On the Minimal Distance Between Sets in Euclidean Space¹

Andrzej Trybulec University of Białystok

Summary. The concept of the minimal distance between two sets in a Euclidean space is introduced and some useful lemmas are proved.

MML Identifier: JORDAN1K.

The papers [25], [26], [13], [24], [4], [27], [5], [1], [14], [17], [23], [8], [22], [15], [6], [3], [9], [10], [11], [2], [19], [21], [12], [20], [7], [16], and [18] provide the terminology and notation for this paper.

1. Preliminaries

In this paper X is a set and Y is a non empty set.

We now state several propositions:

- (1) Let f be a function from X into Y. Suppose f is onto. Let y be an element of Y. Then there exists a set x such that $x \in X$ and y = f(x).
- (2) Let f be a function from X into Y. Suppose f is onto. Let y be an element of Y. Then there exists an element x of X such that y = f(x).
- (3) For every function f from X into Y and for every subset A of X such that f is onto holds $(f^{\circ}A)^{\circ} \subseteq f^{\circ}A^{\circ}$.
- (4) For every function f from X into Y and for every subset A of X such that f is one-to-one holds $f^{\circ}A^{\circ} \subseteq (f^{\circ}A)^{\circ}$.
- (5) For every function f from X into Y and for every subset A of X such that f is bijective holds $(f^{\circ}A)^{\circ} = f^{\circ}A^{\circ}$.

¹This work has been partially supported by the European Community TYPES grant IST-1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102. The work was completed while the author visited Shinhsu University (Nagano).

2. TOPOLOGICAL AND METRIZABLE SPACES

One can prove the following two propositions:

- (6) For every topological space T and for every subset A of T holds A is a component of \emptyset_T iff A is empty.
- (7) Let T be a non empty topological space and A, B, C be subsets of T. If $A \subseteq B$ and A is a component of C and B is a component of C, then A = B.

In the sequel n denotes a natural number.

We now state the proposition

(8) If $n \ge 1$, then for every subset P of \mathcal{E}^n such that P is bounded holds -P is not bounded.

In the sequel r is a real number and M is a non empty metric space.

Next we state a number of propositions:

- (9) For every non empty subset C of M_{top} and for every point p of M_{top} holds $(\text{dist}_{\min}(C))(p) \ge 0$.
- (10) Let C be a non empty subset of M_{top} and p be a point of M. If for every point q of M such that $q \in C$ holds $\rho(p,q) \ge r$, then $(\text{dist}_{\min}(C))(p) \ge r$.
- (11) For all non empty subsets A, B of M_{top} holds $\operatorname{dist}_{\min}^{\min}(A, B) \geqslant 0$.
- (12) For all compact subsets A, B of M_{top} such that A meets B holds $\operatorname{dist_{\min}^{\min}}(A,B)=0$.
- (13) Let A, B be non empty subsets of M_{top} . Suppose that for all points p, q of M such that $p \in A$ and $q \in B$ holds $\rho(p,q) \geqslant r$. Then $\operatorname{dist}_{\min}^{\min}(A,B) \geqslant r$.
- (14) Let P, Q be subsets of $\mathcal{E}_{\mathbf{T}}^n$. Suppose P is a component of Q^c . Then P is inside component of Q or P is outside component of Q.
- (15) If $n \ge 1$, then BDD $\emptyset_{\mathcal{E}_{\mathbf{T}}^n} = \emptyset_{\mathcal{E}_{\mathbf{T}}^n}$.
- (16) BDD $\Omega_{\mathcal{E}_{\mathcal{T}}^n} = \emptyset_{\mathcal{E}_{\mathcal{T}}^n}$.
- (17) If $n \ge 1$, then UBD $\emptyset_{\mathcal{E}_T^n} = \Omega_{\mathcal{E}_T^n}$.
- (18) UBD $\Omega_{\mathcal{E}_{\mathcal{T}}^n} = \emptyset_{\mathcal{E}_{\mathcal{T}}^n}$.
- (19) For every connected subset P of $\mathcal{E}_{\mathbf{T}}^n$ and for every subset Q of $\mathcal{E}_{\mathbf{T}}^n$ such that P misses Q holds $P \subseteq \mathrm{UBD}\,Q$ or $P \subseteq \mathrm{BDD}\,Q$.

3. Euclid Plane

For simplicity, we adopt the following rules: C, D are simple closed curves, n is a natural number, p, q, q_1 , q_2 are points of $\mathcal{E}_{\mathrm{T}}^2$, r, s_1 , s_2 , t_1 , t_2 are real numbers, and x, y are points of \mathcal{E}^2 .

Next we state a number of propositions:

(20)
$$\rho([0,0], r \cdot q) = |r| \cdot \rho([0,0], q).$$

- (21) $\rho(q_1+q,q_2+q)=\rho(q_1,q_2).$
- (22) If $p \neq q$, then $\rho(p,q) > 0$.
- (23) $\rho(q_1 q, q_2 q) = \rho(q_1, q_2).$
- (24) $\rho(p,q) = \rho(-p,-q).$
- (25) $\rho(q-q_1, q-q_2) = \rho(q_1, q_2).$
- (26) $\rho(r \cdot p, r \cdot q) = |r| \cdot \rho(p, q).$
- (27) If $r \le 1$, then $\rho(p, r \cdot p + (1 r) \cdot q) = (1 r) \cdot \rho(p, q)$.
- (28) If $0 \le r$, then $\rho(q, r \cdot p + (1 r) \cdot q) = r \cdot \rho(p, q)$.
- (29) If $p \in \mathcal{L}(q_1, q_2)$, then $\rho(q_1, p) + \rho(p, q_2) = \rho(q_1, q_2)$.
- (30) If $q_1 \in \mathcal{L}(q_2, p)$ and $q_1 \neq q_2$, then $\rho(q_1, p) < \rho(q_2, p)$.
- (31) If y = [0, 0], then $Ball(y, r) = \{q : |q| < r\}$.

4. Affine Maps

Next we state several propositions:

- (32) (AffineMap (r, s_1, r, s_2)) $(p) = r \cdot p + [s_1, s_2].$
- (33) (AffineMap (r, q_1, r, q_2)) $(p) = r \cdot p + q$.
- (34) If $s_1 > 0$ and $s_2 > 0$, then AffineMap (s_1, t_1, s_2, t_2) · AffineMap $(\frac{1}{s_1}, -\frac{t_1}{s_1}, \frac{1}{s_2}, -\frac{t_2}{s_2}) = id_{\mathcal{R}^2}$.
- (35) If y = [0, 0] and x = q and r > 0, then (AffineMap (r, q_1, r, q_2))° Ball(y, 1) = Ball(x, r).
- (36) For all real numbers A, B, C, D such that A > 0 and C > 0 holds AffineMap(A, B, C, D) is onto.
- (37) Ball $(x,r)^{c}$ is a connected subset of \mathcal{E}_{T}^{2} .

5. MINIMAL DISTANCE BETWEEN SUBSETS

Let us consider n and let A, B be subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^n$. The functor $\mathrm{dist}_{\min}(A,B)$ yielding a real number is defined by:

(Def. 1) There exist subsets A', B' of $(\mathcal{E}^n)_{\text{top}}$ such that A = A' and B = B' and $\operatorname{dist_{min}}(A, B) = \operatorname{dist_{min}^{min}}(A', B')$.

Let M be a non empty metric space and let P, Q be non empty compact subsets of M_{top} . Let us note that the functor $\operatorname{dist_{min}^{min}}(P,Q)$ is commutative. Let us observe that the functor $\operatorname{dist_{max}^{max}}(P,Q)$ is commutative.

Let us consider n and let A, B be non empty compact subsets of $\mathcal{E}_{\mathbf{T}}^n$. Let us observe that the functor $\operatorname{dist}_{\min}(A, B)$ is commutative.

Next we state several propositions:

(38) For all non empty subsets A, B of \mathcal{E}_{T}^{n} holds $\operatorname{dist_{min}}(A, B) \geq 0$.

- (39) For all compact subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A meets B holds $\mathrm{dist}_{\min}(A,B)=0$.
- (40) Let A, B be non empty subsets of $\mathcal{E}_{\mathrm{T}}^n$. Suppose that for all points p, q of $\mathcal{E}_{\mathrm{T}}^n$ such that $p \in A$ and $q \in B$ holds $\rho(p, q) \geqslant r$. Then $\mathrm{dist}_{\min}(A, B) \geqslant r$.
- (41) Let D be a subset of the carrier of \mathcal{E}^n_T and A, C be non empty subsets of the carrier of \mathcal{E}^n_T . If $C \subseteq D$, then $\operatorname{dist}_{\min}(A, D) \leqslant \operatorname{dist}_{\min}(A, C)$.
- (42) For all non empty compact subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ there exist points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p \in A$ and $q \in B$ and $\mathrm{dist}_{\min}(A, B) = \rho(p, q)$.
- (43) For all points p, q of \mathcal{E}_{T}^{n} holds $\operatorname{dist_{min}}(\{p\}, \{q\}) = \rho(p, q)$.

Let us consider n, let p be a point of \mathcal{E}_{T}^{n} , and let B be a subset of the carrier of \mathcal{E}_{T}^{n} . The functor $\rho(p, B)$ yielding a real number is defined as follows:

(Def. 2) $\rho(p, B) = \text{dist}_{\min}(\{p\}, B).$

Next we state several propositions:

- (44) For every non empty subset A of \mathcal{E}_{T}^{n} and for every point p of \mathcal{E}_{T}^{n} holds $\rho(p, A) \geqslant 0$.
- (45) For every compact subset A of \mathcal{E}_{T}^{n} and for every point p of \mathcal{E}_{T}^{n} such that $p \in A$ holds $\rho(p, A) = 0$.
- (46) Let A be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^n$ and p be a point of $\mathcal{E}_{\mathrm{T}}^n$. Then there exists a point q of $\mathcal{E}_{\mathrm{T}}^n$ such that $q \in A$ and $\rho(p, A) = \rho(p, q)$.
- (47) Let C be a non empty subset of the carrier of $\mathcal{E}_{\mathbf{T}}^n$ and D be a subset of the carrier of $\mathcal{E}_{\mathbf{T}}^n$. If $C \subseteq D$, then for every point q of $\mathcal{E}_{\mathbf{T}}^n$ holds $\rho(q, D) \leqslant \rho(q, C)$.
- (48) Let A be a non empty subset of $\mathcal{E}_{\mathrm{T}}^n$ and p be a point of $\mathcal{E}_{\mathrm{T}}^n$. If for every point q of $\mathcal{E}_{\mathrm{T}}^n$ such that $q \in A$ holds $\rho(p,q) \geqslant r$, then $\rho(p,A) \geqslant r$.
- (49) For all points p, q of \mathcal{E}^n_T holds $\rho(p, \{q\}) = \rho(p, q)$.
- (50) For every non empty subset A of \mathcal{E}_{T}^{n} and for all points p, q of \mathcal{E}_{T}^{n} such that $q \in A$ holds $\rho(p, A) \leq \rho(p, q)$.
- (51) Let A be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^2$ and B be an open subset of $\mathcal{E}_{\mathrm{T}}^2$. If $A \subseteq B$, then for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \notin B$ holds $\rho(p,B) < \rho(p,A)$.

6. BDD AND UBD

The following two propositions are true:

- (52) UBD C meets UBD D.
- (53) If $q \in \text{UBD } C$ and $p \in \text{BDD } C$, then $\rho(q, C) < \rho(q, p)$.

Let us consider C. Observe that BDD C is non empty.

One can prove the following three propositions:

(54) If $p \notin BDD C$, then $\rho(p, C) \leqslant \rho(p, BDD C)$.

- (55) $C \not\subseteq BDD D$ or $D \not\subseteq BDD C$.
- (56) If $C \subseteq BDDD$, then $D \subseteq UBDC$.

7. Main Definitions

We now state the proposition

(57) $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \subseteq \operatorname{UBD} C$.

Let us consider C. The functor LowerMiddlePoint C yielding a point of \mathcal{E}^2_T is defined by:

(Def. 3) LowerMiddlePoint $C = FPoint(LowerArc\ C, W-min\ C, E-max\ C, VerticalLine\ \frac{W-bound\ C+E-bound\ C}{2}).$ The functor UpperMiddlePoint C yielding a point of \mathcal{E}^2_T is defined by:

(Def. 4) UpperMiddlePoint C =

 $\operatorname{FPoint}(\operatorname{UpperArc} C,\operatorname{W-min} C,\operatorname{E-max} C,\operatorname{VerticalLine} \tfrac{\operatorname{W-bound} C+\operatorname{E-bound} C}{2}).$

We now state several propositions:

- (58) LowerArc C meets VerticalLine $\frac{\text{W-bound }C + \text{E-bound }C}{2}$.
- (59) UpperArc C meets VerticalLine $\frac{\text{W-bound }C + \text{E-bound }C}{2}$.
- (60) (LowerMiddlePoint C)₁ = $\frac{\text{W-bound }C + \text{E-bound }C}{2}$.
- (61) (UpperMiddlePoint C)₁ = $\frac{\text{W-bound } C + \text{E-bound } C}{2}$.
- (62) LowerMiddlePoint $C \in \text{LowerArc } C$.
- (63) UpperMiddlePoint $C \in \text{UpperArc } C$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353–359, 1996.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–485, 1991.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [7] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19–24, 2001.
- [8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^2$. Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [12] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Formalized Mathematics, 6(4):467–473, 1997.

- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [16] Artur Kornilowicz. Properties of left and right components. Formalized Mathematics, 8(1):163–168, 1999.
- [17] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [18] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Formalized Mathematics, 9(4):697–704, 2001.
- [19] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [20] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [21] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.
- [22] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [24] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received August 19, 2002