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Summary. Convexity is one of the most important concepts in a study of
analysis. Especially, it has been applied around the optimization problem widely.

Our purpose is to define the concept of convexity of a set on Mizar, and to

develop the generalities of convex analysis. The construction of this article is as

follows: Convexity of the set is defined in the section 1. The section 2 gives the

definition of convex combination which is a kind of the linear combination and

related theorems are proved there. In section 3, we define the convex hull which

is an intersection of all convex sets including a given set. The last section is some

theorems which are necessary to compose this article.

MML Identifier: CONVEX1.

The notation and terminology used in this paper are introduced in the following

articles: [13], [12], [17], [9], [10], [3], [1], [8], [4], [2], [16], [15], [14], [5], [11], [6],

and [7].

1. Convex Sets

Let V be a non empty RLS structure, let M be a subset of V , and let r be

a real number. The functor r ·M yielding a subset of V is defined by:

(Def. 1) r ·M = {r · v; v ranges over elements of the carrier of V : v ∈M}.

Let V be a non empty RLS structure and let M be a subset of V . We say

that M is convex if and only if:

(Def. 2) For all vectors u, v of V and for every real number r such that 0 < r

and r < 1 and u ∈M and v ∈M holds r · u + (1− r) · v ∈M.
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We now state a number of propositions:

(1) Let V be a real linear space-like non empty RLS structure,M be a subset

of V , and r be a real number. If M is convex, then r ·M is convex.

(2) Let V be an Abelian add-associative real linear space-like non empty

RLS structure andM , N be subsets of V . IfM is convex and N is convex,

then M + N is convex.

(3) For every real linear space V and for all subsets M , N of V such that

M is convex and N is convex holds M −N is convex.

(4) Let V be a non empty RLS structure and M be a subset of V . Then M

is convex if and only if for every real number r such that 0 < r and r < 1

holds r ·M + (1− r) ·M ⊆M.

(5) Let V be an Abelian non empty RLS structure andM be a subset of V .

Suppose M is convex. Let r be a real number. If 0 < r and r < 1, then

(1− r) ·M + r ·M ⊆M.

(6) Let V be an Abelian add-associative real linear space-like non empty

RLS structure and M , N be subsets of V . Suppose M is convex and N is

convex. Let r be a real number. Then r ·M + (1− r) ·N is convex.

(7) Let V be a real linear space, M be a subset of V , and v be a vector of

V . Then M is convex if and only if v + M is convex.

(8) For every real linear space V holds Up(0V ) is convex.

(9) For every real linear space V holds Up(ΩV ) is convex.

(10) For every non empty RLS structure V and for every subsetM of V such

that M = ∅ holds M is convex.

(11) Let V be an Abelian add-associative real linear space-like non empty

RLS structure,M1, M2 be subsets of V , and r1, r2 be real numbers. IfM1

is convex and M2 is convex, then r1 ·M1 + r2 ·M2 is convex.

(12) Let V be a real linear space-like non empty RLS structure,M be a subset

of V , and r1, r2 be real numbers. Then (r1 + r2) ·M ⊆ r1 ·M + r2 ·M.

(13) Let V be a real linear space, M be a subset of V , and r1, r2 be real

numbers. If r1 ­ 0 and r2 ­ 0 and M is convex, then r1 ·M + r2 ·M ⊆

(r1 + r2) ·M.

(14) Let V be an Abelian add-associative real linear space-like non empty RLS

structure, M1, M2, M3 be subsets of V , and r1, r2, r3 be real numbers. If

M1 is convex and M2 is convex and M3 is convex, then r1 ·M1 + r2 ·M2 +

r3 ·M3 is convex.

(15) Let V be a non empty RLS structure and F be a family of subsets of

V . Suppose that for every subset M of V such that M ∈ F holds M is

convex. Then
⋂

F is convex.

(16) For every non empty RLS structure V and for every subsetM of V such
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that M is Affine holds M is convex.

Let V be a non empty RLS structure. Observe that there exists a subset of

V which is convex.

Let V be a non empty RLS structure. Note that there exists a subset of V

which is empty and convex.

Let V be a non empty RLS structure. One can check that there exists a

subset of V which is non empty and convex.

The following four propositions are true:

(17) Let V be a real unitary space-like non empty unitary space structure,M

be a subset of V , v be a vector of V , and r be a real number. IfM = {u;u

ranges over vectors of V : (u|v) ­ r}, then M is convex.

(18) Let V be a real unitary space-like non empty unitary space structure,M

be a subset of V , v be a vector of V , and r be a real number. IfM = {u;u

ranges over vectors of V : (u|v) > r}, then M is convex.

(19) Let V be a real unitary space-like non empty unitary space structure,M

be a subset of V , v be a vector of V , and r be a real number. IfM = {u;u

ranges over vectors of V : (u|v) ¬ r}, then M is convex.

(20) Let V be a real unitary space-like non empty unitary space structure,M

be a subset of V , v be a vector of V , and r be a real number. IfM = {u;u

ranges over vectors of V : (u|v) < r}, then M is convex.

2. Convex Combinations

Let V be a real linear space and let L be a linear combination of V . We say

that L is convex if and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence F of elements of the carrier of V such that

(i) F is one-to-one,

(ii) rngF = the support of L, and

(iii) there exists a finite sequence f of elements of R such that len f = lenF

and
∑

f = 1 and for every natural number n such that n ∈ dom f holds

f(n) = L(F (n)) and f(n) ­ 0.

One can prove the following propositions:

(21) Let V be a real linear space and L be a linear combination of V . If L is

convex, then the support of L 6= ∅.

(22) Let V be a real linear space, L be a linear combination of V , and v be

a vector of V . If L is convex and L(v) ¬ 0, then v /∈ the support of L.

(23) For every real linear space V and for every linear combination L of V

such that L is convex holds L 6= 0LCV
.

(24) Let V be a real linear space, v be a vector of V , and L be a linear

combination of {v}. If L is convex, then L(v) = 1 and
∑

L = L(v) · v.
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(25) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear

combination of {v1, v2}. Suppose v1 6= v2 and L is convex. Then L(v1) +

L(v2) = 1 and L(v1) ­ 0 and L(v2) ­ 0 and
∑

L = L(v1) · v1 + L(v2) · v2.

(26) Let V be a real linear space, v1, v2, v3 be vectors of V , and L be a linear

combination of {v1, v2, v3}. Suppose v1 6= v2 and v2 6= v3 and v3 6= v1 and

L is convex. Then L(v1)+L(v2)+L(v3) = 1 and L(v1) ­ 0 and L(v2) ­ 0

and L(v3) ­ 0 and
∑

L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

(27) Let V be a real linear space, v be a vector of V , and L be a linear

combination of V . If L is convex and the support of L = {v}, then L(v) =

1.

(28) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear

combination of V . Suppose L is convex and the support of L = {v1, v2}

and v1 6= v2. Then L(v1) + L(v2) = 1 and L(v1) ­ 0 and L(v2) ­ 0.

(29) Let V be a real linear space, v1, v2, v3 be vectors of V , and L be a linear

combination of V . Suppose L is convex and the support of L = {v1, v2, v3}

and v1 6= v2 and v2 6= v3 and v3 6= v1. Then L(v1)+L(v2)+L(v3) = 1 and

L(v1) ­ 0 and L(v2) ­ 0 and L(v3) ­ 0 and
∑

L = L(v1) · v1 + L(v2) ·

v2 + L(v3) · v3.

3. Convex Hull

In this article we present several logical schemes. The scheme SubFamExRLS

deals with an RLS structure A and a unary predicate P, and states that:

There exists a family F of subsets of A such that for every subset

B of the carrier of A holds B ∈ F iff P[B]

for all values of the parameters.

The scheme SubFamExRLS2 deals with an RLS structure A and a unary

predicate P, and states that:

There exists a family F of subsets of A such that for every subset

B of A holds B ∈ F iff P[B]

for all values of the parameters.

Let V be a non empty RLS structure and letM be a subset of V . The functor

Convex-FamilyM yields a family of subsets of V and is defined as follows:

(Def. 4) For every subset N of V holds N ∈ Convex-FamilyM iff N is convex

and M ⊆ N.

Let V be a non empty RLS structure and let M be a subset of V . The

functor convM yields a convex subset of V and is defined by:

(Def. 5) convM =
⋂
Convex-FamilyM.

The following proposition is true
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(30) Let V be a non empty RLS structure, M be a subset of V , and N be a

convex subset of V . If M ⊆ N, then convM ⊆ N.

4. Miscellaneous

One can prove the following propositions:

(31) Let p be a finite sequence and x, y, z be sets. Suppose p is one-to-one

and rng p = {x, y, z} and x 6= y and y 6= z and z 6= x. Then p = 〈x, y, z〉

or p = 〈x, z, y〉 or p = 〈y, x, z〉 or p = 〈y, z, x〉 or p = 〈z, x, y〉 or p = 〈z, y,

x〉.

(32) For every real linear space-like non empty RLS structure V and for every

subset M of V holds 1 ·M = M.

(33) For every non empty RLS structure V and for every empty subset M of

V and for every real number r holds r ·M = ∅.

(34) For every real linear space V and for every non empty subset M of V

holds 0 ·M = {0V }.

(35) For every right zeroed non empty loop structure V and for every subset

M of V holds M + {0V } = M.

(36) For every add-associative non empty loop structure V and for all subsets

M1, M2, M3 of V holds (M1 + M2) + M3 = M1 + (M2 + M3).

(37) Let V be a real linear space-like non empty RLS structure,M be a subset

of V , and r1, r2 be real numbers. Then r1 · (r2 ·M) = (r1 · r2) ·M.

(38) Let V be a real linear space-like non empty RLS structure, M1, M2 be

subsets of V , and r be a real number. Then r · (M1 +M2) = r ·M1 +r ·M2.

(39) Let V be a non empty RLS structure, M , N be subsets of V , and r be

a real number. If M ⊆ N, then r ·M ⊆ r ·N.

(40) For every non empty loop structure V and for every empty subset M of

V and for every subset N of V holds M + N = ∅.
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