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The terminology and notation used here are introduced in the following articles:

[7], [3], [10], [11], [2], [1], [13], [12], [6], [9], [5], and [4].

1. Definitions of Sum and Intersection of Subspaces

Let V be a real unitary space and letW1,W2 be subspaces of V . The functor

W1 + W2 yields a strict subspace of V and is defined as follows:

(Def. 1) The carrier of W1 + W2 = {v + u; v ranges over vectors of V , u ranges

over vectors of V : v ∈W1 ∧ u ∈W2}.

Let V be a real unitary space and letW1,W2 be subspaces of V . The functor

W1 ∩W2 yields a strict subspace of V and is defined by:

(Def. 2) The carrier of W1 ∩W2 = (the carrier of W1) ∩ (the carrier of W2).
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2. Theorems of Sum and Intersecton of Subspaces

One can prove the following propositions:

(1) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a

set. Then x ∈ W1 + W2 if and only if there exist vectors v1, v2 of V such

that v1 ∈W1 and v2 ∈W2 and x = v1 + v2.

(2) Let V be a real unitary space, W1, W2 be subspaces of V , and v be a

vector of V . If v ∈W1 or v ∈W2, then v ∈W1 + W2.

(3) Let V be a real unitary space, W1, W2 be subspaces of V , and x be a

set. Then x ∈W1 ∩W2 if and only if x ∈W1 and x ∈W2.

(4) For every real unitary space V and for every strict subspace W of V

holds W + W = W.

(5) For every real unitary space V and for all subspaces W1, W2 of V holds

W1 + W2 = W2 + W1.

(6) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 + (W2 + W3) = (W1 + W2) + W3.

(7) Let V be a real unitary space and W1, W2 be subspaces of V . Then W1

is a subspace of W1 + W2 and W2 is a subspace of W1 + W2.

(8) Let V be a real unitary space,W1 be a subspace of V , andW2 be a strict

subspace of V . Then W1 is a subspace of W2 if and only ifW1 +W2 = W2.

(9) For every real unitary space V and for every strict subspace W of V

holds 0V + W = W and W + 0V = W.

(10) Let V be a real unitary space. Then 0V + ΩV = the unitary space

structure of V and ΩV + 0V = the unitary space structure of V .

(11) Let V be a real unitary space andW be a subspace of V . Then ΩV +W =

the unitary space structure of V andW +ΩV = the unitary space structure

of V .

(12) For every strict real unitary space V holds ΩV + ΩV = V.

(13) For every real unitary space V and for every strict subspace W of V

holds W ∩W = W.

(14) For every real unitary space V and for all subspaces W1, W2 of V holds

W1 ∩W2 = W2 ∩W1.

(15) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 ∩ (W2 ∩W3) = (W1 ∩W2) ∩W3.

(16) Let V be a real unitary space and W1, W2 be subspaces of V . Then

W1 ∩W2 is a subspace of W1 and W1 ∩W2 is a subspace of W2.

(17) Let V be a real unitary space,W2 be a subspace of V , andW1 be a strict

subspace of V . Then W1 is a subspace of W2 if and only if W1∩W2 = W1.
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(18) For every real unitary space V and for every subspace W of V holds

0V ∩W = 0V and W ∩ 0V = 0V .

(19) For every real unitary space V holds 0V ∩ΩV = 0V and ΩV ∩ 0V = 0V .

(20) For every real unitary space V and for every strict subspace W of V

holds ΩV ∩W = W and W ∩ ΩV = W.

(21) For every strict real unitary space V holds ΩV ∩ ΩV = V.

(22) For every real unitary space V and for all subspaces W1, W2 of V holds

W1 ∩W2 is a subspace of W1 + W2.

(23) For every real unitary space V and for every subspace W1 of V and for

every strict subspace W2 of V holds W1 ∩W2 + W2 = W2.

(24) For every real unitary space V and for every subspace W1 of V and for

every strict subspace W2 of V holds W2 ∩ (W2 + W1) = W2.

(25) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W1 ∩W2 + W2 ∩W3 is a subspace of W2 ∩ (W1 + W3).

(26) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W2, then W2 ∩ (W1 + W3) = W1 ∩W2 + W2 ∩W3.

(27) For every real unitary space V and for all subspaces W1, W2, W3 of V

holds W2 + W1 ∩W3 is a subspace of (W1 + W2) ∩ (W2 + W3).

(28) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a subspace of W2, then W2 + W1 ∩W3 = (W1 + W2) ∩ (W2 + W3).

(29) Let V be a real unitary space and W1, W2, W3 be subspaces of V . If W1

is a strict subspace of W3, then W1 + W2 ∩W3 = (W1 + W2) ∩W3.

(30) For every real unitary space V and for all strict subspaces W1, W2 of V

holds W1 + W2 = W2 iff W1 ∩W2 = W1.

(31) Let V be a real unitary space, W1 be a subspace of V , and W2, W3

be strict subspaces of V . If W1 is a subspace of W2, then W1 + W3 is a

subspace of W2 + W3.

(32) Let V be a real unitary space and W1, W2 be subspaces of V . Then

there exists a subspace W of V such that the carrier of W = (the carrier

of W1) ∪ (the carrier of W2) if and only if W1 is a subspace of W2 or W2

is a subspace of W1.

3. Introduction of a Set of Subspaces of Real Unitary Space

Let V be a real unitary space. The functor SubspacesV yielding a set is

defined as follows:

(Def. 3) For every set x holds x ∈ SubspacesV iff x is a strict subspace of V .

Let V be a real unitary space. Observe that SubspacesV is non empty.

The following proposition is true
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(33) For every strict real unitary space V holds V ∈ SubspacesV.

4. Definition of the Direct Sum and Linear Complement of

Subspaces

Let V be a real unitary space and let W1, W2 be subspaces of V . We say

that V is the direct sum of W1 and W2 if and only if:

(Def. 4) The unitary space structure of V = W1 + W2 and W1 ∩W2 = 0V .

Let V be a real unitary space and let W be a subspace of V . A subspace of

V is called a linear complement of W if:

(Def. 5) V is the direct sum of it and W .

Let V be a real unitary space and let W be a subspace of V . Observe that

there exists a linear complement of W which is strict.

Next we state two propositions:

(34) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose

V is the direct sum of W1 and W2. Then W2 is a linear complement of

W1.

(35) Let V be a real unitary space, W be a subspace of V , and L be a linear

complement of W . Then V is the direct sum of L and W and the direct

sum of W and L.

5. Theorems Concerning the Sum, Linear Complement and Coset

of Subspace

The following propositions are true:

(36) Let V be a real unitary space, W be a subspace of V , and L be a linear

complement of W . Then W + L = the unitary space structure of V and

L + W = the unitary space structure of V .

(37) Let V be a real unitary space, W be a subspace of V , and L be a linear

complement of W . Then W ∩ L = 0V and L ∩W = 0V .

(38) Let V be a real unitary space and W1, W2 be subspaces of V . If V is the

direct sum of W1 and W2, then V is the direct sum of W2 and W1.

(39) Every real unitary space V is the direct sum of 0V and ΩV and the direct

sum of ΩV and 0V .

(40) Let V be a real unitary space, W be a subspace of V , and L be a linear

complement of W . Then W is a linear complement of L.

(41) For every real unitary space V holds 0V is a linear complement of ΩV

and ΩV is a linear complement of 0V .



operations on subspaces in real unitary space 13

(42) Let V be a real unitary space, W1, W2 be subspaces of V , C1 be a coset

of W1, and C2 be a coset of W2. If C1 meets C2, then C1 ∩ C2 is a coset

of W1 ∩W2.

(43) Let V be a real unitary space and W1, W2 be subspaces of V . Then V is

the direct sum ofW1 andW2 if and only if for every coset C1 ofW1 and for

every coset C2 of W2 there exists a vector v of V such that C1∩C2 = {v}.

6. Decomposition of a Vector of Real Unitary Space

Next we state three propositions:

(44) Let V be a real unitary space and W1, W2 be subspaces of V . Then

W1 +W2 = the unitary space structure of V if and only if for every vector

v of V there exist vectors v1, v2 of V such that v1 ∈W1 and v2 ∈W2 and

v = v1 + v2.

(45) Let V be a real unitary space, W1, W2 be subspaces of V , and v, v1, v2,

u1, u2 be vectors of V . Suppose V is the direct sum of W1 and W2 and

v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and

u2 ∈W2. Then v1 = u1 and v2 = u2.

(46) Let V be a real unitary space and W1, W2 be subspaces of V . Suppose

that

(i) V = W1 + W2, and

(ii) there exists a vector v of V such that for all vectors v1, v2, u1, u2 of

V such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and

v2 ∈W2 and u2 ∈W2 holds v1 = u1 and v2 = u2.

Then V is the direct sum of W1 and W2.

Let V be a real unitary space, let v be a vector of V , and let W1, W2 be

subspaces of V . Let us assume that V is the direct sum of W1 and W2. The

functor v〈〈W1,W2〉〉
yielding an element of [: the carrier of V , the carrier of V :] is

defined as follows:

(Def. 6) v = (v〈〈W1,W2〉〉
)1+(v〈〈W1,W2〉〉

)2 and (v〈〈W1,W2〉〉
)1 ∈W1 and (v〈〈W1,W2〉〉

)2 ∈

W2.

We now state several propositions:

(47) Let V be a real unitary space, v be a vector of V , and W1, W2 be

subspaces of V . If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉
)1 =

(v〈〈W2,W1〉〉
)2.

(48) Let V be a real unitary space, v be a vector of V , and W1, W2 be

subspaces of V . If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉
)2 =

(v〈〈W2,W1〉〉
)1.
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(49) Let V be a real unitary space, W be a subspace of V , L be a linear

complement of W , v be a vector of V , and t be an element of [: the carrier

of V , the carrier of V :]. If t1 + t2 = v and t1 ∈ W and t2 ∈ L, then

t = v〈〈W,L〉〉.

(50) Let V be a real unitary space, W be a subspace of V , L be a linear

complement ofW , and v be a vector of V . Then (v〈〈W,L〉〉)1+(v〈〈W,L〉〉)2 = v.

(51) Let V be a real unitary space, W be a subspace of V , L be a linear

complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 ∈ W and

(v〈〈W,L〉〉)2 ∈ L.

(52) Let V be a real unitary space, W be a subspace of V , L be a linear

complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 = (v〈〈L,W〉〉)2.

(53) Let V be a real unitary space, W be a subspace of V , L be a linear

complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)2 = (v〈〈L,W〉〉)1.

7. Introduction of Operations on Set of Subspaces

Let V be a real unitary space. The functor SubJoinV yields a binary ope-

ration on SubspacesV and is defined by:

(Def. 7) For all elements A1, A2 of SubspacesV and for all subspacesW1,W2 of V

such that A1 = W1 and A2 = W2 holds (SubJoinV )(A1, A2) = W1 + W2.

Let V be a real unitary space. The functor SubMeetV yielding a binary

operation on SubspacesV is defined as follows:

(Def. 8) For all elements A1, A2 of SubspacesV and for all subspacesW1,W2 of V

such that A1 = W1 and A2 = W2 holds (SubMeetV )(A1, A2) = W1 ∩W2.

8. Theorems of Functions SubJoin, SubMeet

We now state the proposition

(54) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is a lattice.

Let V be a real unitary space. Note that 〈SubspacesV,SubJoinV, SubMeetV 〉

is lattice-like.

The following propositions are true:

(55) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is lower-bounded.

(56) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is upper-bounded.
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(57) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is a bound lattice.

(58) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is modular.

(59) For every real unitary space V holds 〈SubspacesV, SubJoinV,

SubMeetV 〉 is complemented.

Let V be a real unitary space.

Observe that 〈SubspacesV,SubJoinV, SubMeetV 〉 is lower-bounded, upper-

bounded, modular, and complemented.

One can prove the following proposition

(60) Let V be a real unitary space and W1, W2, W3 be strict subspaces of V .

If W1 is a subspace of W2, then W1 ∩W3 is a subspace of W2 ∩W3.

9. Auxiliary Theorems in Real Unitary Space

We now state three propositions:

(61) Let V be a real unitary space and W be a strict subspace of V . Suppose

that for every vector v of V holds v ∈ W. Then W = the unitary space

structure of V .

(62) Let V be a real unitary space, W be a subspace of V , and v be a vector

of V . Then there exists a coset C of W such that v ∈ C.

(63) Let V be a real unitary space, W be a subspace of V , v be a vector of

V , and x be a set. Then x ∈ v + W if and only if there exists a vector u

of V such that u ∈W and x = v + u.
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