The Inner Product of Finite Sequences and of Points of n-dimensional Topological Space

Kanchun Yatsuka Nakamura
Shinshu University
Nagano
Shinshu University
Nagano

Abstract

Summary. First, we define the inner product to finite sequences of real value. Next, we extend it to points of n-dimensional topological space $\mathcal{E}_{\mathrm{T}}^{n}$. At the end, orthogonality is introduced to this space.

MML Identifier: EUCLID_2.

The notation and terminology used in this paper are introduced in the following articles: [11], [3], [9], [7], [1], [2], [6], [8], [4], [5], and [10].

1. Preliminaries

For simplicity, we use the following convention: i, n denote natural numbers, x, y, a denote real numbers, v denotes an element of \mathbb{R}^{n}, and $p, p_{1}, p_{2}, p_{3}, q, q_{1}$, q_{2} denote points of $\mathcal{E}_{\mathrm{T}}^{n}$.

We now state several propositions:
(1) For every i such that $i \in \operatorname{Seg} n$ holds $(v \bullet \underbrace{0, \ldots, 0}_{n}\rangle)(i)=0$.
(2) $v \bullet\langle\underbrace{0, \ldots, 0}_{n}\rangle=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(3) For every finite sequence x of elements of \mathbb{R} holds $(-1) \cdot x=-x$.
(4) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $x-y=x+-y$.
(5) For every finite sequence x of elements of \mathbb{R} holds $\operatorname{len}(-x)=\operatorname{len} x$.
(6) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}+x_{2}\right)=\operatorname{len} x_{1}$.
(7) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=\operatorname{len} x_{2}$ $\operatorname{holds} \operatorname{len}\left(x_{1}-x_{2}\right)=\operatorname{len} x_{1}$.
(8) For every real number a and for every finite sequence x of elements of \mathbb{R} holds len $(a \cdot x)=\operatorname{len} x$.
(9) For all finite sequences x, y, z of elements of \mathbb{R} such that len $x=\operatorname{len} y$ and len $y=$ len z holds $(x+y) \bullet z=x \bullet z+y \bullet z$.

2. Inner Product of Finite Sequences

Let x_{1}, x_{2} be finite sequences of elements of \mathbb{R}. The functor $\left|\left(x_{1}, x_{2}\right)\right|$ yielding a real number is defined as follows:
(Def. 1) $\quad\left|\left(x_{1}, x_{2}\right)\right|=\sum\left(x_{1} \bullet x_{2}\right)$.
Let us observe that the functor $\left|\left(x_{1}, x_{2}\right)\right|$ is commutative.
We now state a number of propositions:
(10) Let y_{1}, y_{2} be finite sequences of elements of \mathbb{R} and x_{1}, x_{2} be elements of \mathcal{R}^{n}. If $x_{1}=y_{1}$ and $x_{2}=y_{2}$, then $\left|\left(y_{1}, y_{2}\right)\right|=\frac{1}{4} \cdot\left(\left|x_{1}+x_{2}\right|^{\mathbf{2}}-\left|x_{1}-x_{2}\right|^{\mathbf{2}}\right)$.
(11) For every finite sequence x of elements of \mathbb{R} holds $|(x, x)| \geqslant 0$.
(12) For every finite sequence x of elements of \mathbb{R} holds $|x|^{2}=|(x, x)|$.
(13) For every finite sequence x of elements of \mathbb{R} holds $|x|=\sqrt{|(x, x)|}$.
(14) For every finite sequence x of elements of \mathbb{R} holds $0 \leqslant|x|$.
(15) For every finite sequence x of elements of \mathbb{R} holds $|(x, x)|=0$ iff $x=$ $\langle\underbrace{0, \ldots, 0}_{\text {len } x}\rangle$.
(16) For every finite sequence x of elements of \mathbb{R} holds $|(x, x)|=0$ iff $|x|=0$.
(17) For every finite sequence x of elements of \mathbb{R} holds $|(x,\langle\underbrace{0, \ldots, 0}_{\text {len } x}\rangle)|=0$.
(18) For every finite sequence x of elements of \mathbb{R} holds $\mid(\underbrace{0, \ldots, 0}_{\text {len } x}\rangle, x) \mid=0$.
(19) For all finite sequences x, y, z of elements of \mathbb{R} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $|(x+y, z)|=|(x, z)|+|(y, z)|$.
(20) For all finite sequences x, y of elements of \mathbb{R} and for every real number a such that len $x=\operatorname{len} y$ holds $|(a \cdot x, y)|=a \cdot|(x, y)|$.
(21) For all finite sequences x, y of elements of \mathbb{R} and for every real number a such that len $x=\operatorname{len} y$ holds $|(x, a \cdot y)|=a \cdot|(x, y)|$.
(22) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(-x_{1}, x_{2}\right)\right|=-\left|\left(x_{1}, x_{2}\right)\right|$.
(23) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(x_{1},-x_{2}\right)\right|=-\left|\left(x_{1}, x_{2}\right)\right|$.
(24) For all finite sequences x_{1}, x_{2} of elements of \mathbb{R} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(-x_{1},-x_{2}\right)\right|=\left|\left(x_{1}, x_{2}\right)\right|$.
(25) For all finite sequences x_{1}, x_{2}, x_{3} of elements of \mathbb{R} such that len $x_{1}=$ len x_{2} and len $x_{2}=\operatorname{len} x_{3}$ holds $\left|\left(x_{1}-x_{2}, x_{3}\right)\right|=\left|\left(x_{1}, x_{3}\right)\right|-\left|\left(x_{2}, x_{3}\right)\right|$.
(26) Let x, y be real numbers and x_{1}, x_{2}, x_{3} be finite sequences of elements of \mathbb{R}. If len $x_{1}=\operatorname{len} x_{2}$ and len $x_{2}=\operatorname{len} x_{3}$, then $\left|\left(x \cdot x_{1}+y \cdot x_{2}, x_{3}\right)\right|=$ $x \cdot\left|\left(x_{1}, x_{3}\right)\right|+y \cdot\left|\left(x_{2}, x_{3}\right)\right|$.
(27) For all finite sequences x, y_{1}, y_{2} of elements of \mathbb{R} such that len $x=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$ holds $\left|\left(x, y_{1}+y_{2}\right)\right|=\left|\left(x, y_{1}\right)\right|+\left|\left(x, y_{2}\right)\right|$.
(28) For all finite sequences x, y_{1}, y_{2} of elements of \mathbb{R} such that len $x=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$ holds $\left|\left(x, y_{1}-y_{2}\right)\right|=\left|\left(x, y_{1}\right)\right|-\left|\left(x, y_{2}\right)\right|$.
(29) Let $x_{1}, x_{2}, y_{1}, y_{2}$ be finite sequences of elements of \mathbb{R}. If len $x_{1}=\operatorname{len} x_{2}$ and len $x_{2}=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$, then $\left|\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right|=\left|\left(x_{1}, y_{1}\right)\right|+$ $\left|\left(x_{1}, y_{2}\right)\right|+\left|\left(x_{2}, y_{1}\right)\right|+\left|\left(x_{2}, y_{2}\right)\right|$.
(30) Let $x_{1}, x_{2}, y_{1}, y_{2}$ be finite sequences of elements of \mathbb{R}. If len $x_{1}=\operatorname{len} x_{2}$ and len $x_{2}=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$, then $\left|\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right|=$ $\left(\left|\left(x_{1}, y_{1}\right)\right|-\left|\left(x_{1}, y_{2}\right)\right|-\left|\left(x_{2}, y_{1}\right)\right|\right)+\left|\left(x_{2}, y_{2}\right)\right|$.
(31) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|(x+y, x+y)|=|(x, x)|+2 \cdot|(x, y)|+|(y, y)|$.
(32) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|(x-y, x-y)|=(|(x, x)|-2 \cdot|(x, y)|)+|(y, y)|$.
(33) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|x+y|^{2}=|x|^{2}+2 \cdot|(y, x)|+|y|^{2}$.
(34) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|x-y|^{2}=\left(|x|^{2}-2 \cdot|(y, x)|\right)+|y|^{2}$.
(35) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|x+y|^{2}+|x-y|^{2}=2 \cdot\left(|x|^{2}+|y|^{2}\right)$.
(36) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|x+y|^{2}-|x-y|^{2}=4 \cdot|(x, y)|$.
(37) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $\|(x, y)\| \leqslant|x| \cdot|y|$.
(38) For all finite sequences x, y of elements of \mathbb{R} such that len $x=\operatorname{len} y$ holds $|x+y| \leqslant|x|+|y|$.

3. Inner Product of Points of $\mathcal{E}_{\text {T }}^{n}$

Let us consider n and let p, q be points of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $|(p, q)|$ yielding a real number is defined as follows:
(Def. 2) There exist finite sequences f, g of elements of \mathbb{R} such that $f=p$ and $g=q$ and $|(p, q)|=|(f, g)|$.
Let us observe that the functor $|(p, q)|$ is commutative.
We now state a number of propositions:
(39) For every natural number n and for all points p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\left|\left(p_{1}, p_{2}\right)\right|=\frac{1}{4} \cdot\left(\left|p_{1}+p_{2}\right|^{2}-\left|p_{1}-p_{2}\right|^{2}\right)$.
(40) $\left|\left(p_{1}+p_{2}, p_{3}\right)\right|=\left|\left(p_{1}, p_{3}\right)\right|+\left|\left(p_{2}, p_{3}\right)\right|$.
(41) For every real number x holds $\left|\left(x \cdot p_{1}, p_{2}\right)\right|=x \cdot\left|\left(p_{1}, p_{2}\right)\right|$.
(42) For every real number x holds $\left|\left(p_{1}, x \cdot p_{2}\right)\right|=x \cdot\left|\left(p_{1}, p_{2}\right)\right|$.
(43) $\left|\left(-p_{1}, p_{2}\right)\right|=-\left|\left(p_{1}, p_{2}\right)\right|$.
(44) $\left|\left(p_{1},-p_{2}\right)\right|=-\left|\left(p_{1}, p_{2}\right)\right|$.
(45) $\left|\left(-p_{1},-p_{2}\right)\right|=\left|\left(p_{1}, p_{2}\right)\right|$.
(46) $\left|\left(p_{1}-p_{2}, p_{3}\right)\right|=\left|\left(p_{1}, p_{3}\right)\right|-\left|\left(p_{2}, p_{3}\right)\right|$.
(47) $\left|\left(x \cdot p_{1}+y \cdot p_{2}, p_{3}\right)\right|=x \cdot\left|\left(p_{1}, p_{3}\right)\right|+y \cdot\left|\left(p_{2}, p_{3}\right)\right|$.
(48) $\left|\left(p, q_{1}+q_{2}\right)\right|=\left|\left(p, q_{1}\right)\right|+\left|\left(p, q_{2}\right)\right|$.
(49) $\quad\left|\left(p, q_{1}-q_{2}\right)\right|=\left|\left(p, q_{1}\right)\right|-\left|\left(p, q_{2}\right)\right|$.
(50) $\quad\left|\left(p_{1}+p_{2}, q_{1}+q_{2}\right)\right|=\left|\left(p_{1}, q_{1}\right)\right|+\left|\left(p_{1}, q_{2}\right)\right|+\left|\left(p_{2}, q_{1}\right)\right|+\left|\left(p_{2}, q_{2}\right)\right|$.
(51) $\left|\left(p_{1}-p_{2}, q_{1}-q_{2}\right)\right|=\left(\left|\left(p_{1}, q_{1}\right)\right|-\left|\left(p_{1}, q_{2}\right)\right|-\left|\left(p_{2}, q_{1}\right)\right|\right)+\left|\left(p_{2}, q_{2}\right)\right|$.
(52) $|(p+q, p+q)|=|(p, p)|+2 \cdot|(p, q)|+|(q, q)|$.
(53) $\quad|(p-q, p-q)|=(|(p, p)|-2 \cdot|(p, q)|)+|(q, q)|$.
(54) $\left|\left(p, 0_{\mathcal{E}_{\mathrm{T}}^{n}}^{n}\right)\right|=0$.
(55) $\left|\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, p\right)\right|=0$.
(56) $\left|\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, 0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)\right|=0$.
(57) $|(p, p)| \geqslant 0$.
(58) $|(p, p)|=|p|^{2}$.
(59) $|p|=\sqrt{|(p, p)|}$.
(60) $0 \leqslant|p|$.
(61) $\left|0_{\mathcal{E}_{\mathrm{T}}^{n}}\right|=0$.
(62) $|(p, p)|=0$ iff $|p|=0$.
(63) $|(p, p)|=0$ iff $p=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(64) $|p|=0$ iff $p=0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
(65) $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$ iff $|(p, p)|>0$.
(66) $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$ iff $|p|>0$.
(67) $|p+q|^{2}=|p|^{2}+2 \cdot|(q, p)|+|q|^{2}$.
(68) $|p-q|^{2}=\left(|p|^{2}-2 \cdot|(q, p)|\right)+|q|^{2}$.
(69) $|p+q|^{2}+|p-q|^{2}=2 \cdot\left(|p|^{2}+|q|^{2}\right)$.
(70) $|p+q|^{2}-|p-q|^{2}=4 \cdot|(p, q)|$.
(71) $|(p, q)|=\frac{1}{4} \cdot\left(|p+q|^{\mathbf{2}}-|p-q|^{\mathbf{2}}\right)$.
(72) $|(p, q)| \leqslant|(p, p)|+|(q, q)|$.
(73) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\|(p, q)\| \leqslant|p| \cdot|q|$.
(74) $\quad|p+q| \leqslant|p|+|q|$.

Let us consider n, p, q. We say that p, q are orthogonal if and only if:
(Def. 3) $|(p, q)|=0$.
Let us note that the predicate p, q are orthogonal is symmetric.
The following propositions are true:
(75) $p, 0_{\mathcal{E}_{\mathrm{T}}^{n}}$ are orthogonal.
(76) $0_{\mathcal{E}_{\mathrm{T}}^{n}}, p$ are orthogonal.
(77) p, p are orthogonal iff $p=0_{\mathcal{E}_{T}^{n}}$.
(78) If p, q are orthogonal, then $a \cdot p, q$ are orthogonal.
(79) If p, q are orthogonal, then $p, a \cdot q$ are orthogonal.
(80) If for every q holds p, q are orthogonal, then $p=0_{\mathcal{E}_{T}^{n}}$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[6] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[8] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[9] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[10] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received February 3, 2003

