A Representation of Integers by Binary Arithmetics and Addition of Integers

Hisayoshi Kunimune Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this article, we introduce the new concept of 2's complement representation. Natural numbers that are congruent mod n can be represented by the same n bits binary. Using the concept introduced here, negative numbers that are congruent mod n also can be represented by the same n bit binary. We also show some properties of addition of integers using this concept.

MML Identifier: BINARI_4.

The articles [16], [20], [2], [3], [12], [11], [10], [9], [17], [13], [14], [6], [7], [1], [15], [18], [4], [21], [8], [5], and [19] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: n denotes a non empty natural number, j, k, l, m denote natural numbers, and g, h, i denote integers.

We now state a number of propositions:

- (1) If m > 0, then $m \cdot 2 \ge m + 1$.
- (2) For every natural number m holds $2^m \ge m$.
- (3) For every natural number *m* holds $\langle \underbrace{0, \dots, 0}_{m} \rangle + \langle \underbrace{0, \dots, 0}_{m} \rangle = \langle \underbrace{0, \dots, 0}_{m} \rangle.$
- (4) For every natural number k such that $k \leq l$ and $l \leq m$ holds k = l or $k+1 \leq l$ and $l \leq m$.

C 2003 University of Białystok ISSN 1426-2630

- (5) For every non empty natural number *n* and for all *n*-tuples *x*, *y* of Boolean such that $x = \langle \underbrace{0, \ldots, 0}_{n} \rangle$ and $y = \langle \underbrace{0, \ldots, 0}_{n} \rangle$ holds carry $(x, y) = \langle \underbrace{0, \ldots, 0}_{n} \rangle$.
- (6) For every non empty natural number n and for all n-tuples x, y of Boolean such that $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$ and $y = \langle \underbrace{0, \dots, 0}_{n} \rangle$ holds $x + y = \langle \underbrace{0, \dots, 0}_{n} \rangle$.
- (7) For every non empty natural number n and for every n-tuple F of Boolean such that $F = \langle \underbrace{0, \dots, 0}_{n} \rangle$ holds $\operatorname{Intval}(F) = 0$.
- (8) If $l + m \leq k 1$, then l < k and m < k.
- (9) If $q \leq h + i$ and h < 0 and i < 0, then q < h and q < i.
- (10) If $l + m \leq 2^n 1$, then add_ovfl(*n*-BinarySequence(*l*), *n*-BinarySequence(*m*)) = false.
- (11) For every non empty natural number n and for all natural numbers l, m such that $l + m \leq 2^n 1$ holds Absval((n-BinarySequence(l)) + (n-BinarySequence(m))) = l + m.
- (12) For every non empty natural number n and for every n-tuple z of Boolean such that $z_n = true$ holds $Absval(z) \ge 2^{n-1}$.
- (13) If $l + m \leq 2^{n-1} 1$, then $(\operatorname{carry}(n \operatorname{-BinarySequence}(l), n \operatorname{-BinarySequence}(m))_n = false$.
- (14) For every non empty natural number n such that $l+m \leq 2^{n-1}-1$ holds Intval((n - BinarySequence(l)) + (n - BinarySequence(m))) = l + m.
- (15) For every 1-tuple z of Boolean such that $z = \langle true \rangle$ holds Intval(z) = -1.
- (16) For every 1-tuple z of Boolean such that $z = \langle false \rangle$ holds Intval(z) = 0.
- (17) For every boolean set x holds $true \lor x = true$.
- (18) For every non empty natural number n holds $0 \leq 2^{n-1} 1$ and $-2^{n-1} \leq 0$.
- (19) For all *n*-tuples x, y of *Boolean* such that $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$ and $y = (0, \dots, 0)$ holds are also been used as $x = \langle \underbrace{0, \dots, 0}_{n} \rangle$.

 $\langle \underbrace{0, \dots, 0}_{n} \rangle$ holds x and y are summable.

(20) $i \cdot n \mod n = 0.$

2. Majorant Power

Let m, j be natural numbers. The functor MajP(m, j) yielding a natural number is defined as follows:

176

(Def. 1) $2^{\operatorname{MajP}(m,j)} \ge j$ and $\operatorname{MajP}(m,j) \ge m$ and for every natural number k such that $2^k \ge j$ and $k \ge m$ holds $k \ge \operatorname{MajP}(m,j)$.

One can prove the following propositions:

- (21) If $j \ge k$, then $\operatorname{MajP}(m, j) \ge \operatorname{MajP}(m, k)$.
- (22) If $l \ge m$, then $\operatorname{MajP}(l, j) \ge \operatorname{MajP}(m, j)$.
- (23) If $m \ge 1$, then $\operatorname{MajP}(m, 1) = m$.
- (24) If $j \leq 2^m$, then MajP(m, j) = m.
- (25) If $j > 2^m$, then MajP(m, j) > m.

3. 2's Complement

Let m be a natural number and let i be an integer.

The functor 2sComplement(m, i) yields a *m*-tuple of *Boolean* and is defined by:

(Def. 2) 2sComplement
$$(m, i) = \begin{cases} m - \text{BinarySequence}(|2^{\text{MajP}(m, |i|)} + i|), \text{ if } i < 0, \\ m - \text{BinarySequence}(|i|), \text{ otherwise.} \end{cases}$$

The following propositions are true:

- (26) For every natural number *m* holds 2sComplement $(m, 0) = \langle \underbrace{0, \dots, 0} \rangle$.
- (27) For every integer *i* such that $i \leq 2^{n-i} 1$ and $-2^{n-i} \leq i$ holds Intval(2sComplement(n, i)) = *i*.
- (28) For all integers h, i such that $h \ge 0$ and $i \ge 0$ or h < 0 and i < 0 but $h \mod 2^n = i \mod 2^n$ holds 2sComplement(n, h) = 2sComplement(n, i).
- (29) For all integers h, i such that $h \ge 0$ and $i \ge 0$ or h < 0 and i < 0 but $h \equiv i \pmod{2^n}$ holds 2sComplement(n, h) = 2sComplement(n, i).
- (30) For all natural numbers l, m such that $l \mod 2^n = m \mod 2^n$ holds n-BinarySequence(l) = n-BinarySequence(m).
- (31) For all natural numbers l, m such that $l \equiv m \pmod{2^n}$ holds n-BinarySequence(l) = n-BinarySequence(m).
- (32) For every natural number j such that $1 \leq j$ and $j \leq n$ holds $(2\text{sComplement}(n+1,i))_j = (2\text{sComplement}(n,i))_j.$
- (33) There exists an element x of Boolean such that $2\text{sComplement}(m+1, i) = (2\text{sComplement}(m, i)) \cap \langle x \rangle.$
- (34) There exists an element x of Boolean such that (m+1)-BinarySequence(l) = (m-BinarySequence $(l) \cap \langle x \rangle$.
- (35) Let *n* be a non empty natural number. Suppose $-2^n \le h+i$ and h < 0 and i < 0 and $-2^{n-i} \le h$ and $-2^{n-i} \le i$. Then $(\operatorname{carry}(2\operatorname{sComplement}(n+1,h), 2\operatorname{sComplement}(n+1,i)))_{n+1} = true$.

- (36) For every non empty natural number n such that $-2^{n-i} \leq h+i$ and $h+i \leq 2^{n-i}-1$ and $h \geq 0$ and $i \geq 0$ holds Intval(2sComplement(n,h) + 2sComplement(n,i)) = h+i.
- (37) Let n be a non empty natural number. Suppose $-2^{(n+1)-1} \leq h+i$ and $h+i \leq 2^{(n+1)-1}-1$ and h<0 and i<0 and $-2^{n-1} \leq h$ and $-2^{n-1} \leq i$. Then Intval(2sComplement(n+1,h)+2sComplement(n+1,i)) = h+i.
- (38) Let n be a non empty natural number. Suppose that $-2^{n-1} \leq h$ and $h \leq 2^{n-1} 1$ and $-2^{n-1} \leq i$ and $i \leq 2^{n-1} 1$ and $-2^{n-1} \leq h+i$ and $h+i \leq 2^{n-1} 1$ and $h \geq 0$ and i < 0 or h < 0 and $i \geq 0$. Then Intval(2sComplement(n, h) + 2sComplement(n, i)) = h + i.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
 [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
 [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [9] Robert Milewski. Binary arithmetics. Binary sequences. Formalized Mathematics, 7(1):23-26, 1998.
- [10] Yasuho Mizuhara and Takaya Nishiyama. Binary arithmetics, addition and subtraction of integers. Formalized Mathematics, 5(1):27–29, 1996.
- [11] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [12] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [13] Konrad Raczkowski and Andrzej Nędzusiak. Series. *Formalized Mathematics*, 2(4):449–452, 1991.
- [14] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [17] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [20] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733–737, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 30, 2003

178