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Summary. An inner product of complex numbers is defined and used to
characterize the (counter-clockwise) angle between (a,0) and (0,b) in the complex

plane. For complex a, b and c we then define the (counter-clockwise) angle be-

tween (a,c) and (c, b) and prove theorems about the sum of internal and external

angles of a triangle.

MML Identifier: COMPLEX2.

The papers [9], [13], [10], [12], [14], [3], [7], [15], [5], [6], [8], [11], [2], [1], and [4]

provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For all real numbers a, b holds −(a + bi) = −a + (−b)i.

(2) For all real numbers a, b such that b > 0 there exists a real number r

such that r = b · −⌊a
b
⌋+ a and 0 ¬ r and r < b.

(3) Let a, b, c be real numbers. Suppose a > 0 and b ­ 0 and c ­ 0 and

b < a and c < a. Let i be an integer. If b = c + a · i, then b = c.

(4) For all real numbers a, b holds sin(a− b) = sin a · cos b− cos a · sin b and

cos(a− b) = cos a · cos b + sin a · sin b.

(5) For every real number a holds sin(a − π) = −sin(a) and cos(a − π) =

−cos(a).

(6) For every real number a holds sin(a − π) = −sin a and cos(a − π) =

−cos a.
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(7) For all real numbers a, b such that a ∈ ]0, π

2 [ and b ∈ ]0, π

2 [ holds a < b

iff sin a < sin b.

(8) For all real numbers a, b such that a ∈ ]π2 , π[ and b ∈ ]π2 , π[ holds a < b

iff sin a > sin b.

(9) For every real number a and for every integer i holds sin a = sin(2·π·i+a).

(10) For every real number a and for every integer i holds cos a = cos(2 · π ·

i + a).

(11) For every real number a such that sin a = 0 holds cos a 6= 0.

(12) For all real numbers a, b such that 0 ¬ a and a < 2 · π and 0 ¬ b and

b < 2 · π and sin a = sin b and cos a = cos b holds a = b.

2. More on the Argument of a Complex Number

Let us observe that CF is non empty.

Let z be an element of C. The functor Ftize(z) yields an element of the

carrier of CF and is defined as follows:

(Def. 1) Ftize(z) = z.

We now state four propositions:

(13) For every element z of C holds ℜ(z) = ℜ(Ftize(z)) and ℑ(z) =

ℑ(Ftize(z)).

(14) For all elements x, y of C holds Ftize(x + y) = Ftize(x) + Ftize(y).

(15) For every element z of C holds z = 0C iff Ftize(z) = 0CF
.

(16) For every element z of C holds |z| = |Ftize(z)|.

Let z be an element of C. The functor Arg z yields a real number and is

defined as follows:

(Def. 2) Arg z = Arg Ftize(z).

One can prove the following propositions:

(17) For every element z of C and for every element u of the carrier of CF

such that z = u holds Arg z = Arg u.

(18) For every element z of C holds 0 ¬ Arg z and Arg z < 2 · π.

(19) For every element z of C holds z = |z| · cosArg z + (|z| · sinArg z)i.

(20) Arg(0C) = 0.

(21) Let z be an element of C and r be a real number. If z 6= 0 and z =

|z| · cos r + (|z| · sin r)i and 0 ¬ r and r < 2 · π, then r = Arg z.

(22) For every element z of C such that z 6= 0C holds if Arg z < π, then

Arg(−z) = Arg z + π and if Arg z ­ π, then Arg(−z) = Arg z − π.

(23) For every real number r such that r ­ 0 holds Arg(r + 0i) = 0.

(24) For every element z of C holds Arg z = 0 iff z = |z|+ 0i.
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(25) For every element z of C such that z 6= 0C holds Arg z < π iff Arg(−z) ­

π.

(26) For all elements x, y of C such that x 6= y or x−y 6= 0C holds Arg(x−y) <

π iff Arg(y − x) ­ π.

(27) For every element z of C holds Arg z ∈ ]0, π[ iff ℑ(z) > 0.

(28) For every element z of C such that Arg z 6= 0 holds Arg z < π iff

sinArg z > 0.

(29) For all elements x, y of C such that Arg x < π and Arg y < π holds

Arg(x + y) < π.

(30) For every real number x such that x > 0 holds Arg(0 + xi) = π

2 .

(31) For every element z of C holds Arg z ∈ ]0, π

2 [ iff ℜ(z) > 0 and ℑ(z) > 0.

(32) For every element z of C holds Arg z ∈ ]π

2 , π[ iff ℜ(z) < 0 and ℑ(z) > 0.

(33) For every element z of C such that ℑ(z) > 0 holds sinArg z > 0.

(34) For every element z of C holds Arg z = 0 iff ℜ(z) ­ 0 and ℑ(z) = 0.

(35) For every element z of C holds Arg z = π iff ℜ(z) < 0 and ℑ(z) = 0.

(36) For every element z of C holds ℑ(z) = 0 iff Arg z = 0 or Arg z = π.

(37) For every element z of C such that Arg z ¬ π holds ℑ(z) ­ 0.

(38) For every element z of C such that z 6= 0 holds cosArg(−z) = −cosArg z

and sinArg(−z) = −sinArg z.

(39) For every element a of C such that a 6= 0 holds cosArg a = ℜ(a)
|a| and

sinArg a = ℑ(a)
|a| .

(40) For every element a of C and for every real number r such that r > 0

holds Arg(a · (r + 0i)) = Arg a.

(41) For every element a of C and for every real number r such that r < 0

holds Arg(a · (r + 0i)) = Arg(−a).

3. Inner Product

Let x, y be elements of C. The functor (x|y) yielding an element of C is

defined by:

(Def. 3) (x|y) = x · y .

In the sequel a, b, c, d, x, y, z are elements of C.

The following propositions are true:

(42) (x|y) = (ℜ(x) · ℜ(y) + ℑ(x) · ℑ(y)) + (−ℜ(x) · ℑ(y) + ℑ(x) · ℜ(y))i.

(43) (z|z) = (ℜ(z) · ℜ(z) +ℑ(z) · ℑ(z)) + 0i and (z|z) = (ℜ(z)2+ℑ(z)2) + 0i.

(44) (z|z) = |z|2 + 0i and |z|2 = ℜ((z|z)).

(45) |(x|y)| = |x| · |y|.

(46) If (x|x) = 0, then x = 0.
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(47) (y|x) = (x|y) .

(48) ((x + y)|z) = (x|z) + (y|z).

(49) (x|(y + z)) = (x|y) + (x|z).

(50) ((a · x)|y) = a · (x|y).

(51) (x|(a · y)) = a · (x|y).

(52) ((a · x)|y) = (x|(a · y)).

(53) ((a · x + b · y)|z) = a · (x|z) + b · (y|z).

(54) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).

(55) ((−x)|y) = (x|−y).

(56) ((−x)|y) = −(x|y).

(57) −(x|y) = (x|−y).

(58) ((−x)|−y) = (x|y).

(59) ((x− y)|z) = (x|z)− (y|z).

(60) (x|(y − z)) = (x|y)− (x|z).

(61) (0C|x) = 0C and (x|0C) = 0C.

(62) ((x + y)|(x + y)) = (x|x) + (x|y) + (y|x) + (y|y).

(63) ((x− y)|(x− y)) = ((x|x)− (x|y)− (y|x)) + (y|y).

(64) ℜ((x|y)) = 0 iff ℑ((x|y)) = |x| · |y| or ℑ((x|y)) = −|x| · |y|.

4. Rotation

Let a be an element of C and let r be a real number. The functor a ª r

yielding an element of C is defined as follows:

(Def. 4) a ª r = |a| · cos(r +Arg a) + (|a| · sin(r +Arg a))i.

In the sequel r denotes a real number.

We now state a number of propositions:

(65) a ª 0 = a.

(66) a ª r = 0C iff a = 0C.

(67) |a ª r| = |a|.

(68) If a 6= 0C, then there exists an integer i such that Arg(a ª r) = 2 · π ·

i + (r +Arg a).

(69) a ª −Arg a = |a|+ 0i.

(70) ℜ(a ª r) = ℜ(a)·cos r−ℑ(a)·sin r and ℑ(a ª r) = ℜ(a)·sin r+ℑ(a)·cos r.

(71) a + b ª r = (a ª r) + (b ª r).

(72) −a ª r = −(a ª r).

(73) a− b ª r = (a ª r)− (b ª r).

(74) a ª π = −a.
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5. Angles

Let a, b be elements of C. The functor ∡(a, b) yielding a real number is

defined by:

(Def. 5) ∡(a, b) =

{

Arg(b ª −Arg a), if Arg a = 0 or b 6= 0,

2 · π −Arg a, otherwise.

Next we state several propositions:

(75) If r ­ 0, then ∡(r + 0i, a) = Arg a.

(76) If Arg a = Arg b and a 6= 0 and b 6= 0, then Arg(a ª r) = Arg(b ª r).

(77) If r > 0, then ∡(a, b) = ∡(a · (r + 0i), b · (r + 0i)).

(78) If a 6= 0 and b 6= 0 and Arg a = Arg b, then Arg(−a) = Arg(−b).

(79) If a 6= 0 and b 6= 0, then ∡(a, b) = ∡(a ª r, b ª r).

(80) If r < 0 and a 6= 0 and b 6= 0, then ∡(a, b) = ∡(a · (r + 0i), b · (r + 0i)).

(81) If a 6= 0 and b 6= 0, then ∡(a, b) = ∡(−a,−b).

(82) If b 6= 0 and ∡(a, b) = 0, then ∡(a,−b) = π.

(83) If a 6= 0 and b 6= 0, then cos∡(a, b) = ℜ((a|b))
|a|·|b| and sin∡(a, b) = −ℑ((a|b))

|a|·|b| .

Let x, y, z be elements of C. The functor ∡(x, y, z) yielding a real number

is defined as follows:

(Def. 6) ∡(x, y, z) =

{

Arg(z − y)−Arg(x− y), if Arg(z − y)−Arg(x− y) ­ 0,

2 · π + (Arg(z − y)−Arg(x− y)), otherwise.

One can prove the following propositions:

(84) 0 ¬ ∡(x, y, z) and ∡(x, y, z) < 2 · π.

(85) ∡(x, y, z) = ∡(x− y, 0C, z − y).

(86) ∡(a, b, c) = ∡(a + d, b + d, c + d).

(87) ∡(a, b) = ∡(a, 0C, b).

(88) If ∡(x, y, z) = 0, then Arg(x− y) = Arg(z − y) and ∡(z, y, x) = 0.

(89) If a 6= 0C and b 6= 0C, then ℜ((a|b)) = 0 iff ∡(a, 0C, b) = π

2 or

∡(a, 0C, b) = 3
2 · π.

(90) If a 6= 0C and b 6= 0C, then ℑ((a|b)) = |a| · |b| or ℑ((a|b)) = −|a| · |b| iff

∡(a, 0C, b) = π

2 or ∡(a, 0C, b) = 3
2 · π.

(91) If x 6= y and if z 6= y and if ∡(x, y, z) = π

2 or ∡(x, y, z) = 3
2 · π, then

|x− y|2 + |z − y|2 = |x− z|2.

(92) If a 6= b and b 6= c, then ∡(a, b, c) = ∡(a ª r, b ª r, c ª r).

(93) ∡(a, b, a) = 0.

(94) ∡(a, b, c) 6= 0 iff ∡(a, b, c) + ∡(c, b, a) = 2 · π.

(95) If ∡(a, b, c) 6= 0, then ∡(c, b, a) 6= 0.

(96) If ∡(a, b, c) = π, then ∡(c, b, a) = π.
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(97) If a 6= b and a 6= c and b 6= c, then ∡(a, b, c) 6= 0 or ∡(b, c, a) 6= 0 or

∡(c, a, b) 6= 0.

(98) If a 6= b and b 6= c and 0 < ∡(a, b, c) and ∡(a, b, c) < π, then ∡(a, b, c) +

∡(b, c, a) + ∡(c, a, b) = π and 0 < ∡(b, c, a) and 0 < ∡(c, a, b).

(99) If a 6= b and b 6= c and ∡(a, b, c) > π, then ∡(a, b, c) + ∡(b, c, a) +

∡(c, a, b) = 5 · π and ∡(b, c, a) > π and ∡(c, a, b) > π.

(100) If a 6= b and b 6= c and ∡(a, b, c) = π, then ∡(b, c, a) = 0 and ∡(c, a, b) =

0.

(101) If a 6= b and a 6= c and b 6= c and ∡(a, b, c) = 0, then ∡(b, c, a) = 0 and

∡(c, a, b) = π or ∡(b, c, a) = π and ∡(c, a, b) = 0.

(102) ∡(a, b, c)+∡(b, c, a)+∡(c, a, b) = π or ∡(a, b, c)+∡(b, c, a)+∡(c, a, b) =

5 · π iff a 6= b and a 6= c and b 6= c.
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