
FORMALIZED MATHEMATICS

Volume 10, Number 3, 2002

University of Białystok

On the Minimal Distance Between Sets

in Euclidean Space1

Andrzej Trybulec

University of Białystok
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Euclidean space is introduced and some useful lemmas are proved.
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The papers [25], [26], [13], [24], [4], [27], [5], [1], [14], [17], [23], [8], [22], [15],

[6], [3], [9], [10], [11], [2], [19], [21], [12], [20], [7], [16], and [18] provide the

terminology and notation for this paper.

1. Preliminaries

In this paper X is a set and Y is a non empty set.

We now state several propositions:

(1) Let f be a function from X into Y . Suppose f is onto. Let y be an

element of Y . Then there exists a set x such that x ∈ X and y = f(x).

(2) Let f be a function from X into Y . Suppose f is onto. Let y be an

element of Y . Then there exists an element x of X such that y = f(x).

(3) For every function f from X into Y and for every subset A of X such

that f is onto holds (f◦A)c ⊆ f◦Ac.

(4) For every function f from X into Y and for every subset A of X such

that f is one-to-one holds f◦Ac ⊆ (f◦A)c.

(5) For every function f from X into Y and for every subset A of X such

that f is bijective holds (f◦A)c = f◦Ac.

1This work has been partially supported by the European Community TYPES grant IST-
1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102. The work was completed while
the author visited Shinhsu University (Nagano).
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2. Topological and Metrizable Spaces

One can prove the following two propositions:

(6) For every topological space T and for every subset A of T holds A is a

component of ∅T iff A is empty.

(7) Let T be a non empty topological space and A, B, C be subsets of T .

If A ⊆ B and A is a component of C and B is a component of C, then

A = B.

In the sequel n denotes a natural number.

We now state the proposition

(8) If n ­ 1, then for every subset P of En such that P is bounded holds

−P is not bounded.

In the sequel r is a real number and M is a non empty metric space.

Next we state a number of propositions:

(9) For every non empty subset C of Mtop and for every point p of Mtop
holds (distmin(C))(p) ­ 0.

(10) Let C be a non empty subset ofMtop and p be a point ofM . If for every

point q of M such that q ∈ C holds ρ(p, q) ­ r, then (distmin(C))(p) ­ r.

(11) For all non empty subsets A, B of Mtop holds dist
min
min(A,B) ­ 0.

(12) For all compact subsets A, B of Mtop such that A meets B holds

distminmin(A,B) = 0.

(13) Let A, B be non empty subsets of Mtop. Suppose that for all points p, q

ofM such that p ∈ A and q ∈ B holds ρ(p, q) ­ r. Then distminmin(A,B) ­ r.

(14) Let P , Q be subsets of En

T. Suppose P is a component of Qc. Then P is

inside component of Q or P is outside component of Q.

(15) If n ­ 1, then BDD ∅En

T
= ∅En

T
.

(16) BDDΩEn

T
= ∅En

T
.

(17) If n ­ 1, then UBD ∅En

T
= ΩEn

T
.

(18) UBDΩEn

T
= ∅En

T
.

(19) For every connected subset P of En

T and for every subset Q of En

T such

that P misses Q holds P ⊆ UBDQ or P ⊆ BDDQ.

3. Euclid Plane

For simplicity, we adopt the following rules: C, D are simple closed curves,

n is a natural number, p, q, q1, q2 are points of E
2
T, r, s1, s2, t1, t2 are real

numbers, and x, y are points of E2.

Next we state a number of propositions:

(20) ρ([0, 0], r · q) = |r| · ρ([0, 0], q).
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(21) ρ(q1 + q, q2 + q) = ρ(q1, q2).

(22) If p 6= q, then ρ(p, q) > 0.

(23) ρ(q1 − q, q2 − q) = ρ(q1, q2).

(24) ρ(p, q) = ρ(−p,−q).

(25) ρ(q − q1, q − q2) = ρ(q1, q2).

(26) ρ(r · p, r · q) = |r| · ρ(p, q).

(27) If r ¬ 1, then ρ(p, r · p + (1− r) · q) = (1− r) · ρ(p, q).

(28) If 0 ¬ r, then ρ(q, r · p + (1− r) · q) = r · ρ(p, q).

(29) If p ∈ L(q1, q2), then ρ(q1, p) + ρ(p, q2) = ρ(q1, q2).

(30) If q1 ∈ L(q2, p) and q1 6= q2, then ρ(q1, p) < ρ(q2, p).

(31) If y = [0, 0], then Ball(y, r) = {q : |q| < r}.

4. Affine Maps

Next we state several propositions:

(32) (AffineMap(r, s1, r, s2))(p) = r · p + [s1, s2].

(33) (AffineMap(r, q1, r, q2))(p) = r · p + q.

(34) If s1 > 0 and s2 > 0, then

AffineMap(s1, t1, s2, t2) ·AffineMap(
1

s1
,− t1

s1
, 1

s2
,− t2

s2
) = idR2 .

(35) If y = [0, 0] and x = q and r > 0, then (AffineMap(r, q1, r, q2))
◦ Ball(y, 1) =

Ball(x, r).

(36) For all real numbers A, B, C, D such that A > 0 and C > 0 holds

AffineMap(A,B, C, D) is onto.

(37) Ball(x, r)c is a connected subset of E2
T.

5. Minimal Distance Between Subsets

Let us consider n and let A, B be subsets of the carrier of En

T. The functor

distmin(A,B) yielding a real number is defined by:

(Def. 1) There exist subsets A′, B′ of (En)top such that A = A′ and B = B′ and

distmin(A,B) = distminmin(A
′, B′).

Let M be a non empty metric space and let P , Q be non empty compact

subsets of Mtop. Let us note that the functor dist
min
min(P, Q) is commutative. Let

us observe that the functor distmaxmax(P,Q) is commutative.

Let us consider n and let A, B be non empty compact subsets of En

T. Let us

observe that the functor distmin(A,B) is commutative.

Next we state several propositions:

(38) For all non empty subsets A, B of En

T holds distmin(A,B) ­ 0.
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(39) For all compact subsets A, B of En

T such that A meets B holds

distmin(A,B) = 0.

(40) Let A, B be non empty subsets of En

T. Suppose that for all points p, q of

En

T such that p ∈ A and q ∈ B holds ρ(p, q) ­ r. Then distmin(A,B) ­ r.

(41) Let D be a subset of the carrier of En

T and A, C be non empty subsets

of the carrier of En

T. If C ⊆ D, then distmin(A, D) ¬ distmin(A,C).

(42) For all non empty compact subsets A, B of En

T there exist points p, q of

En

T such that p ∈ A and q ∈ B and distmin(A,B) = ρ(p, q).

(43) For all points p, q of En

T holds distmin({p}, {q}) = ρ(p, q).

Let us consider n, let p be a point of En

T, and let B be a subset of the carrier

of En

T. The functor ρ(p, B) yielding a real number is defined as follows:

(Def. 2) ρ(p,B) = distmin({p}, B).

Next we state several propositions:

(44) For every non empty subset A of En

T and for every point p of En

T holds

ρ(p,A) ­ 0.

(45) For every compact subset A of En

T and for every point p of En

T such that

p ∈ A holds ρ(p,A) = 0.

(46) Let A be a non empty compact subset of En

T and p be a point of En

T.

Then there exists a point q of En

T such that q ∈ A and ρ(p, A) = ρ(p, q).

(47) Let C be a non empty subset of the carrier of En

T and D be a subset of the

carrier of En

T. If C ⊆ D, then for every point q of En

T holds ρ(q,D) ¬ ρ(q, C).

(48) Let A be a non empty subset of En

T and p be a point of En

T. If for every

point q of En

T such that q ∈ A holds ρ(p, q) ­ r, then ρ(p,A) ­ r.

(49) For all points p, q of En

T holds ρ(p, {q}) = ρ(p, q).

(50) For every non empty subset A of En

T and for all points p, q of En

T such

that q ∈ A holds ρ(p,A) ¬ ρ(p, q).

(51) Let A be a compact non empty subset of E2
T and B be an open subset

of E2
T. If A ⊆ B, then for every point p of E2

T such that p /∈ B holds

ρ(p,B) < ρ(p, A).

6. BDD and UBD

The following two propositions are true:

(52) UBDC meets UBDD.

(53) If q ∈ UBDC and p ∈ BDDC, then ρ(q, C) < ρ(q, p).

Let us consider C. Observe that BDDC is non empty.

One can prove the following three propositions:

(54) If p /∈ BDDC, then ρ(p, C) ¬ ρ(p,BDDC).
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(55) C 6⊆ BDDD or D 6⊆ BDDC.

(56) If C ⊆ BDDD, then D ⊆ UBDC.

7. Main Definitions

We now state the proposition

(57) L̃(Cage(C, n)) ⊆ UBDC.

Let us consider C. The functor LowerMiddlePointC yielding a point of E2
T

is defined by:

(Def. 3) LowerMiddlePointC =

FPoint(LowerArcC,W-minC,E-maxC,VerticalLine W-boundC+E-boundC

2
).

The functor UpperMiddlePointC yielding a point of E2
T is defined by:

(Def. 4) UpperMiddlePointC =

FPoint(UpperArcC,W-minC,E-maxC,VerticalLine W-boundC+E-boundC

2
).

We now state several propositions:

(58) LowerArcC meets VerticalLine W-boundC+E-boundC

2
.

(59) UpperArcC meets VerticalLine W-boundC+E-boundC

2
.

(60) (LowerMiddlePointC)1 = W-boundC+E-boundC

2
.

(61) (UpperMiddlePointC)1 = W-boundC+E-boundC

2
.

(62) LowerMiddlePointC ∈ LowerArcC.

(63) UpperMiddlePointC ∈ UpperArcC.
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