Solving Roots of Polynomial Equation of Degree 4 with Real Coefficients

Xiquan Liang
Qingdao University of Science and Technology

Abstract

Summary. In this paper, we describe the definition of the fourth degree algebraic equations and their properties. We clarify the relation between the four roots of this equation and its coefficient. Also, the form of these roots for various conditions is discussed. This solution is known as the Cardano solution.

MML Identifier: POLYEQ_2.

The articles [3], [4], [1], and [2] provide the notation and terminology for this paper.

Let a, b, c, d, e, x be real numbers. The functor $\operatorname{Four}(a, b, c, d, e, x)$ is defined by:
(Def. 1) $\operatorname{Four}(a, b, c, d, e, x)=a \cdot x^{4}+b \cdot x^{3}+c \cdot x^{2}+d \cdot x+e$.
Let a, b, c, d, e, x be real numbers. Note that $\operatorname{Four}(a, b, c, d, e, x)$ is real.
One can prove the following propositions:
(1) Let a, c, e, x be real numbers. Suppose $a \neq 0$ and $e \neq 0$ and $c^{2}-4 \cdot a \cdot e>0$. Suppose $\operatorname{Four}(a, 0, c, 0, e, x)=0$. Then $x \neq 0$ but $x=\sqrt{\frac{-c+\sqrt{\Delta(a, c, e)}}{2 \cdot a}}$ or $x=\sqrt{\frac{-c-\sqrt{\Delta(a, c, e)}}{2 \cdot a}}$ or $x=-\sqrt{\frac{-c+\sqrt{\Delta(a, c, e)}}{2 \cdot a}}$ or $x=-\sqrt{\frac{-c-\sqrt{\Delta(a, c, e)}}{2 \cdot a}}$.
(2) Let a, b, c, x, y be real numbers. Suppose $a \neq 0$ and $y=x+\frac{1}{x}$. If $\operatorname{Four}(a, b, c, b, a, x)=0$, then $x \neq 0$ and $\left(a \cdot y^{2}+b \cdot y+c\right)-2 \cdot a=0$.
(3) Let a, b, c, x, y be real numbers. Suppose $a \neq 0$ and $\left(b^{2}-4 \cdot a \cdot c\right)+8 \cdot a^{2}>0$ and $y=x+\frac{1}{x}$. Suppose $\operatorname{Four}(a, b, c, b, a, x)=0$. Let y_{1}, y_{2} be real numbers. Suppose $y_{1}=\frac{-b+\sqrt{\left(b^{2}-4 \cdot a \cdot c\right)+8 \cdot a^{2}}}{2 \cdot a}$ and $y_{2}=\frac{-b-\sqrt{\left(b^{2}-4 \cdot a \cdot c\right)+8 \cdot a^{2}}}{2 \cdot a}$. Then $x \neq$ 0 but $x=\frac{y_{1}+\sqrt{\Delta\left(1,-y_{1}, 1\right)}}{2}$ or $x=\frac{y_{2}+\sqrt{\Delta\left(1,-y_{2}, 1\right)}}{2}$ or $x=\frac{y_{1}-\sqrt{\Delta\left(1,-y_{1}, 1\right)}}{2}$ or $x=\frac{y_{2}-\sqrt{\Delta\left(1,-y_{2}, 1\right)}}{2}$.
(4) For every real number x holds $x^{3}=x^{2} \cdot x$ and $x^{3} \cdot x=x^{4}$ and $x^{2} \cdot x^{2}=x^{4}$.
(5) For all real numbers x, y such that $x+y \neq 0$ holds $(x+y)^{4}=\left(x^{3}+(3\right.$. $\left.\left.y \cdot x^{2}+3 \cdot y^{2} \cdot x\right)+y^{3}\right) \cdot x+\left(x^{3}+\left(3 \cdot y \cdot x^{2}+3 \cdot y^{2} \cdot x\right)+y^{3}\right) \cdot y$.
(6) For all real numbers x, y such that $x+y \neq 0$ holds $(x+y)^{4}=x^{4}+(4$. $\left.y \cdot x^{3}+6 \cdot y^{2} \cdot x^{2}+4 \cdot y^{3} \cdot x\right)+y^{4}$.
(7) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ be real numbers. Suppose that for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, x\right)$. Then $a_{5}=b_{5}$ and $\left(\left(a_{1}-a_{2}\right)+a_{3}\right)-a_{4}=$ $\left(\left(b_{1}-b_{2}\right)+b_{3}\right)-b_{4}$ and $a_{1}+a_{2}+a_{3}+a_{4}=b_{1}+b_{2}+b_{3}+b_{4}$.
(8) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ be real numbers. Suppose that for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, x\right)$. Then $a_{1}-b_{1}=b_{3}-a_{3}$ and $a_{2}-b_{2}=b_{4}-a_{4}$.
(9) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ be real numbers. Suppose that for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, x\right)$. Then $a_{1}=b_{1}$ and $a_{2}=b_{2}$ and $a_{3}=b_{3}$ and $a_{4}=b_{4}$ and $a_{5}=b_{5}$.
Let $a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x$ be real numbers. The functor $\operatorname{Four} 0\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$ is defined by:
(Def. 2) $\operatorname{Four0}\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)=a_{1} \cdot\left(\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right) \cdot\left(x-x_{4}\right)\right)$.
Let $a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x$ be real numbers.
One can verify that $\operatorname{Four} 0\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$ is real.
One can prove the following propositions:
(10) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x, x_{1}, x_{2}, x_{3}, x_{4}$ be real numbers. Suppose $a_{1} \neq 0$. Suppose that for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four} 0\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$. Then $\frac{a_{1} \cdot x^{4}+a_{2} \cdot x^{3}+a_{3} \cdot x^{2}+a_{4} \cdot x+a_{5}}{a_{1}}=\left(\left(x^{2} \cdot x^{2}-\left(x_{1}+\right.\right.\right.$ $\left.\left.\left.x_{2}+x_{3}\right) \cdot\left(x^{\mathbf{2}} \cdot x\right)\right)+\left(x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{2}\right) \cdot x^{\mathbf{2}}\right)-x_{1} \cdot x_{2} \cdot x_{3} \cdot x-(x-$ $\left.x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right) \cdot x_{4}$.
(11) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x, x_{1}, x_{2}, x_{3}, x_{4}$ be real numbers. Suppose $a_{1} \neq 0$. Suppose that for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four} 0\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$. Then $\frac{a_{1} \cdot x^{4}+a_{2} \cdot x^{3}+a_{3} \cdot x^{2}+a_{4} \cdot x+a_{5}}{a_{1}}=\left(\left(\left(x^{4}-\left(x_{1}+\right.\right.\right.\right.$ $\left.\left.x_{2}+x_{3}+x_{4}\right) \cdot x^{3}\right)+\left(x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{1} \cdot x_{4}+\left(x_{2} \cdot x_{3}+x_{2} \cdot x_{4}\right)+x_{3} \cdot x_{4}\right)$. $\left.\left.x^{\mathbf{2}}\right)-\left(x_{1} \cdot x_{2} \cdot x_{3}+x_{1} \cdot x_{2} \cdot x_{4}+x_{1} \cdot x_{3} \cdot x_{4}+x_{2} \cdot x_{3} \cdot x_{4}\right) \cdot x\right)+x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$.
(12) Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x_{1}, x_{2}, x_{3}, x_{4}$ be real numbers. Suppose $a_{1} \neq 0$ and for every real number x holds $\operatorname{Four}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x\right)=$ $\operatorname{Four} 0\left(a_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$. Then $\frac{a_{2}}{a_{1}}=-\left(x_{1}+x_{2}+x_{3}+x_{4}\right)$ and $\frac{a_{3}}{a_{1}}=$ $x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{1} \cdot x_{4}+\left(x_{2} \cdot x_{3}+x_{2} \cdot x_{4}\right)+x_{3} \cdot x_{4}$ and $\frac{a_{4}}{a_{1}}=$ $-\left(x_{1} \cdot x_{2} \cdot x_{3}+x_{1} \cdot x_{2} \cdot x_{4}+x_{1} \cdot x_{3} \cdot x_{4}+x_{2} \cdot x_{3} \cdot x_{4}\right)$ and $\frac{a_{5}}{a_{1}}=x_{1} \cdot x_{2}$. $x_{3} \cdot x_{4}$.
(13) Let a, k, y be real numbers. Suppose $a \neq 0$. Suppose that for every real number x holds $x^{4}+a^{4}=k \cdot a \cdot x \cdot\left(x^{2}+a^{2}\right)$. Then $\left(y^{4}-k \cdot y^{3}-k \cdot y\right)+1=0$.

References

[1] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[2] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.
[3] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received February 3, 2003

