Chains on a Grating in Euclidean Space¹

Freek Wiedijk University of Nijmegen

Summary. Translation of pages 101, the second half of 102, and 103 of [15].

 ${\rm MML} \ {\rm Identifier:} \ {\tt CHAIN_1}.$

The notation and terminology used here are introduced in the following papers: [20], [10], [22], [23], [18], [8], [12], [9], [17], [1], [19], [14], [3], [6], [13], [16], [2], [11], [4], [7], [21], and [5].

1. Preliminaries

We use the following convention: X, x, y, z are sets and n, m, k, k', d' are natural numbers.

The following two propositions are true:

- (1) For all real numbers x, y such that x < y there exists a real number z such that x < z and z < y.
- (2) For all real numbers x, y there exists a real number z such that x < z and y < z.

The scheme *FrSet 1 2* deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , a binary functor \mathcal{F} yielding an element of \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x,y); x \text{ ranges over elements of } \mathcal{B}, y \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[x,y]\} \subseteq \mathcal{A}$

for all values of the parameters.

Let B be a set and let A be a subset of B. Then 2^A is a subset of 2^B .

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102 and TYPES grant IST-1999-29001.

C 2003 University of Białystok ISSN 1426-2630

Let X be a set. A subset of X is an element of 2^X .

Let d be a real natural number. Let us observe that d is zero if and only if: (Def. 1) $d \neq 0$.

Let d be a natural number. Let us observe that d is zero if and only if: (Def. 2) $d \ge 1$.

Let us note that there exists a natural number which is non zero.

In the sequel d denotes a non zero natural number.

Let us consider d. Observe that $\operatorname{Seg} d$ is non empty.

In the sequel i, i_0 denote elements of Seg d.

Let us consider X. Let us observe that X is trivial if and only if:

(Def. 3) For all x, y such that $x \in X$ and $y \in X$ holds x = y.

Next we state the proposition

 $(4)^2 \{x, y\}$ is trivial iff x = y.

Let us observe that there exists a set which is non trivial and finite.

Let X be a non trivial set and let Y be a set. Note that $X \cup Y$ is non trivial and $Y \cup X$ is non trivial.

Let us observe that \mathbb{R} is non trivial.

Let X be a non trivial set. Observe that there exists a subset of X which is non trivial and finite.

The following proposition is true

(5) If X is trivial and $X \cup \{y\}$ is non trivial, then there exists x such that $X = \{x\}.$

Now we present two schemes. The scheme NonEmptyFinite deals with a non empty set \mathcal{A} , a non empty finite subset \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the following requirements are met:

- For every element x of A such that $x \in \mathcal{B}$ holds $\mathcal{P}[\{x\}]$, and
- Let x be an element of \mathcal{A} and B be a non empty finite subset of \mathcal{A} . If $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $x \notin B$ and $\mathcal{P}[B]$, then $\mathcal{P}[B \cup \{x\}]$.

The scheme *NonTrivialFinite* deals with a non trivial set \mathcal{A} , a non trivial finite subset \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the following conditions are met:

- For all elements x, y of \mathcal{A} such that $x \in \mathcal{B}$ and $y \in \mathcal{B}$ and $x \neq y$ holds $\mathcal{P}[\{x, y\}]$, and
- Let x be an element of \mathcal{A} and B be a non trivial finite subset of \mathcal{A} . If $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $x \notin B$ and $\mathcal{P}[B]$, then $\mathcal{P}[B \cup \{x\}]$.

Next we state the proposition

²The proposition (3) has been removed.

(6) $\overline{X} = 2$ iff there exist x, y such that $x \in X$ and $y \in X$ and $x \neq y$ and for every z such that $z \in X$ holds z = x or z = y.

Let X, Y be finite sets. Note that X - Y is finite.

We now state three propositions:

- (7) m is even iff n is even iff m + n is even.
- (8) Let X, Y be finite sets. Suppose X misses Y. Then card X is even iff card Y is even if and only if $card(X \cup Y)$ is even.
- (9) For all finite sets X, Y holds $\operatorname{card} X$ is even iff $\operatorname{card} Y$ is even iff $\operatorname{card}(X Y)$ is even.

Let us consider n. Then \mathcal{R}^n can be characterized by the condition:

- (Def. 4) For every x holds $x \in \mathbb{R}^n$ iff x is a function from Seg n into \mathbb{R} .
 - We adopt the following rules: l, r, l', r', x are elements of \mathcal{R}^d , G_1 is a non trivial finite subset of \mathbb{R} , and $l_1, r_1, l'_1, r'_1, x_1$ are real numbers.

Let us consider d, x, i. Then x(i) is a real number.

2. GRATINGS, CELLS, CHAINS, CYCLES

Let us consider d. A function from $\operatorname{Seg} d$ into $2^{\mathbb{R}}$ is said to be a d-dimensional grating if:

(Def. 5) For every i holds it(i) is non trivial and finite.

In the sequel G is a d-dimensional grating.

Let us consider d, G, i. Then G(i) is a non trivial finite subset of \mathbb{R} . The following propositions are true:

- (10) $x \in \prod G$ iff for every *i* holds $x(i) \in G(i)$.
- (11) $\prod G$ is finite.
- (12) For every non empty finite subset X of \mathbb{R} there exists r_1 such that $r_1 \in X$ and for every x_1 such that $x_1 \in X$ holds $r_1 \ge x_1$.
- (13) For every non empty finite subset X of \mathbb{R} there exists l_1 such that $l_1 \in X$ and for every x_1 such that $x_1 \in X$ holds $l_1 \leq x_1$.
- (14) There exist l_1 , r_1 such that $l_1 \in G_1$ and $r_1 \in G_1$ and $l_1 < r_1$ and for every x_1 such that $x_1 \in G_1$ holds $l_1 \not< x_1$ or $x_1 \not< r_1$.
- (15) There exist l_1 , r_1 such that $l_1 \in G_1$ and $r_1 \in G_1$ and $r_1 < l_1$ and for every x_1 such that $x_1 \in G_1$ holds $x_1 \not< r_1$ and $l_1 \not< x_1$.

Let us consider G_1 . An element of $[\mathbb{R}, \mathbb{R}]$ is called a gap of G_1 if it satisfies the condition (Def. 6).

(Def. 6) There exist l_1 , r_1 such that

- (i) it = $\langle l_1, r_1 \rangle$,
- (ii) $l_1 \in G_1$,
- (iii) $r_1 \in G_1$, and

- (iv) $l_1 < r_1$ and for every x_1 such that $x_1 \in G_1$ holds $l_1 \not< x_1$ or $x_1 \not< r_1$ or $r_1 < l_1$ and for every x_1 such that $x_1 \in G_1$ holds $l_1 \not< x_1$ and $x_1 \not< r_1$. The following propositions are true:
- (16) ⟨l₁, r₁⟩ is a gap of G₁ if and only if the following conditions are satisfied:
 (i) l₁ ∈ G₁,
- (ii) $r_1 \in G_1$, and
- (iii) $l_1 < r_1$ and for every x_1 such that $x_1 \in G_1$ holds $l_1 \not\leq x_1$ or $x_1 \not\leq r_1$ or $r_1 < l_1$ and for every x_1 such that $x_1 \in G_1$ holds $l_1 \not\leq x_1$ and $x_1 \not\leq r_1$.
- (17) If $G_1 = \{l_1, r_1\}$, then $\langle l'_1, r'_1 \rangle$ is a gap of G_1 iff $l'_1 = l_1$ and $r'_1 = r_1$ or $l'_1 = r_1$ and $r'_1 = l_1$.
- (18) If $x_1 \in G_1$, then there exists r_1 such that $\langle x_1, r_1 \rangle$ is a gap of G_1 .
- (19) If $x_1 \in G_1$, then there exists l_1 such that $\langle l_1, x_1 \rangle$ is a gap of G_1 .
- (20) If $\langle l_1, r_1 \rangle$ is a gap of G_1 and $\langle l_1, r'_1 \rangle$ is a gap of G_1 , then $r_1 = r'_1$.
- (21) If $\langle l_1, r_1 \rangle$ is a gap of G_1 and $\langle l'_1, r_1 \rangle$ is a gap of G_1 , then $l_1 = l'_1$.
- (22) If $r_1 < l_1$ and $\langle l_1, r_1 \rangle$ is a gap of G_1 and $r'_1 < l'_1$ and $\langle l'_1, r'_1 \rangle$ is a gap of G_1 , then $l_1 = l'_1$ and $r_1 = r'_1$.

Let us consider d, l, r. The functor $\operatorname{cell}(l, r)$ yielding a non empty subset of \mathcal{R}^d is defined as follows:

 $(\text{Def. 7}) \quad \operatorname{cell}(l,r) = \{ x : \bigwedge_i (l(i) \leqslant x(i) \land x(i) \leqslant r(i)) \lor \bigvee_i (r(i) < l(i) \land (x(i) \leqslant r(i))) \lor l(i) \leqslant x(i)) \}.$

We now state several propositions:

- (23) $x \in \operatorname{cell}(l,r)$ iff for every *i* holds $l(i) \leq x(i)$ and $x(i) \leq r(i)$ or there exists *i* such that r(i) < l(i) but $x(i) \leq r(i)$ or $l(i) \leq x(i)$.
- (24) If for every *i* holds $l(i) \leq r(i)$, then $x \in \operatorname{cell}(l, r)$ iff for every *i* holds $l(i) \leq x(i)$ and $x(i) \leq r(i)$.
- (25) If there exists *i* such that r(i) < l(i), then $x \in \operatorname{cell}(l, r)$ iff there exists *i* such that r(i) < l(i) but $x(i) \leq r(i)$ or $l(i) \leq x(i)$.
- (26) $l \in \operatorname{cell}(l, r)$ and $r \in \operatorname{cell}(l, r)$.
- (27) $\operatorname{cell}(x, x) = \{x\}.$
- (28) If for every *i* holds $l'(i) \leq r'(i)$, then cell $(l, r) \subseteq$ cell(l', r') iff for every *i* holds $l'(i) \leq l(i)$ and $l(i) \leq r(i)$ and $r(i) \leq r'(i)$.
- (29) If for every *i* holds r(i) < l(i), then $\operatorname{cell}(l, r) \subseteq \operatorname{cell}(l', r')$ iff for every *i* holds $r(i) \leq r'(i)$ and r'(i) < l'(i) and $l'(i) \leq l(i)$.
- (30) Suppose for every *i* holds $l(i) \leq r(i)$ and for every *i* holds r'(i) < l'(i). Then $\operatorname{cell}(l, r) \subseteq \operatorname{cell}(l', r')$ if and only if there exists *i* such that $r(i) \leq r'(i)$ or $l'(i) \leq l(i)$.
- (31) If for every *i* holds $l(i) \leq r(i)$ or for every *i* holds l(i) > r(i), then $\operatorname{cell}(l, r) = \operatorname{cell}(l', r')$ iff l = l' and r = r'.

162

Let us consider d, G, k. Let us assume that $k \leq d$. The functor k-cells(G) yields a finite non empty subset of $2^{\mathcal{R}^d}$ and is defined by the condition (Def. 8).

- (Def. 8) k-cells $(G) = \{ cell(l, r) : \bigvee_{X: subset of Seg d} (card <math>X = k \land \bigwedge_i (i \in X \land l(i) < r(i) \land \langle l(i), r(i) \rangle \text{ is a gap of } G(i) \lor i \notin X \land l(i) = r(i) \land l(i) \in G(i)) \} \lor k = d \land \bigwedge_i (r(i) < l(i) \land \langle l(i), r(i) \rangle \text{ is a gap of } G(i)) \}.$ We now state a number of propositions:
 - (32) Suppose $k \leq d$. Let A be a subset of \mathcal{R}^d . Then $A \in k$ -cells(G) if and only if there exist l, r such that $A = \operatorname{cell}(l, r)$ but there exists a subset X of Seg d such that card X = k and for every i holds $i \in X$ and l(i) < r(i)and $\langle l(i), r(i) \rangle$ is a gap of G(i) or $i \notin X$ and l(i) = r(i) and $l(i) \in G(i)$ or k = d and for every i holds r(i) < l(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).
 - (33) Suppose $k \leq d$. Then $\operatorname{cell}(l, r) \in k$ $\operatorname{cells}(G)$ if and only if one of the following conditions is satisfied:
 - (i) there exists a subset X of Seg d such that card X = k and for every i holds $i \in X$ and l(i) < r(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i) or $i \notin X$ and l(i) = r(i) and $l(i) \in G(i)$, or
 - (ii) k = d and for every *i* holds r(i) < l(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).
 - (34) Suppose $k \leq d$ and $\operatorname{cell}(l, r) \in k$ $\operatorname{cells}(G)$. Then
 - (i) for every *i* holds l(i) < r(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i) or l(i) = r(i) and $l(i) \in G(i)$, or
 - (ii) for every *i* holds r(i) < l(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).
 - (35) If $k \leq d$ and $\operatorname{cell}(l, r) \in k$ $\operatorname{cells}(G)$, then for every i holds $l(i) \in G(i)$ and $r(i) \in G(i)$.
 - (36) If $k \leq d$ and $\operatorname{cell}(l, r) \in k$ $\operatorname{cells}(G)$, then for every i holds $l(i) \leq r(i)$ or for every i holds r(i) < l(i).
 - (37) For every subset A of \mathcal{R}^d holds $A \in 0$ -cells(G) iff there exists x such that $A = \operatorname{cell}(x, x)$ and for every i holds $x(i) \in G(i)$.
 - (38) $\operatorname{cell}(l, r) \in 0$ $\operatorname{cells}(G)$ iff l = r and for every i holds $l(i) \in G(i)$.
 - (39) Let A be a subset of \mathcal{R}^d . Then $A \in d$ -cells(G) if and only if there exist l, r such that A = cell(l, r) but for every i holds $\langle l(i), r(i) \rangle$ is a gap of G(i) but for every i holds l(i) < r(i) or for every i holds r(i) < l(i).
 - (40) $\operatorname{cell}(l, r) \in d$ $\operatorname{cells}(G)$ iff for every *i* holds $\langle l(i), r(i) \rangle$ is a gap of G(i) but for every *i* holds l(i) < r(i) or for every *i* holds r(i) < l(i).
 - (41) Suppose d = d' + 1. Let A be a subset of \mathcal{R}^d . Then $A \in d'$ -cells(G) if and only if there exist l, r, i_0 such that $A = \operatorname{cell}(l, r)$ and $l(i_0) = r(i_0)$ and $l(i_0) \in G(i_0)$ and for every i such that $i \neq i_0$ holds l(i) < r(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).
 - (42) Suppose d = d'+1. Then $\operatorname{cell}(l, r) \in d'$ $\operatorname{cells}(G)$ if and only if there exists i_0 such that $l(i_0) = r(i_0)$ and $l(i_0) \in G(i_0)$ and for every i such that $i \neq i_0$ holds l(i) < r(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).

- (43) Let A be a subset of \mathcal{R}^d . Then $A \in 1$ -cells(G) if and only if there exist l, r, i_0 such that A = cell(l, r) and $l(i_0) < r(i_0)$ or d = 1 and $r(i_0) < l(i_0)$ and $\langle l(i_0), r(i_0) \rangle$ is a gap of $G(i_0)$ and for every i such that $i \neq i_0$ holds l(i) = r(i) and $l(i) \in G(i)$.
- (44) cell $(l, r) \in 1$ -cells(G) if and only if there exists i_0 such that $l(i_0) < r(i_0)$ or d = 1 and $r(i_0) < l(i_0)$ but $\langle l(i_0), r(i_0) \rangle$ is a gap of $G(i_0)$ but for every i such that $i \neq i_0$ holds l(i) = r(i) and $l(i) \in G(i)$.
- (45) Suppose $k \leq d$ and $k' \leq d$ and $\operatorname{cell}(l, r) \in k$ -cells(G) and $\operatorname{cell}(l', r') \in k'$ -cells(G) and $\operatorname{cell}(l, r) \subseteq \operatorname{cell}(l', r')$. Let given *i*. Then
 - (i) l(i) = l'(i) and r(i) = r'(i), or
 - (ii) l(i) = l'(i) and r(i) = l'(i), or
- (iii) l(i) = r'(i) and r(i) = r'(i), or
- (iv) $l(i) \leq r(i)$ and r'(i) < l'(i) and $r'(i) \leq l(i)$ and $r(i) \leq l'(i)$.
- (46) Suppose k < k' and $k' \leq d$ and $\operatorname{cell}(l, r) \in k$ $\operatorname{cells}(G)$ and $\operatorname{cell}(l', r') \in k'$ $\operatorname{cells}(G)$ and $\operatorname{cell}(l, r) \subseteq \operatorname{cell}(l', r')$. Then there exists i such that l(i) = l'(i) and r(i) = l'(i) or l(i) = r'(i) and r(i) = r'(i).
- (47) Let X, X' be subsets of Seg d. Suppose that
 - (i) $\operatorname{cell}(l,r) \subseteq \operatorname{cell}(l',r'),$
 - (ii) for every *i* holds $i \in X$ and l(i) < r(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i) or $i \notin X$ and l(i) = r(i) and $l(i) \in G(i)$, and
- (iii) for every *i* holds $i \in X'$ and l'(i) < r'(i) and $\langle l'(i), r'(i) \rangle$ is a gap of G(i) or $i \notin X'$ and l'(i) = r'(i) and $l'(i) \in G(i)$. Then
- (iv) $X \subseteq X'$,
- (v) for every *i* such that $i \in X$ or $i \notin X'$ holds l(i) = l'(i) and r(i) = r'(i), and
- (vi) for every *i* such that $i \notin X$ and $i \in X'$ holds l(i) = l'(i) and r(i) = l'(i) or l(i) = r'(i) and r(i) = r'(i).

Let us consider d, G, k. A k-cell of G is an element of k-cells(G).

Let us consider d, G, k. A k-chain of G is a subset of k-cells(G).

Let us consider d, G, k. The functor $0_k G$ yields a k-chain of G and is defined as follows:

(Def. 9) $0_k G = \emptyset$.

Let us consider d, G. The functor ΩG yielding a d-chain of G is defined as follows:

(Def. 10) $\Omega G = d$ -cells(G).

Let us consider d, G, k and let C_1 , C_2 be k-chains of G. Then $C_1 - C_2$ is a k-chain of G. We introduce $C_1 + C_2$ as a synonym of $C_1 - C_2$.

Let us consider d, G. The infinite cell of G yielding a d-cell of G is defined by:

164

(Def. 11) There exist l, r such that the infinite cell of G = cell(l, r) and for every i holds r(i) < l(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).

We now state two propositions:

- (48) If $\operatorname{cell}(l, r)$ is a *d*-cell of *G*, then $\operatorname{cell}(l, r) =$ the infinite cell of *G* iff for every *i* holds r(i) < l(i).
- (49) cell(l, r) = the infinite cell of G iff for every i holds r(i) < l(i) and $\langle l(i), r(i) \rangle$ is a gap of G(i).

The scheme *ChainInd* deals with a non zero natural number \mathcal{A} , a \mathcal{A} -dimensional grating \mathcal{B} , a natural number \mathcal{C} , a \mathcal{C} -chain \mathcal{D} of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{D}]$

provided the parameters have the following properties:

- $\mathcal{P}[0_{\mathcal{C}}\mathcal{B}],$
- For every \mathcal{C} -cell A of \mathcal{B} such that $A \in \mathcal{D}$ holds $\mathcal{P}[\{A\}]$, and
- For all C-chains C_1 , C_2 of \mathcal{B} such that $C_1 \subseteq \mathcal{D}$ and $C_2 \subseteq \mathcal{D}$ and $\mathcal{P}[C_1]$ and $\mathcal{P}[C_2]$ holds $\mathcal{P}[C_1 + C_2]$.

Let us consider d, G, k and let A be a k-cell of G. The functor A^* yields a k + 1-chain of G and is defined by:

(Def. 12) $A^* = \{B; B \text{ ranges over } k + 1\text{-cells of } G: A \subseteq B\}.$

Next we state the proposition

(50) For every k-cell A of G and for every k + 1-cell B of G holds $B \in A^*$ iff $A \subseteq B$.

Let us consider d, G, k and let C be a k + 1-chain of G. The functor ∂C yielding a k-chain of G is defined as follows:

(Def. 13) $\partial C = \{A; A \text{ ranges over } k \text{-cells of } G: k+1 \leq d \land \operatorname{card}(A^* \cap C) \text{ is odd} \}.$ We introduce \dot{C} as a synonym of ∂C .

Let us consider d, G, k, let C be a k + 1-chain of G, and let C' be a k-chain of G. We say that C' bounds C if and only if:

(Def. 14) $C' = \partial C$.

The following propositions are true:

- (51) For every k-cell A of G and for every k + 1-chain C of G holds $A \in \partial C$ iff $k + 1 \leq d$ and card $(A^* \cap C)$ is odd.
- (52) If k+1 > d, then for every k+1-chain C of G holds $\partial C = 0_k G$.
- (53) If $k + 1 \leq d$, then for every k-cell A of G and for every k + 1-cell B of G holds $A \in \partial\{B\}$ iff $A \subseteq B$.
- (54) If d = d' + 1, then for every d'-cell A of G holds card $A^* = 2$.
- (55) For every d-dimensional grating G and for every 0 + 1-cell B of G holds card $\partial \{B\} = 2$.
- (56) $\Omega G = (0_d G)^c$ and $0_d G = (\Omega G)^c$.

- (57) For every k-chain C of G holds $C + 0_k G = C$.
- (58) For every k-chain C of G holds $C + C = 0_k G$.
- (59) For every *d*-chain *C* of *G* holds $C^{c} = C + \Omega G$.
- $(60) \quad \partial 0_{k+1}G = 0_kG.$
- (61) For every d' + 1-dimensional grating G holds $\partial \Omega G = 0_{d'}G$.
- (62) For all k + 1-chains C_1 , C_2 of G holds $\partial(C_1 + C_2) = \partial C_1 + \partial C_2$.
- (63) For every d' + 1-dimensional grating G and for every d' + 1-chain C of G holds $\partial(C^{c}) = \partial C$.
- (64) For every k + 1 + 1-chain C of G holds $\partial \partial C = 0_k G$.

Let us consider d, G, k. A k-chain of G is called a k-cycle of G if:

- (Def. 15) k = 0 and card it is even or there exists k' such that k = k' + 1 and there exists a k' + 1-chain C of G such that C =it and $\partial C = 0_{k'}G$. One can prove the following propositions:
 - (65) For every k + 1-chain C of G holds C is a k + 1-cycle of G iff $\partial C = 0_k G$.
 - (66) If k > d, then every k-chain of G is a k-cycle of G.
 - (67) For every 0-chain C of G holds C is a 0-cycle of G iff card C is even.

Let us consider d, G, k and let C be a k + 1-cycle of G. Then ∂C can be characterized by the condition:

(Def. 16) $\partial C = 0_k G$.

Let us consider d, G, k. Then $0_k G$ is a k-cycle of G.

Let us consider d, G. Then ΩG is a d-cycle of G.

Let us consider d, G, k and let C_1 , C_2 be k-cycles of G. Then $C_1 - C_2$ is a k-cycle of G. We introduce $C_1 + C_2$ as a synonym of $C_1 - C_2$.

We now state the proposition

(68) For every *d*-cycle C of G holds C^{c} is a *d*-cycle of G.

Let us consider d, G, k and let C be a k+1-chain of G. Then ∂C is a k-cycle of G.

3. Groups and Homomorphisms

Let us consider d, G, k. The functor k-Chains(G) yields a strict Abelian group and is defined by the conditions (Def. 17).

(Def. 17)(i) The carrier of k-Chains(G) = $2^{k-\operatorname{cells}(G)}$,

- (ii) $0_{k-\operatorname{Chains}(G)} = 0_k G$, and
- (iii) for all elements A, B of k-Chains(G) and for all k-chains A', B' of G such that A = A' and B = B' holds A + B = A' + B'.

Let us consider d, G, k. A k-greating of G is an element of k-Chains(G). One can prove the following proposition

166

- (69) For every set x holds x is a k-chain of G iff x is a k-greating of G.
- Let us consider d, G, k. The functor ∂ yielding a homomorphism from (k +1)- Chains(G) to k- Chains(G) is defined by:
- (Def. 18) For every element A of (k + 1)- Chains(G) and for every k + 1-chain A' of G such that A = A' holds $\partial(A) = \partial A'$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [6]Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991. [12][13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [14] Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathematics, 3(1):57-65, 1992.
- [15] M. H. A. Newman. Elements of the Topology of Plane Sets of Points. Cambridge University Press, 1951.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
- Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
 [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 27, 2003