A Representation of Integers by Binary Arithmetics and Addition of Integers

Hisayoshi Kunimune
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. In this article, we introduce the new concept of 2's complement representation. Natural numbers that are congruent $\bmod n$ can be represented by the same n bits binary. Using the concept introduced here, negative numbers that are congruent $\bmod n$ also can be represented by the same n bit binary. We also show some properties of addition of integers using this concept.

MML Identifier: BINARI_4.

The articles [16], [20], [2], [3], [12], [11], [10], [9], [17], [13], [14], [6], [7], [1], [15], [18], [4], [21], [8], [5], and [19] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: n denotes a non empty natural number, j, k, l, m denote natural numbers, and g, h, i denote integers.

We now state a number of propositions:
(1) If $m>0$, then $m \cdot 2 \geqslant m+1$.
(2) For every natural number m holds $2^{m} \geqslant m$.
(3) For every natural number m holds $\langle\underbrace{0, \ldots, 0}_{m}\rangle+\langle\underbrace{0, \ldots, 0}_{m}\rangle=\langle\underbrace{0, \ldots, 0}_{m}\rangle$.
(4) For every natural number k such that $k \leqslant l$ and $l \leqslant m$ holds $k=l$ or $k+1 \leqslant l$ and $l \leqslant m$.
(5) For every non empty natural number n and for all n-tuples x, y of Boolean such that $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds carry $(x, y)=$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(6) For every non empty natural number n and for all n-tuples x, y of Boolean such that $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $x+y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(7) For every non empty natural number n and for every n-tuple F of Boolean such that $F=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $\operatorname{Intval}(F)=0$.
(8) If $l+m \leqslant k-1$, then $l<k$ and $m<k$.
(9) If $g \leqslant h+i$ and $h<0$ and $i<0$, then $g<h$ and $g<i$.
(10) If $l+m \leqslant 2^{n}-1$, then add_ovfl(n-BinarySequence (l), n-BinarySequence $(m))=$ false.
(11) For every non empty natural number n and for all natural numbers l, m such that $l+m \leqslant 2^{n}-1$ holds $\operatorname{Absval}((n$-BinarySequence $(l))+$ $(n$-BinarySequence $(m)))=l+m$.
(12) For every non empty natural number n and for every n-tuple z of Boolean such that $z_{n}=$ true holds $\operatorname{Absval}(z) \geqslant 2^{n-1}$.
(13) If $l+m \leqslant 2^{n-^{\prime} 1}-1$, then ($\operatorname{carry}(n$-BinarySequence (l), n-BinarySequence $(m)))_{n}=$ false.
(14) For every non empty natural number n such that $l+m \leqslant 2^{n-1}-1$ holds $\operatorname{Intval}((n$-BinarySequence $(l))+(n$-BinarySequence $(m)))=l+m$.
(15) For every 1-tuple z of Boolean such that $z=\langle$ true \rangle holds $\operatorname{Intval}(z)=-1$.
(16) For every 1-tuple z of Boolean such that $z=\langle$ false \rangle holds $\operatorname{Intval}(z)=0$.
(17) For every boolean set x holds true $\vee x=$ true.
(18) For every non empty natural number n holds $0 \leqslant 2^{n-1}-1$ and $-2^{n-^{\prime}} \leqslant$ 0.
(19) For all n-tuples x, y of Boolean such that $x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $y=$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds x and y are summable.
(20) $i \cdot n \bmod n=0$.

2. Majorant Power

Let m, j be natural numbers. The functor $\operatorname{MajP}(m, j)$ yielding a natural number is defined as follows:
(Def. 1) $2^{\operatorname{MajP}(m, j)} \geqslant j$ and $\operatorname{MajP}(m, j) \geqslant m$ and for every natural number k such that $2^{k} \geqslant j$ and $k \geqslant m$ holds $k \geqslant \operatorname{MajP}(m, j)$.
One can prove the following propositions:
(21) If $j \geqslant k$, then $\operatorname{MajP}(m, j) \geqslant \operatorname{MajP}(m, k)$.
(22) If $l \geqslant m$, then $\operatorname{MajP}(l, j) \geqslant \operatorname{MajP}(m, j)$.
(23) If $m \geqslant 1$, then $\operatorname{MajP}(m, 1)=m$.
(24) If $j \leqslant 2^{m}$, then $\operatorname{MajP}(m, j)=m$.
(25) If $j>2^{m}$, then $\operatorname{MajP}(m, j)>m$.

3. 2's Complement

Let m be a natural number and let i be an integer.
The functor 2 sComplement (m, i) yields a m-tuple of Boolean and is defined by:
(Def. 2) $\quad 2$ sComplement $(m, i)=\left\{\begin{array}{l}m \text {-BinarySequence }\left(\left|2^{\mathrm{MajP}(m,|i|)}+i\right|\right), \text { if } i<0, \\ m \text {-BinarySequence }(|i|), \text { otherwise. }\end{array}\right.$
The following propositions are true:
(26) For every natural number m holds 2 sComplement $(m, 0)=\langle\underbrace{0, \ldots, 0}_{m}\rangle$.
(27) For every integer i such that $i \leqslant 2^{n-^{\prime} 1}-1$ and $-2^{n-^{\prime} 1} \leqslant i$ holds Intval $(2 \operatorname{sComplement}(n, i))=i$.
(28) For all integers h, i such that $h \geqslant 0$ and $i \geqslant 0$ or $h<0$ and $i<0$ but $h \bmod 2^{n}=i \bmod 2^{n}$ holds 2 sComplement $(n, h)=2$ sComplement (n, i).
(29) For all integers h, i such that $h \geqslant 0$ and $i \geqslant 0$ or $h<0$ and $i<0$ but $h \equiv i\left(\bmod 2^{n}\right)$ holds 2 sComplement $(n, h)=2$ sComplement (n, i).
(30) For all natural numbers l, m such that $l \bmod 2^{n}=m \bmod 2^{n}$ holds n-BinarySequence $(l)=n$-BinarySequence (m).
(31) For all natural numbers l, m such that $l \equiv m\left(\bmod 2^{n}\right)$ holds n-BinarySequence $(l)=n$-BinarySequence (m).
(32) For every natural number j such that $1 \leqslant j$ and $j \leqslant n$ holds $(2 \text { sComplement }(n+1, i))_{j}=(2 \text { sComplement }(n, i))_{j}$.
(33) There exists an element x of Boolean such that 2 sComplement $(m+1, i)=$ $(2 \text { sComplement }(m, i))^{\wedge}\langle x\rangle$.
(34) There exists an element x of Boolean such that $(m+1)$-BinarySequence $(l)=$ (m-BinarySequence $(l))^{\wedge}\langle x\rangle$.
(35) Let n be a non empty natural number. Suppose $-2^{n} \leqslant h+i$ and $h<0$ and $i<0$ and $-2^{n-^{\prime} 1} \leqslant h$ and $-2^{n-^{\prime} 1} \leqslant i$. Then (carry (2sComplement $(n+$ $1, h), 2 \mathrm{sComplement}(n+1, i)))_{n+1}=$ true.
(36) For every non empty natural number n such that $-2^{n-{ }^{\prime}} \leqslant h+i$ and $h+i \leqslant 2^{n-^{\prime} 1}-1$ and $h \geqslant 0$ and $i \geqslant 0$ holds Intval(2sComplement $(n, h)+$ 2 sComplement $(n, i))=h+i$.
(37) Let n be a non empty natural number. Suppose $-2^{(n+1)-^{\prime} 1} \leqslant h+i$ and $h+i \leqslant 2^{(n+1)-^{\prime} 1}-1$ and $h<0$ and $i<0$ and $-2^{n-^{\prime} 1} \leqslant h$ and $-2^{n-^{\prime} 1} \leqslant i$. Then $\operatorname{Intval}(2$ sComplement $(n+1, h)+2 \operatorname{sComplement}(n+1, i))=h+i$.
(38) Let n be a non empty natural number. Suppose that $-2^{n-\prime^{\prime}} \leqslant h$ and $h \leqslant 2^{n-^{\prime} 1}-1$ and $-2^{n-^{\prime} 1} \leqslant i$ and $i \leqslant 2^{n-^{\prime} 1}-1$ and $-2^{n-^{\prime} 1} \leqslant h+i$ and $h+i \leqslant 2^{n-1}-1$ and $h \geqslant 0$ and $i<0$ or $h<0$ and $i \geqslant 0$. Then $\operatorname{Intval}(2$ SComplement $(n, h)+2$ sComplement $(n, i))=h+i$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, 7(1):23-26, 1998.
[10] Yasuho Mizuhara and Takaya Nishiyama. Binary arithmetics, addition and subtraction of integers. Formalized Mathematics, 5(1):27-29, 1996.
[11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[12] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[13] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[14] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[17] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 30, 2003

