The Inner Product of Finite Sequences and of Points of *n*-dimensional Topological Space

Kanchun Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. First, we define the inner product to finite sequences of real value. Next, we extend it to points of *n*-dimensional topological space \mathcal{E}_{T}^{n} . At the end, orthogonality is introduced to this space.

MML Identifier: $EUCLID_2$.

The notation and terminology used in this paper are introduced in the following articles: [11], [3], [9], [7], [1], [2], [6], [8], [4], [5], and [10].

1. Preliminaries

For simplicity, we use the following convention: i, n denote natural numbers, x, y, a denote real numbers, v denotes an element of \mathbb{R}^n , and $p, p_1, p_2, p_3, q, q_1, q_2$ denote points of $\mathcal{E}^n_{\mathrm{T}}$.

We now state several propositions:

(1) For every *i* such that $i \in \text{Seg } n$ holds $(v \bullet \langle \underbrace{0, \dots, 0}_{n} \rangle)(i) = 0$.

(2)
$$v \bullet \langle \underbrace{0, \dots, 0}_{n} \rangle = \langle \underbrace{0, \dots, 0}_{n} \rangle.$$

- (3) For every finite sequence x of elements of \mathbb{R} holds $(-1) \cdot x = -x$.
- (4) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds x y = x + -y.
- (5) For every finite sequence x of elements of \mathbb{R} holds $\operatorname{len}(-x) = \operatorname{len} x$.

C 2003 University of Białystok ISSN 1426-2630

- (6) For all finite sequences x_1, x_2 of elements of \mathbb{R} such that $\operatorname{len} x_1 = \operatorname{len} x_2$ holds $\operatorname{len}(x_1 + x_2) = \operatorname{len} x_1$.
- (7) For all finite sequences x_1, x_2 of elements of \mathbb{R} such that $\operatorname{len} x_1 = \operatorname{len} x_2$ holds $\operatorname{len}(x_1 x_2) = \operatorname{len} x_1$.
- (8) For every real number a and for every finite sequence x of elements of \mathbb{R} holds $\operatorname{len}(a \cdot x) = \operatorname{len} x$.
- (9) For all finite sequences x, y, z of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ and $\operatorname{len} y = \operatorname{len} z$ holds $(x + y) \bullet z = x \bullet z + y \bullet z$.

2. INNER PRODUCT OF FINITE SEQUENCES

Let x_1, x_2 be finite sequences of elements of \mathbb{R} . The functor $|(x_1, x_2)|$ yielding a real number is defined as follows:

(Def. 1) $|(x_1, x_2)| = \sum (x_1 \bullet x_2).$

Let us observe that the functor $|(x_1, x_2)|$ is commutative.

We now state a number of propositions:

- (10) Let y_1, y_2 be finite sequences of elements of \mathbb{R} and x_1, x_2 be elements of \mathcal{R}^n . If $x_1 = y_1$ and $x_2 = y_2$, then $|(y_1, y_2)| = \frac{1}{4} \cdot (|x_1 + x_2|^2 |x_1 x_2|^2)$.
- (11) For every finite sequence x of elements of \mathbb{R} holds $|(x, x)| \ge 0$.
- (12) For every finite sequence x of elements of \mathbb{R} holds $|x|^2 = |(x, x)|$.
- (13) For every finite sequence x of elements of \mathbb{R} holds $|x| = \sqrt{|(x,x)|}$.
- (14) For every finite sequence x of elements of \mathbb{R} holds $0 \leq |x|$.
- (15) For every finite sequence x of elements of \mathbb{R} holds |(x,x)| = 0 iff $x = \langle \underbrace{0, \dots, 0}_{\text{len } x} \rangle$.
- (16) For every finite sequence x of elements of \mathbb{R} holds |(x, x)| = 0 iff |x| = 0.
- (17) For every finite sequence x of elements of \mathbb{R} holds $|(x, \langle \underbrace{0, \dots, 0}_{\text{len } x} \rangle)| = 0.$
- (18) For every finite sequence x of elements of \mathbb{R} holds $|(\langle \underbrace{0, \dots, 0}_{\text{len } x} \rangle, x)| = 0.$
- (19) For all finite sequences x, y, z of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ and $\operatorname{len} y = \operatorname{len} z$ holds |(x + y, z)| = |(x, z)| + |(y, z)|.
- (20) For all finite sequences x, y of elements of \mathbb{R} and for every real number a such that $\operatorname{len} x = \operatorname{len} y$ holds $|(a \cdot x, y)| = a \cdot |(x, y)|$.
- (21) For all finite sequences x, y of elements of \mathbb{R} and for every real number a such that $\operatorname{len} x = \operatorname{len} y$ holds $|(x, a \cdot y)| = a \cdot |(x, y)|$.
- (22) For all finite sequences x_1, x_2 of elements of \mathbb{R} such that $\operatorname{len} x_1 = \operatorname{len} x_2$ holds $|(-x_1, x_2)| = -|(x_1, x_2)|$.

180

- (23) For all finite sequences x_1, x_2 of elements of \mathbb{R} such that $\operatorname{len} x_1 = \operatorname{len} x_2$ holds $|(x_1, -x_2)| = -|(x_1, x_2)|$.
- (24) For all finite sequences x_1, x_2 of elements of \mathbb{R} such that $\operatorname{len} x_1 = \operatorname{len} x_2$ holds $|(-x_1, -x_2)| = |(x_1, x_2)|$.
- (25) For all finite sequences x_1 , x_2 , x_3 of elements of \mathbb{R} such that $\ln x_1 = \ln x_2$ and $\ln x_2 = \ln x_3$ holds $|(x_1 x_2, x_3)| = |(x_1, x_3)| |(x_2, x_3)|$.
- (26) Let x, y be real numbers and x_1, x_2, x_3 be finite sequences of elements of \mathbb{R} . If len $x_1 = \text{len } x_2$ and len $x_2 = \text{len } x_3$, then $|(x \cdot x_1 + y \cdot x_2, x_3)| = x \cdot |(x_1, x_3)| + y \cdot |(x_2, x_3)|$.
- (27) For all finite sequences x, y_1, y_2 of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y_1$ and $\operatorname{len} y_1 = \operatorname{len} y_2$ holds $|(x, y_1 + y_2)| = |(x, y_1)| + |(x, y_2)|$.
- (28) For all finite sequences x, y_1, y_2 of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y_1$ and $\operatorname{len} y_1 = \operatorname{len} y_2$ holds $|(x, y_1 - y_2)| = |(x, y_1)| - |(x, y_2)|$.
- (29) Let x_1, x_2, y_1, y_2 be finite sequences of elements of \mathbb{R} . If $\operatorname{len} x_1 = \operatorname{len} x_2$ and $\operatorname{len} x_2 = \operatorname{len} y_1$ and $\operatorname{len} y_1 = \operatorname{len} y_2$, then $|(x_1+x_2, y_1+y_2)| = |(x_1, y_1)| + |(x_1, y_2)| + |(x_2, y_1)| + |(x_2, y_2)|.$
- (30) Let x_1, x_2, y_1, y_2 be finite sequences of elements of \mathbb{R} . If $\operatorname{len} x_1 = \operatorname{len} x_2$ and $\operatorname{len} x_2 = \operatorname{len} y_1$ and $\operatorname{len} y_1 = \operatorname{len} y_2$, then $|(x_1 - x_2, y_1 - y_2)| = (|(x_1, y_1)| - |(x_1, y_2)| - |(x_2, y_1)|) + |(x_2, y_2)|.$
- (31) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|(x + y, x + y)| = |(x, x)| + 2 \cdot |(x, y)| + |(y, y)|.$
- (32) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|(x y, x y)| = (|(x, x)| 2 \cdot |(x, y)|) + |(y, y)|.$
- (33) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|x+y|^2 = |x|^2 + 2 \cdot |(y,x)| + |y|^2$.
- (34) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|x y|^2 = (|x|^2 2 \cdot |(y, x)|) + |y|^2$.
- (35) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|x+y|^2 + |x-y|^2 = 2 \cdot (|x|^2 + |y|^2).$
- (36) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|x + y|^2 |x y|^2 = 4 \cdot |(x, y)|.$
- (37) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $||(x, y)|| \leq |x| \cdot |y|.$
- (38) For all finite sequences x, y of elements of \mathbb{R} such that $\operatorname{len} x = \operatorname{len} y$ holds $|x+y| \leq |x|+|y|$.

3. Inner Product of Points of $\mathcal{E}^n_{\mathrm{T}}$

Let us consider n and let p, q be points of $\mathcal{E}^n_{\mathrm{T}}$. The functor |(p,q)| yielding a real number is defined as follows:

(Def. 2) There exist finite sequences f, g of elements of \mathbb{R} such that f = p and g = q and |(p,q)| = |(f,g)|.

Let us observe that the functor |(p,q)| is commutative.

We now state a number of propositions:

- (39) For every natural number *n* and for all points p_1 , p_2 of \mathcal{E}_T^n holds $|(p_1, p_2)| = \frac{1}{4} \cdot (|p_1 + p_2|^2 |p_1 p_2|^2).$
- (40) $|(p_1 + p_2, p_3)| = |(p_1, p_3)| + |(p_2, p_3)|.$
- (41) For every real number x holds $|(x \cdot p_1, p_2)| = x \cdot |(p_1, p_2)|$.
- (42) For every real number x holds $|(p_1, x \cdot p_2)| = x \cdot |(p_1, p_2)|$.
- $(43) |(-p_1, p_2)| = -|(p_1, p_2)|.$
- $(44) |(p_1, -p_2)| = -|(p_1, p_2)|.$
- $(45) \quad |(-p_1, -p_2)| = |(p_1, p_2)|.$
- (46) $|(p_1 p_2, p_3)| = |(p_1, p_3)| |(p_2, p_3)|.$
- (47) $|(x \cdot p_1 + y \cdot p_2, p_3)| = x \cdot |(p_1, p_3)| + y \cdot |(p_2, p_3)|.$
- (48) $|(p,q_1+q_2)| = |(p,q_1)| + |(p,q_2)|.$
- (49) $|(p,q_1-q_2)| = |(p,q_1)| |(p,q_2)|.$
- (50) $|(p_1 + p_2, q_1 + q_2)| = |(p_1, q_1)| + |(p_1, q_2)| + |(p_2, q_1)| + |(p_2, q_2)|.$
- (51) $|(p_1 p_2, q_1 q_2)| = (|(p_1, q_1)| |(p_1, q_2)| |(p_2, q_1)|) + |(p_2, q_2)|.$
- (52) $|(p+q, p+q)| = |(p, p)| + 2 \cdot |(p, q)| + |(q, q)|.$
- (53) $|(p-q, p-q)| = (|(p, p)| 2 \cdot |(p, q)|) + |(q, q)|.$
- (54) $|(p, 0_{\mathcal{E}_{T}^{n}})| = 0.$
- (55) $|(0_{\mathcal{E}^n_{\mathcal{T}}}, p)| = 0.$
- (56) $|(0_{\mathcal{E}_{T}^{n}}, 0_{\mathcal{E}_{T}^{n}})| = 0.$
- $(57) \quad |(p,p)| \ge 0.$
- (58) $|(p,p)| = |p|^2$.
- (59) $|p| = \sqrt{|(p,p)|}.$
- $(60) \quad 0 \leqslant |p|.$
- (61) $|0_{\mathcal{E}^n_{\mathrm{T}}}| = 0.$
- (62) |(p,p)| = 0 iff |p| = 0.
- (63) |(p,p)| = 0 iff $p = 0_{\mathcal{E}^n_T}$.
- (64) |p| = 0 iff $p = 0_{\mathcal{E}_{T}^{n}}$.
- (65) $p \neq 0_{\mathcal{E}_{T}^{n}}$ iff |(p,p)| > 0.
- (66) $p \neq 0_{\mathcal{E}^n_{\mathrm{T}}}$ iff |p| > 0.
- (67) $|p+q|^2 = |p|^2 + 2 \cdot |(q,p)| + |q|^2.$
- (68) $|p-q|^2 = (|p|^2 2 \cdot |(q,p)|) + |q|^2.$
- (69) $|p+q|^2 + |p-q|^2 = 2 \cdot (|p|^2 + |q|^2).$
- (70) $|p+q|^2 |p-q|^2 = 4 \cdot |(p,q)|.$

- (71) $|(p,q)| = \frac{1}{4} \cdot (|p+q|^2 |p-q|^2).$
- $(72) \quad |(p,q)| \leqslant |(p,p)| + |(q,q)|.$
- (73) For all points p, q of \mathcal{E}_{T}^{n} holds $||(p,q)|| \leq |p| \cdot |q|$.
- (74) $|p+q| \le |p|+|q|.$

```
Let us consider n, p, q. We say that p, q are orthogonal if and only if:
```

(Def. 3) |(p,q)| = 0.

Let us note that the predicate p, q are orthogonal is symmetric. The following propositions are true:

(75) $p, 0_{\mathcal{E}_{T}^{n}}$ are orthogonal.

- (76) $0_{\mathcal{E}_{T}^{n}}, p$ are orthogonal.
- (77) p, p are orthogonal iff $p = 0_{\mathcal{E}^n_{\mathrm{T}}}$.
- (78) If p, q are orthogonal, then $a \cdot p, q$ are orthogonal.
- (79) If p, q are orthogonal, then $p, a \cdot q$ are orthogonal.
- (80) If for every q holds p, q are orthogonal, then $p = 0_{\mathcal{E}_{T}^{n}}$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [8] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{E}_{T}^{N} . Formalized Mathematics, 5(1):93–96, 1996.
- [9] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received February 3, 2003