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Summary. Translation of pages 101, the second half of 102, and 103 of
[15].

MML Identifier: CHAIN_1.

The notation and terminology used here are introduced in the following papers:
[20], [10], [22], [23], [18], [8], [12], [9], [17], [1], [19], [14], [3], [6], [13], [16], [2],
[11], [4], [7], [21], and [5].

1. PRELIMINARIES

We use the following convention: X, x, y, z are sets and n, m, k, k', d’ are
natural numbers.
The following two propositions are true:
(1) For all real numbers x, y such that x < y there exists a real number z
such that z < z and z < y.

(2) For all real numbers z, y there exists a real number z such that z < z
and y < z.

The scheme FrSet 1 2 deals with a non empty set A, a non empty set B, a
binary functor F yielding an element of A, and a binary predicate P, and states
that:

{F(z,y); z ranges over elements of B,y ranges over elements of
B:Plz,y]} €A
for all values of the parameters.
Let B be a set and let A be a subset of B. Then 24 is a subset of 25.

IThis work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102
and TYPES grant IST-1999-29001.
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Let X be a set. A subset of X is an element of 2.
Let d be a real natural number. Let us observe that d is zero if and only if:

(Def. 1) d # 0.

Let d be a natural number. Let us observe that d is zero if and only if:

(Def. 2) d ¥ 1.

Let us note that there exists a natural number which is non zero.
In the sequel d denotes a non zero natural number.

Let us consider d. Observe that Seg d is non empty.

In the sequel i, ig denote elements of Segd.

Let us consider X. Let us observe that X is trivial if and only if:

(Def. 3) For all z, y such that z € X and y € X holds z = y.

Next we state the proposition
(4)% {z,y} is trivial iff z = y.

Let us observe that there exists a set which is non trivial and finite.

Let X be a non trivial set and let Y be a set. Note that X UY is non trivial
and Y U X is non trivial.

Let us observe that R is non trivial.

Let X be a non trivial set. Observe that there exists a subset of X which is
non trivial and finite.

The following proposition is true

(5) If X is trivial and X U {y} is non trivial, then there exists x such that
X ={xz}.

Now we present two schemes. The scheme NonEmptyFinite deals with a non
empty set A, a non empty finite subset B of A, and a unary predicate P, and
states that:

P[B]
provided the following requirements are met:
e For every element x of A such that z € B holds P[{z}], and
e Let z be an element of A and B be a non empty finite subset of
A If x € Band B C B and x ¢ B and P[B], then P[B U {z}].
The scheme NonTrivialFinite deals with a non trivial set A, a non trivial
finite subset B of A, and a unary predicate P, and states that:
P[B]
provided the following conditions are met:
e For all elements z, y of A such that x € B and y € B and = # y
holds P[{x,y}], and
e Let z be an element of A and B be a non trivial finite subset of
A If x € Band B C B and x ¢ B and P[B], then P[B U {z}].
Next we state the proposition

2The proposition (3) has been removed.
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(6) X = 2iff there exist z, y such that z € X and y € X and x # y and for
every z such that z € X holds z =z or z = y.

Let X, Y be finite sets. Note that X =Y is finite.
We now state three propositions:
(7) m is even iff n is even iff m + n is even.
(8) Let X, Y be finite sets. Suppose X misses Y. Then card X is even iff
cardY is even if and only if card(X UY) is even.
(9) For all finite sets X, Y holds card X is even iff cardY is even iff
card(X~Y) is even.
Let us consider n. Then R"™ can be characterized by the condition:
(Def. 4) For every x holds z € R™ iff x is a function from Segn into R.
We adopt the following rules: I, r, I, r’, x are elements of R%, Gy is a non
trivial finite subset of R, and Iy, r1, I}, 7}, 21 are real numbers.
Let us consider d, x, i. Then z(i) is a real number.

2. GRATINGS, CELLS, CHAINS, CYCLES

Let us consider d. A function from Seg d into 2% is said to be a d-dimensional
grating if:
(Def. 5) For every ¢ holds it(7) is non trivial and finite.
In the sequel G is a d-dimensional grating.
Let us consider d, G, i. Then G(i) is a non trivial finite subset of R.
The following propositions are true:
(10) = €[]G iff for every i holds z(i) € G(1).
(11) ]G is finite.
(12) For every non empty finite subset X of R there exists 71 such that r; € X
and for every x1 such that z; € X holds r1 > ;.
(13) For every non empty finite subset X of R there exists {1 such that [; € X
and for every x1 such that 1 € X holds I3 < 3.
(14) There exist l1, r1 such that I; € G; and 1 € Gy and [; < r; and for
every x1 such that x1 € G holds I1 £ x1 or 21 £ r1.
(15) There exist Iy, r1 such that I; € G; and 1 € G1 and r; < I3 and for
every x1 such that x1 € G1 holds z1 £ r1 and I; £ x1.
Let us consider G. An element of [ R, R is called a gap of G if it satisfies
the condition (Def. 6).
(Def. 6) There exist I, 71 such that
(i) it = (ll, Tl),
(i) 11 € Gy,
(iii) 7 € Gy, and
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(iv) {3 <rp and for every x; such that 1 € G holds I} £ x1 or 1 £ r1 or
r1 < ly and for every x1 such that 1 € G1 holds l1 £ x1 and 1 £ r1.
The following propositions are true:
(16) (l1, m1) is a gap of G if and only if the following conditions are satisfied:
(i) 11 €Gy,
(i) r; € G1, and
(ili) {3 <7y and for every x; such that 21 € Gy holds Iy £ x1 or x1 £ 71 or
r1 < l; and for every x; such that x1 € G holds I; £ x1 and x1 £ rq.

(17) 1If Gy = {ly,71}, then (I}, r}) is a gap of Gy iff I =13 and 7} = r or
I=mriand 7} = 1.
(18) If z1 € G, then there exists r1 such that (x1, r1) is a gap of Gj.
(19) If z; € G, then there exists [; such that (l;, z1) is a gap of Gj.
(20) If (I3, m) is a gap of Gy and (I, }) is a gap of Gy, then r; = 7.
(21) 1If (l1, ) is a gap of Gp and (I}, r1) is a gap of Gy, then 1 =1].
(22) Ifr; <y and (1, m1) is a gap of G and | <1} and (I}, r}) is a gap of
G1, then Iy =1} and 1 = 7].
Let us consider d, [, r. The functor cell(l,r) yielding a non empty subset of
R? is defined as follows:

(Def. 7)  cell(l,r) = {z : A\, (1(7) < z(i) A z(i) <7(i)) V V, (r(@) <) A (2(i) <
r(i) V 1(i) < x(3)))}.
We now state several propositions:

(23) x € cell(l,r) iff for every i holds I(i) < z(i) and z(i) < r(i) or there
exists ¢ such that (i) < I(i) but xz(i) < (i) or I(z) < z(7).

(24) If for every i holds I(i) < r(i), then x € cell(l,r) iff for every i holds
1(i) < (i) and z(i) < r(i).

(25) If there exists i such that (i) < (), then = € cell(l,r) iff there exists i
such that r(:2) < (i) but z(i) < r(i) or I(7) < z(4).

(26) [ € cell(l,r) and r € cell(l,).

(27) cell(z,z) = {x}.

(28) 1If for every i holds I'(7) < /(i), then cell(l,r) C cell(l’,r’) iff for every i
holds I'(#) < I(i) and I(i) < r(i) and r(¢) < r'(i).

(29) If for every i holds r(i) < I(i), then cell(l,r) C cell(l',r") iff for every i
holds (i) < /(i) and /(i) < 1'(i) and ' (i) < I(i).

)
(30) Suppose for every ¢ holds (i) < r(i) and for every ¢ holds r/(i) <
Then cell(l,r) C cell(I’,r’) if and only if there exists i such that (i) <
or I'(1) < U(7).
(31) If for every ¢ holds I(i) < r(i) or for every ¢ holds [(:) > (i), then
cell(l,r) = cell(l',r") iff I =" and r = 1.

),
(i
) )-

(i
r'(i)
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Let us consider d, G, k. Let us assume that k£ < d. The functor k- cells(G)
yields a finite non empty subset of 9R" and is defined by the condition (Def. 8).
(Def. 8)  k-cells(G) = {cell(l,7) : V x . qubset of Sega (CATdX =k A A\; (i € X A
1) <r(@) A (@), r(i))isagapof G(i) V i¢ X A l(i)=r({E) AN I31) €
G(1) V k=d N N, (r(3) <l(@) AN (I(z), r(7)) is a gap of G(7))}.
We now state a number of propositions:

(32) Suppose k < d. Let A be a subset of R%. Then A € k-cells(G) if and
only if there exist [, r such that A = cell(l,r) but there exists a subset X
of Seg d such that card X = k and for every i holds i € X and I(i) < r(4)
and (l(7), r(i)) is a gap of G(i) or i ¢ X and [(i) = r(i) and [(i) € G(3) or
k = d and for every ¢ holds r(:) < I(:) and (I(7), 7(7)) is a gap of G(i).

(33) Suppose k& < d. Then cell(l,7) € k-cells(G) if and only if one of the
following conditions is satisfied:

(i)  there exists a subset X of Segd such that card X = k and for every i
holds ¢ € X and [(i) < r(i) and (I(2), 7(2)) is a gap of G(i) or i ¢ X and
I(i) = (i) and I(z) € G(i), or

(i) k= d and for every 7 holds 7(i) < I(7) and (I(7), r(¢)) is a gap of G(i).

(34) Suppose k < d and cell(l,r) € k-cells(G). Then

(i) for every i holds (i) < r(i) and (I(7), r(¢)) is a gap of G(7) or (i) = r(i)
and [(i) € G(7), or

(ii)  for every i holds r(i) < (i) and (I(), 7(4)) is a gap of G(3).

(35) If k < dand cell(l,r) € k-cells(G), then for every i holds (i) € G(i) and
r(i) € G(3).

(36) If k < d and cell(l,r) € k-cells(G), then for every ¢ holds I(i) < r(i) or
for every ¢ holds r(i) < I(1).

(37) For every subset A of R? holds A € 0-cells(G) iff there exists = such
that A = cell(z, z) and for every 7 holds z(i) € G(7).

(38) cell(l,r) € 0-cells(G) iff I = r and for every i holds I(z) € G(37).

(39) Let A be a subset of R%. Then A € d- cells(G) if and only if there exist [,
r such that A = cell(l,r) but for every ¢ holds (I(7), (7)) is a gap of G()
but for every i holds [(i) < r(i) or for every ¢ holds r(z) < I(3).

(40) cell(l,r) € d-cells(G) iff for every i holds (I(i), r(i)) is a gap of G(i) but
for every i holds [(i) < r(i) or for every ¢ holds r(i) < I(7).

(41) Suppose d = d’' + 1. Let A be a subset of R%. Then A € d'-cells(G) if
and only if there exist I, r, 79 such that A = cell(l,r) and [(ig) = r(ip) and
l(ig) € G(ip) and for every i such that i # ip holds (i) < r(i) and (I(i),
r(i)) is a gap of G(i).

(42) Suppose d = d'+1. Then cell(l,r) € d'- cells(G) if and only if there exists
ig such that I(ig) = r(ip) and l(ig) € G(ip) and for every i such that i # i
holds (i) < r(i) and (I(7), (7)) is a gap of G(i).
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(43) Let A be a subset of R Then A € 1-cells(G) if and only if there exist
I, r, ip such that A = cell(l,r) and [(ig) < r(ig) or d =1 and r(ig) < I(ip)
and (l(ig), r(i0)) is a gap of G(ip) and for every i such that i # iy holds
[(i) =r() and I(z) € G(3).

(44) cell(l,r) € 1-cells(G) if and only if there exists i such that [(ig) < r(ig)
or d =1 and r(ig) < l(ig) but {l(ip), 7(i0)) is a gap of G(ip) but for every
i such that i # ig holds (i) = r(i) and (i) € G(1).

(45) Suppose k < dand k' < d and cell(l,r) € k-cells(G) and cell(I',r) €

K- cells(G@) and cell(l,r) C cell(l’ r’). Let given i. Then

() 16) = P(i) and r(i) = /(i) o

(i) (i) = 1'(é) and r(i) = U'(4), o

(i) 1) = (0) and r(0) = (3.

(iv) (i) < (i) and 7/(i) < U'(4) and r'(1) < 1(i) and (i) < ().

(46) Suppose k < k" and k' < d and cell(l,r) € k-cells(G) and cell(l',r') €
K- cells(G) and cell(l,r) C cell(l’, 7). Then there exists ¢ such that [(i) =
UI'(¢) and (i) = U'(d) or I(i) = (i) and r(i) = /(7).

(47) Let X, X' be subsets of Segd. Suppose that

(i) cell(l,r) C cell(I', "),
(ii)  for every i holds i € X and (i) < r(¢) and (I(7), r(i)) is a gap of G(7)
ori¢ X and (i) = r(i) and (i) € G(i), and
(i)  for every ¢ holds ¢ € X’ and (i) < 7/(i) and (I'(7), 7'(i)) is a gap of
G(i) ori ¢ X' and I'(i) = r'(i) and U'(i) € G(3).
Then
(iv) X C X/,
(v)  for every i such that i € X or i ¢ X' holds I(i) = I'(i) and r(i) = 7/(4),
and
(vi)  for every i such that i ¢ X and i € X' holds () = I'(i) and r(i) = I'(7)
or I(i) = (i) and r(i) = 7'().
Let us consider d, G, k. A k-cell of G is an element of k- cells(G).
Let us consider d, G, k. A k-chain of G is a subset of k- cells(G).
Let us consider d, G, k. The functor 0G yields a k-chain of G and is defined
as follows:

(Def. 9) 0xG = 0.

Let us consider d, G. The functor QG yielding a d-chain of G is defined as

follows:
(Def. 10) QG = d-cells(G).

Let us consider d, G, k and let C7, Cy be k-chains of G. Then C;=C is a
k-chain of G. We introduce C + C as a synonym of C;=C5.

Let us consider d, G. The infinite cell of G yielding a d-cell of G is defined
by:
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(Def. 11) There exist [, r such that the infinite cell of G = cell(l,r) and for every
i holds r(i) < I(i) and (I(7), r(7)) is a gap of G(7).

We now state two propositions:

(48) If cell(l,r) is a d-cell of G, then cell(l,r) = the infinite cell of G iff for
every 4 holds r(i) < I(4).

(49) cell(l,r) = the infinite cell of G iff for every ¢ holds r(i) < I(i) and (I(7),
r(i)) is a gap of G(7).

The scheme Chainlnd deals with a non zero natural number A, a A-dimensional
grating B, a natural number C, a C-chain D of B, and a unary predicate P, and
states that:

P[D]
provided the parameters have the following properties:
e P0ch],
e For every C-cell A of B such that A € D holds P[{A}], and
e For all C-chains C4, C5 of B such that C; € D and Cy C D and
P[C1] and P[Cs] holds P[C} + Cs].
Let us consider d, G, k and let A be a k-cell of G. The functor A* yields a
k + 1-chain of G and is defined by:
(Def. 12)  A* = {B; B ranges over k + l-cells of G: A C B}.
Next we state the proposition
(50) For every k-cell A of G and for every k + 1-cell B of G holds B € A* iff
A CB.

Let us consider d, G, k and let C' be a k 4+ 1-chain of G. The functor 9C

yielding a k-chain of G is defined as follows:

(Def. 13) 0C = {A; A ranges over k-cells of G: k+1 < d A card(4A* N C)is odd}.

We introduce C as a synonym of dC.
Let us consider d, G, k, let C be a k + 1-chain of G, and let C’ be a k-chain
of G. We say that C’ bounds C' if and only if:

(Def. 14) C"=0C.
The following propositions are true:

(51) For every k-cell A of G and for every k + 1-chain C of G holds A € C
iff k+1<dand card(A*NC) is odd.

(52) If k+1 > d, then for every k + 1-chain C of G holds 0C = 0;G.

(563) If K+ 1 < d, then for every k-cell A of G and for every k + 1-cell B of G
holds A € 9{B} iff A C B.

(54) 1If d = d' + 1, then for every d’-cell A of G holds card A* = 2.

(55) For every d-dimensional grating G and for every 0+ 1-cell B of G holds
card 0{B} = 2.

(56) QG = (04G)° and 04G = (QG)°.
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(57) For every k-chain C of G holds C' + 0;,G = C.
(58) For every k-chain C of G holds C' + C = 0;G.
(59) For every d-chain C' of G holds C° = C + QG.
(60) 90541G = 04G.
(61)
(62)
(63)

D
—

For every d' + 1-dimensional grating G holds QG = 04G.
For all k + 1-chains C4, Cy of G holds 9(C; + C3) = 9C} + 9C5.

For every d’ + 1-dimensional grating G and for every d’ + 1-chain C' of
G holds 9(C°) = 0C.

(64) For every k+ 1+ 1-chain C of G holds 00C = 0;G.
Let us consider d, G, k. A k-chain of G is called a k-cycle of G if:

(Def. 15) &k =0 and card it is even or there exists &’ such that k = k¥’ + 1 and there
exists a k' + 1-chain C of G such that C = it and 9C = 0,/ G.

One can prove the following propositions:
(65) For every k + 1-chain C of G holds C'is a k + 1-cycle of G iff 0C' = 0;G.
(66) If k> d, then every k-chain of G is a k-cycle of G.
(67) For every 0-chain C' of G holds C is a 0-cycle of G iff card C' is even.

Let us consider d, G, k and let C' be a k + 1-cycle of G. Then dC can be

characterized by the condition:
(Def. 16) 9C = 0xG.

Let us consider d, G, k. Then 0;G is a k-cycle of G.

Let us consider d, G. Then QG is a d-cycle of G.

Let us consider d, G, k and let C7, Cy be k-cycles of G. Then C71=C) is a
k-cycle of G. We introduce C7 + Cs as a synonym of C7-C5.

We now state the proposition

(68) For every d-cycle C of G holds C° is a d-cycle of G.

Let us consider d, G, k and let C be a k+ 1-chain of G. Then 0C is a k-cycle
of G.

3. GROUPS AND HOMOMORPHISMS

Let us consider d, G, k. The functor k- Chains(G) yields a strict Abelian
group and is defined by the conditions (Def. 17).
(Def. 17)(i)  The carrier of k- Chains(G) = 2k~ cells(G)
(i)  Ok-Chains(q) = OxG, and
(iii)  for all elements A, B of k- Chains(G) and for all k-chains A’, B’ of G
such that A= A’ and B= B’ holds A+ B= A"+ B'.

Let us consider d, G, k. A k-grchain of G is an element of k- Chains(G).
One can prove the following proposition
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(69) For every set = holds x is a k-chain of G iff x is a k-grchain of G.
Let us consider d, G, k. The functor 0 yielding a homomorphism from (k +
1)- Chains(G) to k- Chains(G) is defined by:
(Def. 18) For every element A of (k + 1)- Chains(G) and for every k + 1-chain A’
of G such that A = A" holds 9(A) = 0A’.
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