Chains on a Grating in Euclidean Space ${ }^{1}$

Freek Wiedijk
University of Nijmegen

Summary. Translation of pages 101, the second half of 102, and 103 of [15].

MML Identifier: CHAIN_1.

The notation and terminology used here are introduced in the following papers: [20], [10], [22], [23], [18], [8], [12], [9], [17], [1], [19], [14], [3], [6], [13], [16], [2], [11], [4], [7], [21], and [5].

1. Preliminaries

We use the following convention: X, x, y, z are sets and $n, m, k, k^{\prime}, d^{\prime}$ are natural numbers.

The following two propositions are true:
(1) For all real numbers x, y such that $x<y$ there exists a real number z such that $x<z$ and $z<y$.
(2) For all real numbers x, y there exists a real number z such that $x<z$ and $y<z$.
The scheme FrSet 12 deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, a binary functor \mathcal{F} yielding an element of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(x, y) ; x$ ranges over elements of \mathcal{B}, y ranges over elements of $\mathcal{B}: \mathcal{P}[x, y]\} \subseteq \mathcal{A}$
for all values of the parameters.
Let B be a set and let A be a subset of B. Then 2^{A} is a subset of 2^{B}.

[^0]Let X be a set. A subset of X is an element of 2^{X}.
Let d be a real natural number. Let us observe that d is zero if and only if:
(Def. 1) $d \ngtr 0$.
Let d be a natural number. Let us observe that d is zero if and only if:
(Def. 2) $d \ngtr 1$.
Let us note that there exists a natural number which is non zero.
In the sequel d denotes a non zero natural number.
Let us consider d. Observe that $\operatorname{Seg} d$ is non empty.
In the sequel i, i_{0} denote elements of $\operatorname{Seg} d$.
Let us consider X. Let us observe that X is trivial if and only if:
(Def. 3) For all x, y such that $x \in X$ and $y \in X$ holds $x=y$.
Next we state the proposition
$(4)^{2} \quad\{x, y\}$ is trivial iff $x=y$.
Let us observe that there exists a set which is non trivial and finite.
Let X be a non trivial set and let Y be a set. Note that $X \cup Y$ is non trivial and $Y \cup X$ is non trivial.

Let us observe that \mathbb{R} is non trivial.
Let X be a non trivial set. Observe that there exists a subset of X which is non trivial and finite.

The following proposition is true
(5) If X is trivial and $X \cup\{y\}$ is non trivial, then there exists x such that $X=\{x\}$.
Now we present two schemes. The scheme NonEmptyFinite deals with a non empty set \mathcal{A}, a non empty finite subset \mathcal{B} of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{B}]$
provided the following requirements are met:

- For every element x of \mathcal{A} such that $x \in \mathcal{B}$ holds $\mathcal{P}[\{x\}]$, and
- Let x be an element of \mathcal{A} and B be a non empty finite subset of \mathcal{A}. If $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $x \notin B$ and $\mathcal{P}[B]$, then $\mathcal{P}[B \cup\{x\}]$.
The scheme NonTrivialFinite deals with a non trivial set \mathcal{A}, a non trivial finite subset \mathcal{B} of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{B}]$
provided the following conditions are met:
- For all elements x, y of \mathcal{A} such that $x \in \mathcal{B}$ and $y \in \mathcal{B}$ and $x \neq y$ holds $\mathcal{P}[\{x, y\}]$, and
- Let x be an element of \mathcal{A} and B be a non trivial finite subset of \mathcal{A}. If $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $x \notin B$ and $\mathcal{P}[B]$, then $\mathcal{P}[B \cup\{x\}]$.
Next we state the proposition

[^1](6) $\overline{\bar{X}}=2$ iff there exist x, y such that $x \in X$ and $y \in X$ and $x \neq y$ and for every z such that $z \in X$ holds $z=x$ or $z=y$.
Let X, Y be finite sets. Note that $X \dot{-Y}$ is finite.
We now state three propositions:
(7) m is even iff n is even iff $m+n$ is even.
(8) Let X, Y be finite sets. Suppose X misses Y. Then card X is even iff $\operatorname{card} Y$ is even if and only if $\operatorname{card}(X \cup Y)$ is even.
(9) For all finite sets X, Y holds $\operatorname{card} X$ is even iff $\operatorname{card} Y$ is even iff $\operatorname{card}(X \dot{\oplus} Y)$ is even.
Let us consider n. Then \mathcal{R}^{n} can be characterized by the condition:
(Def. 4) For every x holds $x \in \mathcal{R}^{n}$ iff x is a function from $\operatorname{Seg} n$ into \mathbb{R}.
We adopt the following rules: $l, r, l^{\prime}, r^{\prime}, x$ are elements of \mathcal{R}^{d}, G_{1} is a non trivial finite subset of \mathbb{R}, and $l_{1}, r_{1}, l_{1}^{\prime}, r_{1}^{\prime}, x_{1}$ are real numbers.

Let us consider d, x, i. Then $x(i)$ is a real number.

2. Gratings, Cells, Chains, Cycles

Let us consider d. A function from $\operatorname{Seg} d$ into $2^{\mathbb{R}}$ is said to be a d-dimensional grating if:
(Def. 5) For every i holds it (i) is non trivial and finite.
In the sequel G is a d-dimensional grating.
Let us consider d, G, i. Then $G(i)$ is a non trivial finite subset of \mathbb{R}.
The following propositions are true:
(10) $x \in \prod G$ iff for every i holds $x(i) \in G(i)$.
(11) $\prod G$ is finite.
(12) For every non empty finite subset X of \mathbb{R} there exists r_{1} such that $r_{1} \in X$ and for every x_{1} such that $x_{1} \in X$ holds $r_{1} \geqslant x_{1}$.
(13) For every non empty finite subset X of \mathbb{R} there exists l_{1} such that $l_{1} \in X$ and for every x_{1} such that $x_{1} \in X$ holds $l_{1} \leqslant x_{1}$.
(14) There exist l_{1}, r_{1} such that $l_{1} \in G_{1}$ and $r_{1} \in G_{1}$ and $l_{1}<r_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $l_{1} \nless x_{1}$ or $x_{1} \nless r_{1}$.
(15) There exist l_{1}, r_{1} such that $l_{1} \in G_{1}$ and $r_{1} \in G_{1}$ and $r_{1}<l_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $x_{1} \nless r_{1}$ and $l_{1} \nless x_{1}$.
Let us consider G_{1}. An element of $\left.: \mathbb{R}, \mathbb{R}:\right]$ is called a gap of G_{1} if it satisfies the condition (Def. 6).
(Def. 6) There exist l_{1}, r_{1} such that
(i) it $=\left\langle l_{1}, r_{1}\right\rangle$,
(ii) $l_{1} \in G_{1}$,
(iii) $r_{1} \in G_{1}$, and
(iv) $l_{1}<r_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $l_{1} \nless x_{1}$ or $x_{1} \nless r_{1}$ or $r_{1}<l_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $l_{1} \nless x_{1}$ and $x_{1} \nless r_{1}$.
The following propositions are true:
(16) $\left\langle l_{1}, r_{1}\right\rangle$ is a gap of G_{1} if and only if the following conditions are satisfied:
(i) $l_{1} \in G_{1}$,
(ii) $r_{1} \in G_{1}$, and
(iii) $\quad l_{1}<r_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $l_{1} \nless x_{1}$ or $x_{1} \nless r_{1}$ or $r_{1}<l_{1}$ and for every x_{1} such that $x_{1} \in G_{1}$ holds $l_{1} \nless x_{1}$ and $x_{1} \nless r_{1}$.
(17) If $G_{1}=\left\{l_{1}, r_{1}\right\}$, then $\left\langle l_{1}^{\prime}, r_{1}^{\prime}\right\rangle$ is a gap of G_{1} iff $l_{1}^{\prime}=l_{1}$ and $r_{1}^{\prime}=r_{1}$ or $l_{1}^{\prime}=r_{1}$ and $r_{1}^{\prime}=l_{1}$.
(18) If $x_{1} \in G_{1}$, then there exists r_{1} such that $\left\langle x_{1}, r_{1}\right\rangle$ is a gap of G_{1}.
(19) If $x_{1} \in G_{1}$, then there exists l_{1} such that $\left\langle l_{1}, x_{1}\right\rangle$ is a gap of G_{1}.
(20) If $\left\langle l_{1}, r_{1}\right\rangle$ is a gap of G_{1} and $\left\langle l_{1}, r_{1}^{\prime}\right\rangle$ is a gap of G_{1}, then $r_{1}=r_{1}^{\prime}$.
(21) If $\left\langle l_{1}, r_{1}\right\rangle$ is a gap of G_{1} and $\left\langle l_{1}^{\prime}, r_{1}\right\rangle$ is a gap of G_{1}, then $l_{1}=l_{1}^{\prime}$.
(22) If $r_{1}<l_{1}$ and $\left\langle l_{1}, r_{1}\right\rangle$ is a gap of G_{1} and $r_{1}^{\prime}<l_{1}^{\prime}$ and $\left\langle l_{1}^{\prime}, r_{1}^{\prime}\right\rangle$ is a gap of G_{1}, then $l_{1}=l_{1}^{\prime}$ and $r_{1}=r_{1}^{\prime}$.
Let us consider d, l, r. The functor $\operatorname{cell}(l, r)$ yielding a non empty subset of \mathcal{R}^{d} is defined as follows:
(Def. 7) $\quad \operatorname{cell}(l, r)=\left\{x: \bigwedge_{i}(l(i) \leqslant x(i) \wedge x(i) \leqslant r(i)) \vee \bigvee_{i}(r(i)<l(i) \wedge(x(i) \leqslant\right.$ $r(i) \vee l(i) \leqslant x(i)))\}$.
We now state several propositions:
(23) $\quad x \in \operatorname{cell}(l, r)$ iff for every i holds $l(i) \leqslant x(i)$ and $x(i) \leqslant r(i)$ or there exists i such that $r(i)<l(i)$ but $x(i) \leqslant r(i)$ or $l(i) \leqslant x(i)$.
(24) If for every i holds $l(i) \leqslant r(i)$, then $x \in \operatorname{cell}(l, r)$ iff for every i holds $l(i) \leqslant x(i)$ and $x(i) \leqslant r(i)$.
(25) If there exists i such that $r(i)<l(i)$, then $x \in \operatorname{cell}(l, r)$ iff there exists i such that $r(i)<l(i)$ but $x(i) \leqslant r(i)$ or $l(i) \leqslant x(i)$.
(26) $l \in \operatorname{cell}(l, r)$ and $r \in \operatorname{cell}(l, r)$.
(27) $\operatorname{cell}(x, x)=\{x\}$.
(28) If for every i holds $l^{\prime}(i) \leqslant r^{\prime}(i)$, then $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$ iff for every i holds $l^{\prime}(i) \leqslant l(i)$ and $l(i) \leqslant r(i)$ and $r(i) \leqslant r^{\prime}(i)$.
(29) If for every i holds $r(i)<l(i)$, then $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$ iff for every i holds $r(i) \leqslant r^{\prime}(i)$ and $r^{\prime}(i)<l^{\prime}(i)$ and $l^{\prime}(i) \leqslant l(i)$.
(30) Suppose for every i holds $l(i) \leqslant r(i)$ and for every i holds $r^{\prime}(i)<l^{\prime}(i)$. Then $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$ if and only if there exists i such that $r(i) \leqslant r^{\prime}(i)$ or $l^{\prime}(i) \leqslant l(i)$.
(31) If for every i holds $l(i) \leqslant r(i)$ or for every i holds $l(i)>r(i)$, then $\operatorname{cell}(l, r)=\operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$ iff $l=l^{\prime}$ and $r=r^{\prime}$.

Let us consider d, G, k. Let us assume that $k \leqslant d$. The functor k-cells (G) yields a finite non empty subset of $2^{\mathcal{R}^{d}}$ and is defined by the condition (Def. 8).
(Def. 8) $\quad k-\operatorname{cells}(G)=\left\{\operatorname{cell}(l, r): \bigvee_{X}:\right.$ subset of $\operatorname{Seg} d\left(\operatorname{card} X=k \wedge \bigwedge_{i}(i \in X \wedge\right.$ $l(i)<r(i) \wedge\langle l(i), r(i)\rangle$ is a gap of $G(i) \vee i \notin X \wedge l(i)=r(i) \wedge l(i) \in$ $G(i))) \vee k=d \wedge \bigwedge_{i}(r(i)<l(i) \wedge\langle l(i), r(i)\rangle$ is a gap of $\left.G(i))\right\}$.
We now state a number of propositions:
(32) Suppose $k \leqslant d$. Let A be a subset of \mathcal{R}^{d}. Then $A \in k$-cells (G) if and only if there exist l, r such that $A=\operatorname{cell}(l, r)$ but there exists a subset X of Seg d such that card $X=k$ and for every i holds $i \in X$ and $l(i)<r(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ or $i \notin X$ and $l(i)=r(i)$ and $l(i) \in G(i)$ or $k=d$ and for every i holds $r(i)<l(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$.
(33) Suppose $k \leqslant d$. Then $\operatorname{cell}(l, r) \in k$ - cells (G) if and only if one of the following conditions is satisfied:
(i) there exists a subset X of $\operatorname{Seg} d$ such that card $X=k$ and for every i holds $i \in X$ and $l(i)<r(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ or $i \notin X$ and $l(i)=r(i)$ and $l(i) \in G(i)$, or
(ii) $\quad k=d$ and for every i holds $r(i)<l(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$.
(34) Suppose $k \leqslant d$ and $\operatorname{cell}(l, r) \in k$-cells (G). Then
(i) for every i holds $l(i)<r(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ or $l(i)=r(i)$ and $l(i) \in G(i)$, or
(ii) for every i holds $r(i)<l(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$.
(35) If $k \leqslant d$ and $\operatorname{cell}(l, r) \in k$ - cells (G), then for every i holds $l(i) \in G(i)$ and $r(i) \in G(i)$.
(36) If $k \leqslant d$ and $\operatorname{cell}(l, r) \in k$ - $\operatorname{cells}(G)$, then for every i holds $l(i) \leqslant r(i)$ or for every i holds $r(i)<l(i)$.
(37) For every subset A of \mathcal{R}^{d} holds $A \in 0$ - $\operatorname{cells}(G)$ iff there exists x such that $A=\operatorname{cell}(x, x)$ and for every i holds $x(i) \in G(i)$.
(38) $\operatorname{cell}(l, r) \in 0-\operatorname{cells}(G)$ iff $l=r$ and for every i holds $l(i) \in G(i)$.
(39) Let A be a subset of \mathcal{R}^{d}. Then $A \in d$ - $\operatorname{cells}(G)$ if and only if there exist l, r such that $A=\operatorname{cell}(l, r)$ but for every i holds $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ but for every i holds $l(i)<r(i)$ or for every i holds $r(i)<l(i)$.
(40) $\operatorname{cell}(l, r) \in d$ - cells (G) iff for every i holds $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ but for every i holds $l(i)<r(i)$ or for every i holds $r(i)<l(i)$.
(41) Suppose $d=d^{\prime}+1$. Let A be a subset of \mathcal{R}^{d}. Then $A \in d^{\prime}-\operatorname{cells}(G)$ if and only if there exist l, r, i_{0} such that $A=\operatorname{cell}(l, r)$ and $l\left(i_{0}\right)=r\left(i_{0}\right)$ and $l\left(i_{0}\right) \in G\left(i_{0}\right)$ and for every i such that $i \neq i_{0}$ holds $l(i)<r(i)$ and $\langle l(i)$, $r(i)\rangle$ is a gap of $G(i)$.
(42) Suppose $d=d^{\prime}+1$. Then $\operatorname{cell}(l, r) \in d^{\prime}-\operatorname{cells}(G)$ if and only if there exists i_{0} such that $l\left(i_{0}\right)=r\left(i_{0}\right)$ and $l\left(i_{0}\right) \in G\left(i_{0}\right)$ and for every i such that $i \neq i_{0}$ holds $l(i)<r(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$.
(43) Let A be a subset of \mathcal{R}^{d}. Then $A \in 1-\operatorname{cells}(G)$ if and only if there exist l, r, i_{0} such that $A=\operatorname{cell}(l, r)$ and $l\left(i_{0}\right)<r\left(i_{0}\right)$ or $d=1$ and $r\left(i_{0}\right)<l\left(i_{0}\right)$ and $\left\langle l\left(i_{0}\right), r\left(i_{0}\right)\right\rangle$ is a gap of $G\left(i_{0}\right)$ and for every i such that $i \neq i_{0}$ holds $l(i)=r(i)$ and $l(i) \in G(i)$.
(44) $\operatorname{cell}(l, r) \in 1-\operatorname{cells}(G)$ if and only if there exists i_{0} such that $l\left(i_{0}\right)<r\left(i_{0}\right)$ or $d=1$ and $r\left(i_{0}\right)<l\left(i_{0}\right)$ but $\left\langle l\left(i_{0}\right), r\left(i_{0}\right)\right\rangle$ is a gap of $G\left(i_{0}\right)$ but for every i such that $i \neq i_{0}$ holds $l(i)=r(i)$ and $l(i) \in G(i)$.
(45) Suppose $k \leqslant d$ and $k^{\prime} \leqslant d$ and $\operatorname{cell}(l, r) \in k$ - $\operatorname{cells}(G)$ and $\operatorname{cell}\left(l^{\prime}, r^{\prime}\right) \in$ $k^{\prime}-\operatorname{cells}(G)$ and $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$. Let given i. Then
(i) $\quad l(i)=l^{\prime}(i)$ and $r(i)=r^{\prime}(i)$, or
(ii) $\quad l(i)=l^{\prime}(i)$ and $r(i)=l^{\prime}(i)$, or
(iii) $\quad l(i)=r^{\prime}(i)$ and $r(i)=r^{\prime}(i)$, or
(iv) $\quad l(i) \leqslant r(i)$ and $r^{\prime}(i)<l^{\prime}(i)$ and $r^{\prime}(i) \leqslant l(i)$ and $r(i) \leqslant l^{\prime}(i)$.
(46) Suppose $k<k^{\prime}$ and $k^{\prime} \leqslant d$ and $\operatorname{cell}(l, r) \in k-\operatorname{cells}(G)$ and $\operatorname{cell}\left(l^{\prime}, r^{\prime}\right) \in$ k^{\prime} - $\operatorname{cells}(G)$ and $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$. Then there exists i such that $l(i)=$ $l^{\prime}(i)$ and $r(i)=l^{\prime}(i)$ or $l(i)=r^{\prime}(i)$ and $r(i)=r^{\prime}(i)$.
(47) Let X, X^{\prime} be subsets of $\operatorname{Seg} d$. Suppose that
(i) $\operatorname{cell}(l, r) \subseteq \operatorname{cell}\left(l^{\prime}, r^{\prime}\right)$,
(ii) for every i holds $i \in X$ and $l(i)<r(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$ or $i \notin X$ and $l(i)=r(i)$ and $l(i) \in G(i)$, and
(iii) for every i holds $i \in X^{\prime}$ and $l^{\prime}(i)<r^{\prime}(i)$ and $\left\langle l^{\prime}(i), r^{\prime}(i)\right\rangle$ is a gap of $G(i)$ or $i \notin X^{\prime}$ and $l^{\prime}(i)=r^{\prime}(i)$ and $l^{\prime}(i) \in G(i)$.
Then
(iv) $X \subseteq X^{\prime}$,
(v) for every i such that $i \in X$ or $i \notin X^{\prime}$ holds $l(i)=l^{\prime}(i)$ and $r(i)=r^{\prime}(i)$, and
(vi) for every i such that $i \notin X$ and $i \in X^{\prime}$ holds $l(i)=l^{\prime}(i)$ and $r(i)=l^{\prime}(i)$ or $l(i)=r^{\prime}(i)$ and $r(i)=r^{\prime}(i)$.
Let us consider d, G, k. A k-cell of G is an element of k - $\operatorname{cells}(G)$.
Let us consider d, G, k. A k-chain of G is a subset of k - $\operatorname{cells}(G)$.
Let us consider d, G, k. The functor $0_{k} G$ yields a k-chain of G and is defined as follows:
(Def. 9) $\quad 0_{k} G=\emptyset$.
Let us consider d, G. The functor ΩG yielding a d-chain of G is defined as follows:
(Def. 10) $\Omega G=d-\operatorname{cells}(G)$.
Let us consider d, G, k and let C_{1}, C_{2} be k-chains of G. Then $C_{1} \dot{-} C_{2}$ is a k-chain of G. We introduce $C_{1}+C_{2}$ as a synonym of $C_{1} \doteq C_{2}$.

Let us consider d, G. The infinite cell of G yielding a d-cell of G is defined by:
(Def. 11) There exist l, r such that the infinite cell of $G=\operatorname{cell}(l, r)$ and for every i holds $r(i)<l(i)$ and $\langle l(i), r(i)\rangle$ is a gap of $G(i)$.
We now state two propositions:
(48) If $\operatorname{cell}(l, r)$ is a d-cell of G, then $\operatorname{cell}(l, r)=$ the infinite cell of G iff for every i holds $r(i)<l(i)$.
(49) $\quad \operatorname{cell}(l, r)=$ the infinite cell of G iff for every i holds $r(i)<l(i)$ and $\langle l(i)$, $r(i)\rangle$ is a gap of $G(i)$.
The scheme ChainInd deals with a non zero natural number \mathcal{A}, a \mathcal{A}-dimensional grating \mathcal{B}, a natural number \mathcal{C}, a \mathcal{C}-chain \mathcal{D} of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{D}]$
provided the parameters have the following properties:

- $\mathcal{P}\left[0_{\mathcal{C}} \mathcal{B}\right]$,
- For every \mathcal{C}-cell A of \mathcal{B} such that $A \in \mathcal{D}$ holds $\mathcal{P}[\{A\}]$, and
- For all \mathcal{C}-chains C_{1}, C_{2} of \mathcal{B} such that $C_{1} \subseteq \mathcal{D}$ and $C_{2} \subseteq \mathcal{D}$ and $\mathcal{P}\left[C_{1}\right]$ and $\mathcal{P}\left[C_{2}\right]$ holds $\mathcal{P}\left[C_{1}+C_{2}\right]$.
Let us consider d, G, k and let A be a k-cell of G. The functor A^{\star} yields a $k+1$-chain of G and is defined by:
(Def. 12) $\quad A^{\star}=\{B ; B$ ranges over $k+1$-cells of $G: A \subseteq B\}$.
Next we state the proposition
(50) For every k-cell A of G and for every $k+1$-cell B of G holds $B \in A^{\star}$ iff $A \subseteq B$.
Let us consider d, G, k and let C be a $k+1$-chain of G. The functor ∂C yielding a k-chain of G is defined as follows:
(Def. 13) $\partial C=\left\{A ; A\right.$ ranges over k-cells of $G: k+1 \leqslant d \wedge \operatorname{card}\left(A^{\star} \cap C\right)$ is odd $\}$. We introduce \dot{C} as a synonym of ∂C.

Let us consider d, G, k, let C be a $k+1$-chain of G, and let C^{\prime} be a k-chain of G. We say that C^{\prime} bounds C if and only if:
(Def. 14) $\quad C^{\prime}=\partial C$.
The following propositions are true:
(51) For every k-cell A of G and for every $k+1$-chain C of G holds $A \in \partial C$ iff $k+1 \leqslant d$ and $\operatorname{card}\left(A^{\star} \cap C\right)$ is odd.
(52) If $k+1>d$, then for every $k+1$-chain C of G holds $\partial C=0_{k} G$.
(53) If $k+1 \leqslant d$, then for every k-cell A of G and for every $k+1$-cell B of G holds $A \in \partial\{B\}$ iff $A \subseteq B$.
(54) If $d=d^{\prime}+1$, then for every d^{\prime}-cell A of G holds card $A^{\star}=2$.
(55) For every d-dimensional grating G and for every $0+1$-cell B of G holds $\operatorname{card} \partial\{B\}=2$.
(56) $\Omega G=\left(0_{d} G\right)^{\mathrm{c}}$ and $0_{d} G=(\Omega G)^{\mathrm{c}}$.
(57) For every k-chain C of G holds $C+0_{k} G=C$.
(58) For every k-chain C of G holds $C+C=0_{k} G$.
(59) For every d-chain C of G holds $C^{\mathrm{c}}=C+\Omega G$.
(60) $\partial 0_{k+1} G=0_{k} G$.
(61) For every $d^{\prime}+1$-dimensional grating G holds $\partial \Omega G=0_{d^{\prime}} G$.
(62) For all $k+1$-chains C_{1}, C_{2} of G holds $\partial\left(C_{1}+C_{2}\right)=\partial C_{1}+\partial C_{2}$.
(63) For every $d^{\prime}+1$-dimensional grating G and for every $d^{\prime}+1$-chain C of G holds $\partial\left(C^{\mathrm{c}}\right)=\partial C$.
(64) For every $k+1+1$-chain C of G holds $\partial \partial C=0_{k} G$.

Let us consider d, G, k. A k-chain of G is called a k-cycle of G if:
(Def. 15) $k=0$ and card it is even or there exists k^{\prime} such that $k=k^{\prime}+1$ and there exists a $k^{\prime}+1$-chain C of G such that $C=$ it and $\partial C=0_{k^{\prime}} G$.
One can prove the following propositions:
(65) For every $k+1$-chain C of G holds C is a $k+1$-cycle of G iff $\partial C=0_{k} G$.
(66) If $k>d$, then every k-chain of G is a k-cycle of G.
(67) For every 0-chain C of G holds C is a 0 -cycle of G iff $\operatorname{card} C$ is even.

Let us consider d, G, k and let C be a $k+1$-cycle of G. Then ∂C can be characterized by the condition:
(Def. 16) $\partial C=0_{k} G$.
Let us consider d, G, k. Then $0_{k} G$ is a k-cycle of G.
Let us consider d, G. Then ΩG is a d-cycle of G.
Let us consider d, G, k and let C_{1}, C_{2} be k-cycles of G. Then $C_{1} \doteq C_{2}$ is a k-cycle of G. We introduce $C_{1}+C_{2}$ as a synonym of $C_{1} \dot{-} C_{2}$.

We now state the proposition
(68) For every d-cycle C of G holds $C^{\text {c }}$ is a d-cycle of G.

Let us consider d, G, k and let C be a $k+1$-chain of G. Then ∂C is a k-cycle of G.

3. Groups and Homomorphisms

Let us consider d, G, k. The functor k - $\operatorname{Chains}(G)$ yields a strict Abelian group and is defined by the conditions (Def. 17).
(Def. 17)(i) The carrier of k - Chains $(G)=2^{k-\operatorname{cells}(G)}$,
(ii) $0_{k \text {-Chains }(G)}=0_{k} G$, and
(iii) for all elements A, B of k - Chains (G) and for all k-chains A^{\prime}, B^{\prime} of G such that $A=A^{\prime}$ and $B=B^{\prime}$ holds $A+B=A^{\prime}+B^{\prime}$.
Let us consider d, G, k. A k-grchain of G is an element of k - Chains (G).
One can prove the following proposition
(69) For every set x holds x is a k-chain of G iff x is a k-grchain of G.

Let us consider d, G, k. The functor ∂ yielding a homomorphism from $(k+$ 1)- Chains (G) to k - Chains (G) is defined by:
(Def. 18) For every element A of $(k+1)$ - Chains (G) and for every $k+1$-chain A^{\prime} of G such that $A=A^{\prime}$ holds $\partial(A)=\partial A^{\prime}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathematics, 3(1):57-65, 1992.
[15] M. H. A. Newman. Elements of the Topology of Plane Sets of Points. Cambridge University Press, 1951.
[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[18] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102 and TYPES grant IST-1999-29001.

[^1]: ${ }^{2}$ The proposition (3) has been removed.

