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The notation and terminology used here are introduced in the following papers:

[20], [10], [22], [23], [18], [8], [12], [9], [17], [1], [19], [14], [3], [6], [13], [16], [2],

[11], [4], [7], [21], and [5].

1. Preliminaries

We use the following convention: X, x, y, z are sets and n, m, k, k′, d′ are

natural numbers.

The following two propositions are true:

(1) For all real numbers x, y such that x < y there exists a real number z

such that x < z and z < y.

(2) For all real numbers x, y there exists a real number z such that x < z

and y < z.

The scheme FrSet 1 2 deals with a non empty set A, a non empty set B, a

binary functor F yielding an element of A, and a binary predicate P, and states

that:

{F(x, y);x ranges over elements of B, y ranges over elements of

B : P[x, y]} ⊆ A

for all values of the parameters.

Let B be a set and let A be a subset of B. Then 2A is a subset of 2B.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102

and TYPES grant IST-1999-29001.
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Let X be a set. A subset of X is an element of 2X .

Let d be a real natural number. Let us observe that d is zero if and only if:

(Def. 1) d 6> 0.

Let d be a natural number. Let us observe that d is zero if and only if:

(Def. 2) d 6­ 1.

Let us note that there exists a natural number which is non zero.

In the sequel d denotes a non zero natural number.

Let us consider d. Observe that Seg d is non empty.

In the sequel i, i0 denote elements of Seg d.

Let us consider X. Let us observe that X is trivial if and only if:

(Def. 3) For all x, y such that x ∈ X and y ∈ X holds x = y.

Next we state the proposition

(4)2 {x, y} is trivial iff x = y.

Let us observe that there exists a set which is non trivial and finite.

Let X be a non trivial set and let Y be a set. Note that X ∪Y is non trivial

and Y ∪X is non trivial.

Let us observe that R is non trivial.

Let X be a non trivial set. Observe that there exists a subset of X which is

non trivial and finite.

The following proposition is true

(5) If X is trivial and X ∪ {y} is non trivial, then there exists x such that

X = {x}.

Now we present two schemes. The scheme NonEmptyFinite deals with a non

empty set A, a non empty finite subset B of A, and a unary predicate P, and

states that:

P[B]

provided the following requirements are met:

• For every element x of A such that x ∈ B holds P[{x}], and

• Let x be an element of A and B be a non empty finite subset of

A. If x ∈ B and B ⊆ B and x /∈ B and P[B], then P[B ∪ {x}].

The scheme NonTrivialFinite deals with a non trivial set A, a non trivial

finite subset B of A, and a unary predicate P, and states that:

P[B]

provided the following conditions are met:

• For all elements x, y of A such that x ∈ B and y ∈ B and x 6= y

holds P[{x, y}], and

• Let x be an element of A and B be a non trivial finite subset of

A. If x ∈ B and B ⊆ B and x /∈ B and P[B], then P[B ∪ {x}].

Next we state the proposition

2The proposition (3) has been removed.
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(6) X = 2 iff there exist x, y such that x ∈ X and y ∈ X and x 6= y and for

every z such that z ∈ X holds z = x or z = y.

Let X, Y be finite sets. Note that X−. Y is finite.

We now state three propositions:

(7) m is even iff n is even iff m + n is even.

(8) Let X, Y be finite sets. Suppose X misses Y . Then cardX is even iff

cardY is even if and only if card(X ∪ Y ) is even.

(9) For all finite sets X, Y holds cardX is even iff cardY is even iff

card(X−. Y ) is even.

Let us consider n. Then Rn can be characterized by the condition:

(Def. 4) For every x holds x ∈ Rn iff x is a function from Segn into R.

We adopt the following rules: l, r, l′, r′, x are elements of Rd, G1 is a non

trivial finite subset of R, and l1, r1, l
′
1, r
′
1, x1 are real numbers.

Let us consider d, x, i. Then x(i) is a real number.

2. Gratings, Cells, Chains, Cycles

Let us consider d. A function from Seg d into 2R is said to be a d-dimensional

grating if:

(Def. 5) For every i holds it(i) is non trivial and finite.

In the sequel G is a d-dimensional grating.

Let us consider d, G, i. Then G(i) is a non trivial finite subset of R.

The following propositions are true:

(10) x ∈
∏

G iff for every i holds x(i) ∈ G(i).

(11)
∏

G is finite.

(12) For every non empty finite subsetX of R there exists r1 such that r1 ∈ X

and for every x1 such that x1 ∈ X holds r1 ­ x1.

(13) For every non empty finite subset X of R there exists l1 such that l1 ∈ X

and for every x1 such that x1 ∈ X holds l1 ¬ x1.

(14) There exist l1, r1 such that l1 ∈ G1 and r1 ∈ G1 and l1 < r1 and for

every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1.

(15) There exist l1, r1 such that l1 ∈ G1 and r1 ∈ G1 and r1 < l1 and for

every x1 such that x1 ∈ G1 holds x1 6< r1 and l1 6< x1.

Let us consider G1. An element of [: R, R :] is called a gap of G1 if it satisfies

the condition (Def. 6).

(Def. 6) There exist l1, r1 such that

(i) it = 〈〈l1, r1〉〉,

(ii) l1 ∈ G1,

(iii) r1 ∈ G1, and
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(iv) l1 < r1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1 or

r1 < l1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 and x1 6< r1.

The following propositions are true:

(16) 〈〈l1, r1〉〉 is a gap of G1 if and only if the following conditions are satisfied:

(i) l1 ∈ G1,

(ii) r1 ∈ G1, and

(iii) l1 < r1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 or x1 6< r1 or

r1 < l1 and for every x1 such that x1 ∈ G1 holds l1 6< x1 and x1 6< r1.

(17) If G1 = {l1, r1}, then 〈〈l
′
1, r′1〉〉 is a gap of G1 iff l′1 = l1 and r′1 = r1 or

l′1 = r1 and r′1 = l1.

(18) If x1 ∈ G1, then there exists r1 such that 〈〈x1, r1〉〉 is a gap of G1.

(19) If x1 ∈ G1, then there exists l1 such that 〈〈l1, x1〉〉 is a gap of G1.

(20) If 〈〈l1, r1〉〉 is a gap of G1 and 〈〈l1, r′1〉〉 is a gap of G1, then r1 = r′1.

(21) If 〈〈l1, r1〉〉 is a gap of G1 and 〈〈l
′
1, r1〉〉 is a gap of G1, then l1 = l′1.

(22) If r1 < l1 and 〈〈l1, r1〉〉 is a gap of G1 and r′1 < l′1 and 〈〈l
′
1, r′1〉〉 is a gap of

G1, then l1 = l′1 and r1 = r′1.

Let us consider d, l, r. The functor cell(l, r) yielding a non empty subset of

Rd is defined as follows:

(Def. 7) cell(l, r) = {x :
∧

i
(l(i) ¬ x(i) ∧ x(i) ¬ r(i)) ∨

∨
i
(r(i) < l(i) ∧ (x(i) ¬

r(i) ∨ l(i) ¬ x(i)))}.

We now state several propositions:

(23) x ∈ cell(l, r) iff for every i holds l(i) ¬ x(i) and x(i) ¬ r(i) or there

exists i such that r(i) < l(i) but x(i) ¬ r(i) or l(i) ¬ x(i).

(24) If for every i holds l(i) ¬ r(i), then x ∈ cell(l, r) iff for every i holds

l(i) ¬ x(i) and x(i) ¬ r(i).

(25) If there exists i such that r(i) < l(i), then x ∈ cell(l, r) iff there exists i

such that r(i) < l(i) but x(i) ¬ r(i) or l(i) ¬ x(i).

(26) l ∈ cell(l, r) and r ∈ cell(l, r).

(27) cell(x, x) = {x}.

(28) If for every i holds l′(i) ¬ r′(i), then cell(l, r) ⊆ cell(l′, r′) iff for every i

holds l′(i) ¬ l(i) and l(i) ¬ r(i) and r(i) ¬ r′(i).

(29) If for every i holds r(i) < l(i), then cell(l, r) ⊆ cell(l′, r′) iff for every i

holds r(i) ¬ r′(i) and r′(i) < l′(i) and l′(i) ¬ l(i).

(30) Suppose for every i holds l(i) ¬ r(i) and for every i holds r′(i) < l′(i).

Then cell(l, r) ⊆ cell(l′, r′) if and only if there exists i such that r(i) ¬ r′(i)

or l′(i) ¬ l(i).

(31) If for every i holds l(i) ¬ r(i) or for every i holds l(i) > r(i), then

cell(l, r) = cell(l′, r′) iff l = l′ and r = r′.
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Let us consider d, G, k. Let us assume that k ¬ d. The functor k- cells(G)

yields a finite non empty subset of 2R
d

and is defined by the condition (Def. 8).

(Def. 8) k- cells(G) = {cell(l, r) :
∨

X : subset of Seg d
(cardX = k ∧

∧
i

(i ∈ X ∧

l(i) < r(i) ∧ 〈〈l(i), r(i)〉〉 is a gap of G(i) ∨ i /∈ X ∧ l(i) = r(i) ∧ l(i) ∈

G(i))) ∨ k = d ∧
∧

i
(r(i) < l(i) ∧ 〈〈l(i), r(i)〉〉 is a gap of G(i))}.

We now state a number of propositions:

(32) Suppose k ¬ d. Let A be a subset of Rd. Then A ∈ k- cells(G) if and

only if there exist l, r such that A = cell(l, r) but there exists a subset X

of Seg d such that cardX = k and for every i holds i ∈ X and l(i) < r(i)

and 〈〈l(i), r(i)〉〉 is a gap of G(i) or i /∈ X and l(i) = r(i) and l(i) ∈ G(i) or

k = d and for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

(33) Suppose k ¬ d. Then cell(l, r) ∈ k- cells(G) if and only if one of the

following conditions is satisfied:

(i) there exists a subset X of Seg d such that cardX = k and for every i

holds i ∈ X and l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i) or i /∈ X and

l(i) = r(i) and l(i) ∈ G(i), or

(ii) k = d and for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

(34) Suppose k ¬ d and cell(l, r) ∈ k- cells(G). Then

(i) for every i holds l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i) or l(i) = r(i)

and l(i) ∈ G(i), or

(ii) for every i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

(35) If k ¬ d and cell(l, r) ∈ k- cells(G), then for every i holds l(i) ∈ G(i) and

r(i) ∈ G(i).

(36) If k ¬ d and cell(l, r) ∈ k- cells(G), then for every i holds l(i) ¬ r(i) or

for every i holds r(i) < l(i).

(37) For every subset A of Rd holds A ∈ 0- cells(G) iff there exists x such

that A = cell(x, x) and for every i holds x(i) ∈ G(i).

(38) cell(l, r) ∈ 0- cells(G) iff l = r and for every i holds l(i) ∈ G(i).

(39) Let A be a subset of Rd. Then A ∈ d- cells(G) if and only if there exist l,

r such that A = cell(l, r) but for every i holds 〈〈l(i), r(i)〉〉 is a gap of G(i)

but for every i holds l(i) < r(i) or for every i holds r(i) < l(i).

(40) cell(l, r) ∈ d- cells(G) iff for every i holds 〈〈l(i), r(i)〉〉 is a gap of G(i) but

for every i holds l(i) < r(i) or for every i holds r(i) < l(i).

(41) Suppose d = d′ + 1. Let A be a subset of Rd. Then A ∈ d′- cells(G) if

and only if there exist l, r, i0 such that A = cell(l, r) and l(i0) = r(i0) and

l(i0) ∈ G(i0) and for every i such that i 6= i0 holds l(i) < r(i) and 〈〈l(i),

r(i)〉〉 is a gap of G(i).

(42) Suppose d = d′+1. Then cell(l, r) ∈ d′- cells(G) if and only if there exists

i0 such that l(i0) = r(i0) and l(i0) ∈ G(i0) and for every i such that i 6= i0
holds l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).
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(43) Let A be a subset of Rd. Then A ∈ 1- cells(G) if and only if there exist

l, r, i0 such that A = cell(l, r) and l(i0) < r(i0) or d = 1 and r(i0) < l(i0)

and 〈〈l(i0), r(i0)〉〉 is a gap of G(i0) and for every i such that i 6= i0 holds

l(i) = r(i) and l(i) ∈ G(i).

(44) cell(l, r) ∈ 1- cells(G) if and only if there exists i0 such that l(i0) < r(i0)

or d = 1 and r(i0) < l(i0) but 〈〈l(i0), r(i0)〉〉 is a gap of G(i0) but for every

i such that i 6= i0 holds l(i) = r(i) and l(i) ∈ G(i).

(45) Suppose k ¬ d and k′ ¬ d and cell(l, r) ∈ k- cells(G) and cell(l′, r′) ∈

k′- cells(G) and cell(l, r) ⊆ cell(l′, r′). Let given i. Then

(i) l(i) = l′(i) and r(i) = r′(i), or

(ii) l(i) = l′(i) and r(i) = l′(i), or

(iii) l(i) = r′(i) and r(i) = r′(i), or

(iv) l(i) ¬ r(i) and r′(i) < l′(i) and r′(i) ¬ l(i) and r(i) ¬ l′(i).

(46) Suppose k < k′ and k′ ¬ d and cell(l, r) ∈ k- cells(G) and cell(l′, r′) ∈

k′- cells(G) and cell(l, r) ⊆ cell(l′, r′). Then there exists i such that l(i) =

l′(i) and r(i) = l′(i) or l(i) = r′(i) and r(i) = r′(i).

(47) Let X, X ′ be subsets of Seg d. Suppose that

(i) cell(l, r) ⊆ cell(l′, r′),

(ii) for every i holds i ∈ X and l(i) < r(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i)

or i /∈ X and l(i) = r(i) and l(i) ∈ G(i), and

(iii) for every i holds i ∈ X ′ and l′(i) < r′(i) and 〈〈l′(i), r′(i)〉〉 is a gap of

G(i) or i /∈ X ′ and l′(i) = r′(i) and l′(i) ∈ G(i).

Then

(iv) X ⊆ X ′,

(v) for every i such that i ∈ X or i /∈ X ′ holds l(i) = l′(i) and r(i) = r′(i),

and

(vi) for every i such that i /∈ X and i ∈ X ′ holds l(i) = l′(i) and r(i) = l′(i)

or l(i) = r′(i) and r(i) = r′(i).

Let us consider d, G, k. A k-cell of G is an element of k- cells(G).

Let us consider d, G, k. A k-chain of G is a subset of k- cells(G).

Let us consider d, G, k. The functor 0kG yields a k-chain of G and is defined

as follows:

(Def. 9) 0kG = ∅.

Let us consider d, G. The functor ΩG yielding a d-chain of G is defined as

follows:

(Def. 10) ΩG = d- cells(G).

Let us consider d, G, k and let C1, C2 be k-chains of G. Then C1−
. C2 is a

k-chain of G. We introduce C1 + C2 as a synonym of C1−
. C2.

Let us consider d, G. The infinite cell of G yielding a d-cell of G is defined

by:
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(Def. 11) There exist l, r such that the infinite cell of G = cell(l, r) and for every

i holds r(i) < l(i) and 〈〈l(i), r(i)〉〉 is a gap of G(i).

We now state two propositions:

(48) If cell(l, r) is a d-cell of G, then cell(l, r) = the infinite cell of G iff for

every i holds r(i) < l(i).

(49) cell(l, r) = the infinite cell of G iff for every i holds r(i) < l(i) and 〈〈l(i),

r(i)〉〉 is a gap of G(i).

The scheme ChainInd deals with a non zero natural numberA, aA-dimensional

grating B, a natural number C, a C-chain D of B, and a unary predicate P, and

states that:

P[D]

provided the parameters have the following properties:

• P[0CB],

• For every C-cell A of B such that A ∈ D holds P[{A}], and

• For all C-chains C1, C2 of B such that C1 ⊆ D and C2 ⊆ D and

P[C1] and P[C2] holds P[C1 + C2].

Let us consider d, G, k and let A be a k-cell of G. The functor A⋆ yields a

k + 1-chain of G and is defined by:

(Def. 12) A⋆ = {B; B ranges over k + 1-cells of G: A ⊆ B}.

Next we state the proposition

(50) For every k-cell A of G and for every k + 1-cell B of G holds B ∈ A⋆ iff

A ⊆ B.

Let us consider d, G, k and let C be a k + 1-chain of G. The functor ∂C

yielding a k-chain of G is defined as follows:

(Def. 13) ∂C = {A; A ranges over k-cells of G: k + 1 ¬ d ∧ card(A⋆ ∩C)is odd}.

We introduce Ċ as a synonym of ∂C.

Let us consider d, G, k, let C be a k + 1-chain of G, and let C ′ be a k-chain

of G. We say that C ′ bounds C if and only if:

(Def. 14) C ′ = ∂C.

The following propositions are true:

(51) For every k-cell A of G and for every k + 1-chain C of G holds A ∈ ∂C

iff k + 1 ¬ d and card(A⋆ ∩ C) is odd.

(52) If k + 1 > d, then for every k + 1-chain C of G holds ∂C = 0kG.

(53) If k + 1 ¬ d, then for every k-cell A of G and for every k + 1-cell B of G

holds A ∈ ∂{B} iff A ⊆ B.

(54) If d = d′ + 1, then for every d′-cell A of G holds cardA⋆ = 2.

(55) For every d-dimensional grating G and for every 0 + 1-cell B of G holds

card ∂{B} = 2.

(56) ΩG = (0dG)c and 0dG = (ΩG)c.
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(57) For every k-chain C of G holds C + 0kG = C.

(58) For every k-chain C of G holds C + C = 0kG.

(59) For every d-chain C of G holds Cc = C + ΩG.

(60) ∂0k+1G = 0kG.

(61) For every d′ + 1-dimensional grating G holds ∂ΩG = 0d′G.

(62) For all k + 1-chains C1, C2 of G holds ∂(C1 + C2) = ∂C1 + ∂C2.

(63) For every d′ + 1-dimensional grating G and for every d′ + 1-chain C of

G holds ∂(Cc) = ∂C.

(64) For every k + 1 + 1-chain C of G holds ∂∂C = 0kG.

Let us consider d, G, k. A k-chain of G is called a k-cycle of G if:

(Def. 15) k = 0 and card it is even or there exists k′ such that k = k′+1 and there

exists a k′ + 1-chain C of G such that C = it and ∂C = 0k′G.

One can prove the following propositions:

(65) For every k +1-chain C of G holds C is a k +1-cycle of G iff ∂C = 0kG.

(66) If k > d, then every k-chain of G is a k-cycle of G.

(67) For every 0-chain C of G holds C is a 0-cycle of G iff cardC is even.

Let us consider d, G, k and let C be a k + 1-cycle of G. Then ∂C can be

characterized by the condition:

(Def. 16) ∂C = 0kG.

Let us consider d, G, k. Then 0kG is a k-cycle of G.

Let us consider d, G. Then ΩG is a d-cycle of G.

Let us consider d, G, k and let C1, C2 be k-cycles of G. Then C1−
. C2 is a

k-cycle of G. We introduce C1 + C2 as a synonym of C1−
. C2.

We now state the proposition

(68) For every d-cycle C of G holds Cc is a d-cycle of G.

Let us consider d, G, k and let C be a k+1-chain of G. Then ∂C is a k-cycle

of G.

3. Groups and Homomorphisms

Let us consider d, G, k. The functor k- Chains(G) yields a strict Abelian

group and is defined by the conditions (Def. 17).

(Def. 17)(i) The carrier of k- Chains(G) = 2k- cells(G),

(ii) 0k-Chains(G) = 0kG, and

(iii) for all elements A, B of k- Chains(G) and for all k-chains A′, B′ of G

such that A = A′ and B = B′ holds A + B = A′ + B′.

Let us consider d, G, k. A k-grchain of G is an element of k- Chains(G).

One can prove the following proposition
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(69) For every set x holds x is a k-chain of G iff x is a k-grchain of G.

Let us consider d, G, k. The functor ∂ yielding a homomorphism from (k +

1)- Chains(G) to k- Chains(G) is defined by:

(Def. 18) For every element A of (k + 1)- Chains(G) and for every k + 1-chain A′

of G such that A = A′ holds ∂(A) = ∂A′.
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