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Summary. First, we define the inner product to finite sequences of real
value. Next, we extend it to points of n-dimensional topological space En

T. At the

end, orthogonality is introduced to this space.
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The notation and terminology used in this paper are introduced in the following

articles: [11], [3], [9], [7], [1], [2], [6], [8], [4], [5], and [10].

1. Preliminaries

For simplicity, we use the following convention: i, n denote natural numbers,

x, y, a denote real numbers, v denotes an element of Rn, and p, p1, p2, p3, q, q1,

q2 denote points of E
n

T
.

We now state several propositions:

(1) For every i such that i ∈ Seg n holds (v • 〈0, . . . , 0
︸ ︷︷ ︸

n

〉)(i) = 0.

(2) v • 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(3) For every finite sequence x of elements of R holds (−1) · x = −x.

(4) For all finite sequences x, y of elements of R such that lenx = len y holds

x− y = x +−y.

(5) For every finite sequence x of elements of R holds len(−x) = lenx.
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(6) For all finite sequences x1, x2 of elements of R such that lenx1 = lenx2

holds len(x1 + x2) = lenx1.

(7) For all finite sequences x1, x2 of elements of R such that lenx1 = lenx2

holds len(x1 − x2) = lenx1.

(8) For every real number a and for every finite sequence x of elements of R

holds len(a · x) = lenx.

(9) For all finite sequences x, y, z of elements of R such that lenx = len y

and len y = len z holds (x + y) • z = x • z + y • z.

2. Inner Product of Finite Sequences

Let x1, x2 be finite sequences of elements of R. The functor |(x1, x2)| yielding

a real number is defined as follows:

(Def. 1) |(x1, x2)| =
∑

(x1 • x2).

Let us observe that the functor |(x1, x2)| is commutative.

We now state a number of propositions:

(10) Let y1, y2 be finite sequences of elements of R and x1, x2 be elements of

Rn. If x1 = y1 and x2 = y2, then |(y1, y2)| =
1

4
· (|x1 + x2|

2 − |x1 − x2|
2).

(11) For every finite sequence x of elements of R holds |(x, x)|  0.

(12) For every finite sequence x of elements of R holds |x|2 = |(x, x)|.

(13) For every finite sequence x of elements of R holds |x| =
√

|(x, x)|.

(14) For every finite sequence x of elements of R holds 0 ¬ |x|.

(15) For every finite sequence x of elements of R holds |(x, x)| = 0 iff x =

〈0, . . . , 0
︸ ︷︷ ︸

lenx

〉.

(16) For every finite sequence x of elements of R holds |(x, x)| = 0 iff |x| = 0.

(17) For every finite sequence x of elements of R holds |(x, 〈0, . . . , 0
︸ ︷︷ ︸

lenx

〉)| = 0.

(18) For every finite sequence x of elements of R holds |(〈0, . . . , 0
︸ ︷︷ ︸

lenx

〉, x)| = 0.

(19) For all finite sequences x, y, z of elements of R such that lenx = len y

and len y = len z holds |(x + y, z)| = |(x, z)|+ |(y, z)|.

(20) For all finite sequences x, y of elements of R and for every real number

a such that lenx = len y holds |(a · x, y)| = a · |(x, y)|.

(21) For all finite sequences x, y of elements of R and for every real number

a such that lenx = len y holds |(x, a · y)| = a · |(x, y)|.

(22) For all finite sequences x1, x2 of elements of R such that lenx1 = lenx2

holds |(−x1, x2)| = −|(x1, x2)|.
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(23) For all finite sequences x1, x2 of elements of R such that lenx1 = lenx2

holds |(x1,−x2)| = −|(x1, x2)|.

(24) For all finite sequences x1, x2 of elements of R such that lenx1 = lenx2

holds |(−x1,−x2)| = |(x1, x2)|.

(25) For all finite sequences x1, x2, x3 of elements of R such that lenx1 =

lenx2 and lenx2 = lenx3 holds |(x1 − x2, x3)| = |(x1, x3)| − |(x2, x3)|.

(26) Let x, y be real numbers and x1, x2, x3 be finite sequences of elements

of R. If lenx1 = lenx2 and lenx2 = lenx3, then |(x · x1 + y · x2, x3)| =

x · |(x1, x3)|+ y · |(x2, x3)|.

(27) For all finite sequences x, y1, y2 of elements of R such that lenx = len y1

and len y1 = len y2 holds |(x, y1 + y2)| = |(x, y1)|+ |(x, y2)|.

(28) For all finite sequences x, y1, y2 of elements of R such that lenx = len y1

and len y1 = len y2 holds |(x, y1 − y2)| = |(x, y1)| − |(x, y2)|.

(29) Let x1, x2, y1, y2 be finite sequences of elements of R. If lenx1 = lenx2

and lenx2 = len y1 and len y1 = len y2, then |(x1+x2, y1+y2)| = |(x1, y1)|+

|(x1, y2)|+ |(x2, y1)|+ |(x2, y2)|.

(30) Let x1, x2, y1, y2 be finite sequences of elements of R. If lenx1 = lenx2

and lenx2 = len y1 and len y1 = len y2, then |(x1 − x2, y1 − y2)| =

(|(x1, y1)| − |(x1, y2)| − |(x2, y1)|) + |(x2, y2)|.

(31) For all finite sequences x, y of elements of R such that lenx = len y holds

|(x + y, x + y)| = |(x, x)|+ 2 · |(x, y)|+ |(y, y)|.

(32) For all finite sequences x, y of elements of R such that lenx = len y holds

|(x− y, x− y)| = (|(x, x)| − 2 · |(x, y)|) + |(y, y)|.

(33) For all finite sequences x, y of elements of R such that lenx = len y holds

|x + y|2 = |x|2 + 2 · |(y, x)|+ |y|2.

(34) For all finite sequences x, y of elements of R such that lenx = len y holds

|x− y|2 = (|x|2 − 2 · |(y, x)|) + |y|2.

(35) For all finite sequences x, y of elements of R such that lenx = len y holds

|x + y|2 + |x− y|2 = 2 · (|x|2 + |y|2).

(36) For all finite sequences x, y of elements of R such that lenx = len y holds

|x + y|2 − |x− y|2 = 4 · |(x, y)|.

(37) For all finite sequences x, y of elements of R such that lenx = len y holds

||(x, y)|| ¬ |x| · |y|.

(38) For all finite sequences x, y of elements of R such that lenx = len y holds

|x + y| ¬ |x|+ |y|.

3. Inner Product of Points of En

T

Let us consider n and let p, q be points of En

T
. The functor |(p, q)| yielding a

real number is defined as follows:
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(Def. 2) There exist finite sequences f , g of elements of R such that f = p and

g = q and |(p, q)| = |(f, g)|.

Let us observe that the functor |(p, q)| is commutative.

We now state a number of propositions:

(39) For every natural number n and for all points p1, p2 of E
n

T
holds

|(p1, p2)| =
1

4
· (|p1 + p2|

2 − |p1 − p2|
2).

(40) |(p1 + p2, p3)| = |(p1, p3)|+ |(p2, p3)|.

(41) For every real number x holds |(x · p1, p2)| = x · |(p1, p2)|.

(42) For every real number x holds |(p1, x · p2)| = x · |(p1, p2)|.

(43) |(−p1, p2)| = −|(p1, p2)|.

(44) |(p1,−p2)| = −|(p1, p2)|.

(45) |(−p1,−p2)| = |(p1, p2)|.

(46) |(p1 − p2, p3)| = |(p1, p3)| − |(p2, p3)|.

(47) |(x · p1 + y · p2, p3)| = x · |(p1, p3)|+ y · |(p2, p3)|.

(48) |(p, q1 + q2)| = |(p, q1)|+ |(p, q2)|.

(49) |(p, q1 − q2)| = |(p, q1)| − |(p, q2)|.

(50) |(p1 + p2, q1 + q2)| = |(p1, q1)|+ |(p1, q2)|+ |(p2, q1)|+ |(p2, q2)|.

(51) |(p1 − p2, q1 − q2)| = (|(p1, q1)| − |(p1, q2)| − |(p2, q1)|) + |(p2, q2)|.

(52) |(p + q, p + q)| = |(p, p)|+ 2 · |(p, q)|+ |(q, q)|.

(53) |(p− q, p− q)| = (|(p, p)| − 2 · |(p, q)|) + |(q, q)|.

(54) |(p, 0En

T
)| = 0.

(55) |(0En

T
, p)| = 0.

(56) |(0En

T
, 0En

T
)| = 0.

(57) |(p, p)|  0.

(58) |(p, p)| = |p|2.

(59) |p| =
√

|(p, p)|.

(60) 0 ¬ |p|.

(61) |0En

T
| = 0.

(62) |(p, p)| = 0 iff |p| = 0.

(63) |(p, p)| = 0 iff p = 0En

T
.

(64) |p| = 0 iff p = 0En

T
.

(65) p 6= 0En

T
iff |(p, p)| > 0.

(66) p 6= 0En

T
iff |p| > 0.

(67) |p + q|2 = |p|2 + 2 · |(q, p)|+ |q|2.

(68) |p− q|2 = (|p|2 − 2 · |(q, p)|) + |q|2.

(69) |p + q|2 + |p− q|2 = 2 · (|p|2 + |q|2).

(70) |p + q|2 − |p− q|2 = 4 · |(p, q)|.
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(71) |(p, q)| = 1

4
· (|p + q|2 − |p− q|2).

(72) |(p, q)| ¬ |(p, p)|+ |(q, q)|.

(73) For all points p, q of En

T
holds ||(p, q)|| ¬ |p| · |q|.

(74) |p + q| ¬ |p|+ |q|.

Let us consider n, p, q. We say that p, q are orthogonal if and only if:

(Def. 3) |(p, q)| = 0.

Let us note that the predicate p, q are orthogonal is symmetric.

The following propositions are true:

(75) p, 0En

T
are orthogonal.

(76) 0En

T
, p are orthogonal.

(77) p, p are orthogonal iff p = 0En

T
.

(78) If p, q are orthogonal, then a · p, q are orthogonal.

(79) If p, q are orthogonal, then p, a · q are orthogonal.

(80) If for every q holds p, q are orthogonal, then p = 0En

T
.
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