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Summary. We continue the formalization of [8] towards Gröbner Bases.
In this article we introduce reduction of polynomials and prove its termination,

its adequateness for ideal congruence as well as the translation lemma used later

to show confluence of reduction.
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The notation and terminology used here are introduced in the following papers:

[21], [26], [12], [27], [29], [28], [10], [11], [4], [3], [17], [6], [22], [13], [5], [25], [2],

[7], [24], [9], [16], [14], [19], [1], [23], [18], [15], and [20].

1. Preliminaries

Let n be an ordinal number and let R be a non trivial zero structure. One

can verify that there exists a monomial of n, R which is non-zero.

Let us observe that there exists a field which is non trivial.

Let us note that every left zeroed add-right-cancelable right distributive left

unital commutative associative non empty double loop structure which is field-

like is also integral domain-like.

Let n be an ordinal number, let L be an add-associative right complemen-

table left zeroed right zeroed unital distributive integral domain-like non trivial

double loop structure, and let p, q be non-zero finite-Support series of n, L.

Note that p ∗ q is non-zero.
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2. More on Polynomials and Monomials

The following propositions are true:

(1) Let X be a set, L be an Abelian add-associative right zeroed right com-

plementable non empty loop structure, and p, q be series of X, L. Then

−(p + q) = −p +−q.

(2) For every set X and for every left zeroed non empty loop structure L

and for every series p of X, L holds 0 (X, L) + p = p.

(3) Let X be a set, L be an add-associative right zeroed right comple-

mentable non empty loop structure, and p be a series of X, L. Then

−p + p = 0 (X, L) and p +−p = 0 (X,L).

(4) Let n be a set, L be an add-associative right zeroed right complementable

non empty loop structure, and p be a series of n, L. Then p−0 (n,L) = p.

(5) Let n be an ordinal number, L be an add-associative right complemen-

table right zeroed add-left-cancelable left distributive non empty double

loop structure, and p be a series of n, L. Then 0 (n,L) ∗ p = 0 (n, L).

(6) Let n be an ordinal number, L be an Abelian right zeroed add-associative

right complementable unital distributive associative commutative non

trivial double loop structure, and p, q be polynomials of n, L. Then

−p ∗ q = (−p) ∗ q and −p ∗ q = p ∗ −q.

(7) Let n be an ordinal number, L be an add-associative right complemen-

table right zeroed distributive non empty double loop structure, p be a

polynomial of n, L, m be a monomial of n, L, and b be a bag of n. Then

(m ∗ p)(termm + b) = m(termm) · p(b).

(8) Let X be a set, L be a right zeroed add-left-cancelable left distributive

non empty double loop structure, and p be a series of X, L. Then 0L · p =

0 (X, L).

(9) Let X be a set, L be an add-associative right zeroed right complemen-

table distributive non empty double loop structure, p be a series of X, L,

and a be an element of L. Then −a · p = (−a) · p and −a · p = a · −p.

(10) Let X be a set, L be a left distributive non empty double loop structure,

p be a series ofX, L, and a, a′ be elements of L. Then a·p+a′·p = (a+a′)·p.

(11) Let X be a set, L be an associative non empty multiplicative loop with

zero structure, p be a series of X, L, and a, a′ be elements of L. Then

(a · a′) · p = a · (a′ · p).

(12) Let n be an ordinal number, L be an add-associative right zeroed right

complementable unital associative commutative distributive non empty

double loop structure, p, p′ be series of n, L, and a be an element of L.

Then a · (p ∗ p′) = p ∗ (a · p′).
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3. Multiplication of Polynomials with Bags

Let n be an ordinal number, let b be a bag of n, let L be a non empty zero

structure, and let p be a series of n, L. The functor b ∗ p yielding a series of n,

L is defined as follows:

(Def. 1) For every bag b′ of n such that b | b′ holds (b ∗ p)(b′) = p(b′ −′ b) and for

every bag b′ of n such that b ∤ b′ holds (b ∗ p)(b′) = 0L.

Let n be an ordinal number, let b be a bag of n, let L be a non empty

zero structure, and let p be a finite-Support series of n, L. Note that b ∗ p is

finite-Support.

We now state a number of propositions:

(13) Let n be an ordinal number, b, b′ be bags of n, L be a non empty zero

structure, and p be a series of n, L. Then (b ∗ p)(b′ + b) = p(b′).

(14) Let n be an ordinal number, L be a non empty zero structure, p be a

polynomial of n, L, and b be a bag of n. Then Support(b ∗ p) ⊆ {b + b′; b′

ranges over elements of Bagsn : b′ ∈ Support p}.

(15) Let n be an ordinal number, T be a connected admissible term order of

n, L be a non trivial zero structure, p be a non-zero polynomial of n, L,

and b be a bag of n. Then HT(b ∗ p, T ) = b +HT(p, T ).

(16) Let n be an ordinal number, T be a connected admissible term order of

n, L be a non empty zero structure, p be a polynomial of n, L, and b, b′

be bags of n. If b′ ∈ Support(b ∗ p), then b′ ¬T b +HT(p, T ).

(17) Let n be an ordinal number, T be a connected term order of n, L be a non

empty zero structure, and p be a series of n, L. Then EmptyBagn∗p = p.

(18) Let n be an ordinal number, T be a connected term order of n, L be a

non empty zero structure, p be a series of n, L, and b1, b2 be bags of n.

Then (b1 + b2) ∗ p = b1 ∗ (b2 ∗ p).

(19) Let n be an ordinal number, L be an add-associative right zeroed right

complementable distributive non trivial double loop structure, p be a poly-

nomial of n, L, and a be an element of L. Then Support(a ·p) ⊆ Support p.

(20) Let n be an ordinal number, L be an integral domain-like non trivial

double loop structure, p be a polynomial of n, L, and a be a non-zero

element of L. Then Support p ⊆ Support(a · p).

(21) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right zeroed right complementable distributive integral

domain-like non trivial double loop structure, p be a polynomial of n, L,

and a be a non-zero element of L. Then HT(a · p, T ) = HT(p, T ).

(22) Let n be an ordinal number, L be an add-associative right comple-

mentable right zeroed distributive non trivial double loop structure, p
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be a series of n, L, b be a bag of n, and a be an element of L. Then

a · (b ∗ p) = Monom(a, b) ∗ p.

(23) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, p be

a non-zero polynomial of n, L, q be a polynomial of n, L, and m be a

non-zero monomial of n, L. If HT(p, T ) ∈ Support q, then HT(m ∗ p, T ) ∈

Support(m ∗ q).

4. Orders on Polynomials

Let n be an ordinal number and let T be a connected term order of n.

Observe that 〈Bagsn, T 〉 is connected.

Let n be a natural number and let T be an admissible term order of n. Note

that 〈Bagsn, T 〉 is well founded.

Let n be an ordinal number, let T be a connected term order of n, let L be

a non empty zero structure, and let p, q be polynomials of n, L. The predicate

p ¬T q is defined as follows:

(Def. 2) 〈〈Support p, Support q〉〉 ∈ FinOrd〈Bagsn, T 〉.

Let n be an ordinal number, let T be a connected term order of n, let L be

a non empty zero structure, and let p, q be polynomials of n, L. The predicate

p <T q is defined as follows:

(Def. 3) p ¬T q and Support p 6= Support q.

Let n be an ordinal number, let T be a connected term order of n, let L

be a non empty zero structure, and let p be a polynomial of n, L. The functor

Support(p, T ) yielding an element of Fin (the carrier of 〈Bagsn, T 〉) is defined

by:

(Def. 4) Support(p, T ) = Support p.

Next we state a number of propositions:

(24) Let n be an ordinal number, T be a connected term order of n, L be a

non trivial zero structure, and p be a non-zero polynomial of n, L. Then

PosetMaxSupport(p, T ) = HT(p, T ).

(25) Let n be an ordinal number, T be a connected term order of n, L be a

non empty loop structure, and p be a polynomial of n, L. Then p ¬T p.

(26) Let n be an ordinal number, T be a connected term order of n, L be a

non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

and q ¬T p if and only if Support p = Support q.

(27) Let n be an ordinal number, T be a connected term order of n, L be a

non empty loop structure, and p, q, r be polynomials of n, L. If p ¬T q

and q ¬T r, then p ¬T r.
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(28) Let n be an ordinal number, T be a connected term order of n, L be a

non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

or q ¬T p.

(29) Let n be an ordinal number, T be a connected term order of n, L be a

non empty loop structure, and p, q be polynomials of n, L. Then p ¬T q

if and only if q 6<T p.

(30) Let n be an ordinal number, T be a connected term order of n, L be a non

empty zero structure, and p be a polynomial of n, L. Then 0 (n,L) ¬T p.

(31) Let n be a natural number, T be an admissible connected term order

of n, L be an add-associative right complementable right zeroed unital

distributive non trivial double loop structure, and P be a non empty subset

of Polynom-Ring(n,L). Then there exists a polynomial p of n, L such that

p ∈ P and for every polynomial q of n, L such that q ∈ P holds p ¬T q.

(32) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right complementable right zeroed non trivial

loop structure, and p, q be polynomials of n, L. Then p <T q if and only

if one of the following conditions is satisfied:

(i) p = 0 (n,L) and q 6= 0 (n,L), or

(ii) HT(p, T ) <T HT(q, T ), or

(iii) HT(p, T ) = HT(q, T ) and Red(p, T ) <T Red(q, T ).

(33) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right complementable right zeroed non trivial

loop structure, and p be a non-zero polynomial of n, L. Then Red(p, T ) <T

HM(p, T ).

(34) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, and p be a polynomial of n, L. Then HM(p, T ) ¬T p.

(35) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed non trivial loop

structure, and p be a non-zero polynomial of n, L. Then Red(p, T ) <T p.

5. Polynomial Reduction

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, let f , p, g be

polynomials of n, L, and let b be a bag of n. We say that f reduces to g, p, b,

T if and only if:

(Def. 5) f 6= 0 (n, L) and p 6= 0 (n,L) and b ∈ Support f and there exists a bag

s of n such that s +HT(p, T ) = b and g = f − f(b)
HC(p,T ) · (s ∗ p).
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Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let f , p,

g be polynomials of n, L. We say that f reduces to g, p, T if and only if:

(Def. 6) There exists a bag b of n such that f reduces to g, p, b, T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, let f , g be

polynomials of n, L, and let P be a subset of Polynom-Ring(n,L). We say that

f reduces to g, P , T if and only if:

(Def. 7) There exists a polynomial p of n, L such that p ∈ P and f reduces to g,

p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let f , p

be polynomials of n, L. We say that f is reducible wrt p, T if and only if:

(Def. 8) There exists a polynomial g of n, L such that f reduces to g, p, T .

We introduce f is irreducible wrt p, T and f is in normal form wrt p, T as

antonyms of f is reducible wrt p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, let f be a

polynomial of n, L, and let P be a subset of Polynom-Ring(n,L). We say that

f is reducible wrt P , T if and only if:

(Def. 9) There exists a polynomial g of n, L such that f reduces to g, P , T .

We introduce f is irreducible wrt P , T and f is in normal form wrt P , T as

antonyms of f is reducible wrt P , T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let f , p,

g be polynomials of n, L. We say that f top reduces to g, p, T if and only if:

(Def. 10) f reduces to g, p, HT(f, T ), T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let f , p

be polynomials of n, L. We say that f is top reducible wrt p, T if and only if:

(Def. 11) There exists a polynomial g of n, L such that f top reduces to g, p, T .

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, let f be a
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polynomial of n, L, and let P be a subset of Polynom-Ring(n,L). We say that

f is top reducible wrt P , T if and only if:

(Def. 12) There exists a polynomial p of n, L such that p ∈ P and f is top reducible

wrt p, T .

Next we state several propositions:

(36) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

f be a polynomial of n, L, and p be a non-zero polynomial of n, L. Then

f is reducible wrt p, T if and only if there exists a bag b of n such that

b ∈ Support f and HT(p, T ) | b.

(37) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive field-like non trivial double loop structure,

and p be a polynomial of n, L. Then 0 (n,L) is irreducible wrt p, T .

(38) Let n be an ordinal number, T be an admissible connected term order of

n, L be an add-associative right complementable right zeroed commutative

associative well unital distributive Abelian field-like non degenerated non

empty double loop structure, f , p be polynomials of n, L, and m be a non-

zero monomial of n, L. If f reduces to f−m∗p, p, T , then HT(m∗p, T ) ∈

Support f.

(39) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive well unital distributive field-like non degenerated non empty double

loop structure, f , p, g be polynomials of n, L, and b be a bag of n. If f

reduces to g, p, b, T , then b /∈ Support g.

(40) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive field-like non trivial double loop

structure, f , p, g be polynomials of n, L, and b, b′ be bags of n. Suppose

b <T b′. If f reduces to g, p, b, T , then b′ ∈ Support g iff b′ ∈ Support f.

(41) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed commu-

tative associative well unital distributive field-like non trivial double loop

structure, f , p, g be polynomials of n, L, and b, b′ be bags of n. If b <T b′,

then if f reduces to g, p, b, T , then f(b′) = g(b′).

(42) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative well unital distributive field-like non degenerated non empty

double loop structure, and f , p, g be polynomials of n, L. Suppose f
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reduces to g, p, T . Let b be a bag of n. If b ∈ Support g, then b ¬T

HT(f, T ).

(43) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, and f , p, g be polynomials of n, L. If f

reduces to g, p, T , then g <T f.

6. Polynomial Reduction Relation

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative

well unital distributive field-like non trivial double loop structure, and let P be

a subset of Polynom-Ring(n,L). The functor PolyRedRel(P, T ) yields a rela-

tion between (the carrier of Polynom-Ring(n,L)) \ {0 (n,L)} and the carrier of

Polynom-Ring(n,L) and is defined by:

(Def. 13) For all polynomials p, q of n, L holds 〈〈p, q〉〉 ∈ PolyRedRel(P, T ) iff p

reduces to q, P , T .

Next we state the proposition

(44) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, f , g be polynomials of n, L, and P be

a subset of Polynom-Ring(n,L). If PolyRedRel(P, T ) reduces f to g, then

g ¬T f but g = 0 (n, L) or HT(g, T ) ¬T HT(f, T ).

Let n be a natural number, let T be a connected admissible term order

of n, let L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated non

empty double loop structure, and let P be a subset of Polynom-Ring(n,L). One

can verify that PolyRedRel(P, T ) is strongly-normalizing.

One can prove the following propositions:

(45) Let n be a natural number, T be an admissible connected term order of

n, L be an add-associative right complementable left zeroed right zeroed

commutative associative well unital distributive Abelian field-like non tri-

vial double loop structure, P be a subset of Polynom-Ring(n,L), and f ,

h be polynomials of n, L. If f ∈ P, then PolyRedRel(P, T ) reduces h ∗ f

to 0 (n,L).

(46) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated
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non empty double loop structure, P be a subset of Polynom-Ring(n,L),

f , g be polynomials of n, L, and m be a non-zero monomial of n, L. If f

reduces to g, P , T , then m ∗ f reduces to m ∗ g, P , T .

(47) Let n be an ordinal number, T be a connected admissible term order of n,

L be an Abelian add-associative right complementable right zeroed com-

mutative associative well unital distributive field-like non degenerated non

empty double loop structure, P be a subset of Polynom-Ring(n,L), f , g

be polynomials of n, L, and m be a monomial of n, L. If PolyRedRel(P, T )

reduces f to g, then PolyRedRel(P, T ) reduces m ∗ f to m ∗ g.

(48) Let n be an ordinal number, T be a connected admissible term order

of n, L be an Abelian add-associative right complementable right zeroed

commutative associative well unital distributive field-like non degenerated

non empty double loop structure, P be a subset of Polynom-Ring(n,L), f

be a polynomial of n, L, andm be a monomial of n, L. If PolyRedRel(P, T )

reduces f to 0 (n, L), then PolyRedRel(P, T ) reduces m ∗ f to 0 (n, L).

(49) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive Abelian field-like non trivial double loop

structure, P be a subset of Polynom-Ring(n,L), and f , g, h, h1 be poly-

nomials of n, L. Suppose f − g = h and PolyRedRel(P, T ) reduces h to

h1. Then there exist polynomials f1, g1 of n, L such that f1− g1 = h1 and

PolyRedRel(P, T ) reduces f to f1 and PolyRedRel(P, T ) reduces g to g1.

(50) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive Abelian field-like non trivial double loop

structure, P be a subset of Polynom-Ring(n,L), and f , g be polynomials

of n, L. Suppose PolyRedRel(P, T ) reduces f − g to 0 (n, L). Then f and

g are convergent w.r.t. PolyRedRel(P, T ).

(51) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right complementable right zeroed commutative asso-

ciative well unital distributive Abelian field-like non trivial double loop

structure, P be a subset of Polynom-Ring(n,L), and f , g be polynomials

of n, L. Suppose PolyRedRel(P, T ) reduces f − g to 0 (n, L). Then f and

g are convertible w.r.t. PolyRedRel(P, T ).

Let R be a non empty loop structure, let I be a subset of R, and let a, b be

elements of R. The predicate a ≡ b(mod I) is defined as follows:

(Def. 14) a− b ∈ I.

One can prove the following propositions:

(52) Let R be an add-associative left zeroed right zeroed right complementa-

ble right distributive non empty double loop structure, I be a right ideal
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non empty subset of R, and a be an element of R. Then a ≡ a(mod I).

(53) Let R be an add-associative right zeroed right complementable right

unital right distributive non empty double loop structure, I be a right

ideal non empty subset of R, and a, b be elements of R. If a ≡ b(mod I),

then b ≡ a(mod I).

(54) Let R be an add-associative right zeroed right complementable non

empty loop structure, I be an add closed non empty subset of R, and a, b,

c be elements of R. If a ≡ b(mod I) and b ≡ c(mod I), then a ≡ c(mod I).

(55) Let R be an Abelian add-associative right zeroed right complementable

unital distributive associative non trivial double loop structure, I be an

add closed non empty subset of R, and a, b, c, d be elements of R. If

a ≡ b(mod I) and c ≡ d(mod I), then a + c ≡ b + d(mod I).

(56) Let R be an add-associative right zeroed right complementable commu-

tative distributive non empty double loop structure, I be an add closed

right ideal non empty subset of R, and a, b, c, d be elements of R. If

a ≡ b(mod I) and c ≡ d(mod I), then a · c ≡ b · d(mod I).

(57) Let n be an ordinal number, T be a connected term order of n, L be

an Abelian add-associative right complementable right zeroed commuta-

tive associative well unital distributive field-like non trivial double loop

structure, P be a subset of Polynom-Ring(n, L), and f , g be elements of

Polynom-Ring(n, L). If f and g are convertible w.r.t. PolyRedRel(P, T ),

then f ≡ g(modP–ideal).

(58) Let n be a natural number, T be an admissible connected term or-

der of n, L be an Abelian add-associative right complementable right

zeroed commutative associative well unital distributive field-like non de-

generated non empty double loop structure, P be a non empty subset

of Polynom-Ring(n,L), and f , g be elements of Polynom-Ring(n,L). If

f ≡ g(modP–ideal), then f and g are convertible w.r.t. PolyRedRel(P, T ).

(59) Let n be an ordinal number, T be a connected term order of n, L be an

Abelian add-associative right complementable right zeroed commutative

associative well unital distributive field-like non trivial double loop struc-

ture, P be a subset of Polynom-Ring(n, L), and f , g be polynomials of n,

L. If PolyRedRel(P, T ) reduces f to g, then f − g ∈ P–ideal.

(60) Let n be an ordinal number, T be a connected term order of n, L be an

Abelian add-associative right complementable right zeroed commutative

associative well unital distributive field-like non trivial double loop struc-

ture, P be a subset of Polynom-Ring(n,L), and f be a polynomial of n,

L. If PolyRedRel(P, T ) reduces f to 0 (n,L), then f ∈ P–ideal.
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