On the Hausdorff Distance Between Compact $Subsets^1$

Adam Grabowski University of Białystok

Summary. In [1] the pseudo-metric dist $_{\min}^{\max}$ on compact subsets A and B of a topological space generated from arbitrary metric space is defined. Using this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maximum of the two pseudo-distances: from A to B and from B to A. We justify its distance properties. At the end we define some special notions which enable to apply the Hausdorff distance operator "HausDist" to the subsets of the Euclidean topological space \mathcal{E}_T^n .

MML Identifier: HAUSDORF.

The papers [16], [18], [15], [10], [17], [19], [3], [14], [6], [9], [8], [11], [2], [7], [4], [1], [13], and [12] provide the terminology and notation for this paper.

1. Preliminaries

Let r be a real number. Then $\{r\}$ is a subset of \mathbb{R} .

Let M be a non empty metric space. One can verify that M_{top} is T_2 . Next we state a number of propositions:

- (1) For all real numbers x, y such that $x \ge 0$ and $y \ge 0$ and $\max(x, y) = 0$ holds x = 0.
- (2) For every non empty metric space M and for every point x of M holds $(\operatorname{dist}(x))(x) = 0.$
- (3) For every non empty metric space M and for every subset P of M_{top} and for every point x of M such that $x \in P$ holds $0 \in (\text{dist}(x))^{\circ}P$.

C 2003 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102 and TYPES grant IST-1999-29001.

ADAM GRABOWSKI

- (4) Let M be a non empty metric space, P be a subset of M_{top} , x be a point of M, and y be a real number. If $y \in (\text{dist}(x))^{\circ}P$, then $y \ge 0$.
- (5) For every non empty metric space M and for every subset P of M_{top} and for every set x such that $x \in P$ holds $(\text{dist}_{\min}(P))(x) = 0$.
- (6) Let M be a non empty metric space, p be a point of M, q be a point of M_{top} , and r be a real number. If p = q and r > 0, then Ball(p, r) is a neighbourhood of q.
- (7) Let M be a non empty metric space, A be a subset of M_{top} , and p be a point of M. Then $p \in \overline{A}$ if and only if for every real number r such that r > 0 holds Ball(p, r) meets A.
- (8) Let M be a non empty metric space, p be a point of M, and A be a subset of M_{top} . Then $p \in \overline{A}$ if and only if for every real number r such that r > 0 there exists a point q of M such that $q \in A$ and $\rho(p,q) < r$.
- (9) Let M be a non empty metric space, P be a non empty subset of M_{top} , and x be a point of M. Then $(\text{dist}_{\min}(P))(x) = 0$ if and only if for every real number r such that r > 0 there exists a point p of M such that $p \in P$ and $\rho(x, p) < r$.
- (10) Let M be a non empty metric space, P be a non empty subset of M_{top} , and x be a point of M. Then $x \in \overline{P}$ if and only if $(\text{dist}_{\min}(P))(x) = 0$.
- (11) Let M be a non empty metric space, P be a non empty closed subset of M_{top} , and x be a point of M. Then $x \in P$ if and only if $(\text{dist}_{\min}(P))(x) = 0$.
- (12) For every non empty subset A of the carrier of \mathbb{R}^1 there exists a non empty subset X of \mathbb{R} such that A = X and $\inf A = \inf X$.
- (13) For every non empty subset A of the carrier of \mathbb{R}^1 there exists a non empty subset X of \mathbb{R} such that A = X and $\sup A = \sup X$.
- (14) Let M be a non empty metric space, P be a non empty subset of M_{top} , x be a point of M, and X be a subset of \mathbb{R} . If $X = (\text{dist}(x))^{\circ}P$, then X is lower bounded.
- (15) Let M be a non empty metric space, P be a non empty subset of M_{top} , and x, y be points of M. If $y \in P$, then $(\text{dist}_{\min}(P))(x) \leq \rho(x, y)$.
- (16) Let M be a non empty metric space, P be a non empty subset of M_{top} , r be a real number, and x be a point of M. If for every point y of M such that $y \in P$ holds $\rho(x, y) \ge r$, then $(\text{dist}_{\min}(P))(x) \ge r$.
- (17) Let M be a non empty metric space, P be a non empty subset of M_{top} , and x, y be points of M. Then $(\text{dist}_{\min}(P))(x) \leq \rho(x, y) + (\text{dist}_{\min}(P))(y)$.
- (18) Let M be a non empty metric space, P be a subset of the carrier of M_{top} , and Q be a non empty subset of the carrier of M. If P = Q, then $M_{\text{top}} \upharpoonright P = (M \upharpoonright Q)_{\text{top}}$.
- (19) Let M be a non empty metric space, A be a subset of M, B be a non empty subset of the carrier of M, and C be a subset of $M \upharpoonright B$. If $A \subseteq B$

154

and A = C and C is bounded, then A is bounded.

- (20) Let M be a non empty metric space, B be a subset of M, and A be a subset of M_{top} . If A = B and A is compact, then B is bounded.
- (21) Let M be a non empty metric space, P be a non empty subset of M_{top} , and z be a point of M. Then there exists a point w of M such that $w \in P$ and $(\text{dist}_{\min}(P))(z) \leq \rho(w, z)$.

Let M be a non empty metric space and let x be a point of M. Note that dist(x) is continuous.

Let M be a non empty metric space and let X be a compact non empty subset of M_{top} . One can check that $\text{dist}_{\max}(X)$ is continuous and $\text{dist}_{\min}(X)$ is continuous.

One can prove the following propositions:

- (22) Let M be a non empty metric space, P be a non empty subset of M_{top} , and x, y be points of M. If $y \in P$ and P is compact, then $(\text{dist}_{\max}(P))(x) \ge \rho(x, y)$.
- (23) Let M be a non empty metric space, P be a non empty subset of M_{top} , and z be a point of M. If P is compact, then there exists a point w of Msuch that $w \in P$ and $(\text{dist}_{\max}(P))(z) \ge \rho(w, z)$.
- (24) Let M be a non empty metric space, P, Q be non empty subsets of M_{top} , and z be a point of M. If P is compact and Q is compact and $z \in Q$, then $(\text{dist}_{\min}(P))(z) \leq \text{dist}_{\max}^{\max}(P,Q).$
- (25) Let M be a non empty metric space, P, Q be non empty subsets of M_{top} , and z be a point of M. If P is compact and Q is compact and $z \in Q$, then $(\text{dist}_{\max}(P))(z) \leq \text{dist}_{\max}^{\max}(P, Q).$
- (26) Let M be a non empty metric space, P, Q be non empty subsets of M_{top} , and X be a subset of \mathbb{R} . If $X = (dist_{max}(P))^{\circ}Q$ and P is compact and Qis compact, then X is upper bounded.
- (27) Let M be a non empty metric space, P, Q be non empty subsets of M_{top} , and X be a subset of \mathbb{R} . If $X = (\text{dist}_{\min}(P))^{\circ}Q$ and P is compact and Q is compact, then X is upper bounded.
- (28) Let M be a non empty metric space, P be a non empty subset of M_{top} , and z be a point of M. If P is compact, then $(\text{dist}_{\min}(P))(z) \leq (\text{dist}_{\max}(P))(z)$.
- (29) For every non empty metric space M and for every non empty subset P of M_{top} holds $(\text{dist}_{\min}(P))^{\circ}P = \{0\}.$
- (30) Let M be a non empty metric space and P, Q be non empty subsets of M_{top} . If P is compact and Q is compact, then $\operatorname{dist}_{\min}^{\max}(P, Q) \ge 0$.
- (31) For every non empty metric space M and for every non empty subset P of M_{top} holds $\operatorname{dist}_{\min}^{\max}(P, P) = 0$.

ADAM GRABOWSKI

- (32) Let M be a non empty metric space and P, Q be non empty subsets of M_{top} . If P is compact and Q is compact, then $\text{dist}_{\max}^{\min}(P,Q) \ge 0$.
- (33) Let M be a non empty metric space, Q, R be non empty subsets of M_{top} , and y be a point of M. If Q is compact and R is compact and $y \in Q$, then $(\text{dist}_{\min}(R))(y) \leq \text{dist}_{\min}^{\max}(R, Q).$

2. The Hausdorff Distance

Let M be a non empty metric space and let P, Q be subsets of M_{top} . The functor HausDist(P, Q) yields a real number and is defined by:

- $(\text{Def. 1}) \quad \text{HausDist}(P,Q) = \max(\text{dist}_{\min}^{\max}(P,Q), \text{dist}_{\min}^{\max}(Q,P)).$
 - Let us notice that the functor HausDist(P,Q) is commutative. The following propositions are true:
 - (34) Let M be a non empty metric space, Q, R be non empty subsets of M_{top} , and y be a point of M. If Q is compact and R is compact and $y \in Q$, then $(\text{dist}_{\min}(R))(y) \leq \text{HausDist}(Q, R).$
 - (35) Let M be a non empty metric space and P, Q, R be non empty subsets of M_{top} . If P is compact and Q is compact and R is compact, then $\operatorname{dist}_{\min}^{\max}(P, R) \leq \operatorname{HausDist}(P, Q) + \operatorname{HausDist}(Q, R)$.
 - (36) Let M be a non empty metric space and P, Q, R be non empty subsets of M_{top} . If P is compact and Q is compact and R is compact, then $\operatorname{dist}_{\min}^{\max}(R, P) \leq \operatorname{HausDist}(P, Q) + \operatorname{HausDist}(Q, R)$.
 - (37) Let M be a non empty metric space and P, Q be non empty subsets of M_{top} . If P is compact and Q is compact, then HausDist $(P, Q) \ge 0$.
 - (38) For every non empty metric space M and for every non empty subset P of M_{top} holds HausDist(P, P) = 0.
 - (39) Let M be a non empty metric space and P, Q be non empty subsets of M_{top} . If P is compact and Q is compact and HausDist(P, Q) = 0, then P = Q.
 - (40) Let M be a non empty metric space and P, Q, R be non empty subsets of M_{top} . If P is compact and Q is compact and R is compact, then HausDist $(P, R) \leq \text{HausDist}(P, Q) + \text{HausDist}(Q, R)$.

Let n be a natural number and let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor dist $_{\min}^{\max}(P,Q)$ yields a real number and is defined by:

(Def. 2) There exist subsets P', Q' of $(\mathcal{E}^n)_{top}$ such that P = P' and Q = Q' and $\operatorname{dist}_{\min}^{\max}(P, Q) = \operatorname{dist}_{\min}^{\max}(P', Q')$.

Let n be a natural number and let P, Q be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor HausDist(P, Q) yields a real number and is defined by:

(Def. 3) There exist subsets P', Q' of $(\mathcal{E}^n)_{top}$ such that P = P' and Q = Q' and HausDist(P, Q) = HausDist(P', Q').

Let us note that the functor HausDist(P, Q) is commutative.

In the sequel n denotes a natural number.

Next we state four propositions:

- (41) For all non empty subsets P, Q of $\mathcal{E}^n_{\mathrm{T}}$ such that P is compact and Q is compact holds HausDist $(P, Q) \ge 0$.
- (42) For every non empty subset P of $\mathcal{E}^n_{\mathrm{T}}$ holds $\mathrm{HausDist}(P, P) = 0$.
- (43) For all non empty subsets P, Q of \mathcal{E}^n_T such that P is compact and Q is compact and HausDist(P, Q) = 0 holds P = Q.
- (44) For all non empty subsets P, Q, R of \mathcal{E}^n_T such that P is compact and Q is compact and R is compact holds $\operatorname{HausDist}(P, R) \leq \operatorname{HausDist}(P, Q) + \operatorname{HausDist}(Q, R)$.

References

- Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353–359, 1996.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427-440, 1997.
- [5] Akos Csaszar. General Topology. Akademiai Kiado, Budapest, 1978.
- [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [13] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [15] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 27, 2003