
(17) Let V be a real linear space, L be a linear combination of V, and A be a subset of V. Suppose $A \subseteq$ the support of L. Then there exists a linear combination L_{1} of V such that the support of $L_{1}=A$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
[7] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Jan Popiołek. Introduction to Banach and Hilbert spaces - part I. Formalized Mathematics, 2(4):511-516, 1991.
[12] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[15] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395-399, 1990.
[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received April 3, 2003

