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Summary. The aim of the paper is to show that the only subcontinua of
the Jordan curve are arcs, the whole curve, and singletons of its points. Addi-
tionally, it has been shown that the only subcontinua of the unit interval I are
closed intervals.
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The articles [21], [23], [13], [24], [2], [1], [3], [25], [19], [6], [4], [20], [8], [10], [11],

[15], [26], [18], [22], [14], [16], [9], [17], [5], [12], and [7] provide the terminology

and notation for this paper.

1. Preliminaries

Let us note that every simple closed curve is non trivial.

Let T be a non empty topological space. One can check that there exists a

subset of T which is non empty, compact, and connected.

Let us observe that every element of the carrier of I is real.

Next we state two propositions:

(1) LetX be a non empty set and A, B be non empty subsets ofX. If A ⊂ B,

then there exists an element p of X such that p ∈ B and A ⊆ B \ {p}.

(2) Let X be a non empty set and A be a non empty subset of X. Then A

is trivial if and only if there exists an element x of X such that A = {x}.

1This work has been partially supported by the European Community TYPES grant IST-
1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102.
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Let T be a non trivial 1-sorted structure. Observe that there exists a subset

of the carrier of T which is non trivial.

The following proposition is true

(3) For every non trivial set X and for every set p there exists an element q

of X such that q 6= p.

Let X be a non trivial set. Observe that there exists a subset of X which is

non trivial.

We now state a number of propositions:

(4) Let T be a non trivial set, X be a non trivial subset of T , and p be a

set. Then there exists an element q of T such that q ∈ X and q 6= p.

(5) Let f , g be functions and a be a set. Suppose f is one-to-one and g is

one-to-one and dom f ∩ dom g = {a} and rng f ∩ rng g = {f(a)}. Then

f+·g is one-to-one.

(6) Let f , g be functions and a be a set. Suppose f is one-to-one and g

is one-to-one and dom f ∩ dom g = {a} and rng f ∩ rng g = {f(a)} and

f(a) = g(a). Then (f+·g)−1 = f−1+·g−1.

(7) Let n be a natural number, A be a non empty subset of the carrier of

En

T
, and p, q be points of En

T
. If A is an arc from p to q, then A \ {p} is

non empty.

(8) For every natural number n and for all points a, b of En

T
holds L(a, b) is

n-convex.

(9) For all real numbers s1, s3, s4, l such that s1 ¬ s3 and s1 < s4 and 0 ¬ l

and l ¬ 1 holds s1 ¬ (1− l) · s3 + l · s4.

(10) For every set x and for all real numbers a, b such that a ¬ b and x ∈ [a, b]

holds x ∈ ]a, b[ or x = a or x = b.

(11) For all real numbers a, b, c, d such that ]a, b[ meets [c, d] holds b > c.

(12) For all real numbers a, b, c, d such that b ¬ c holds [a, b] misses ]c, d[.

(13) For all real numbers a, b, c, d such that b ¬ c holds ]a, b[ misses [c, d].

(14) For all real numbers a, b, c, d such that a < b and [a, b] ⊆ [c, d] holds

c ¬ a and b ¬ d.

(15) For all real numbers a, b, c, d such that a < b and ]a, b[ ⊆ [c, d] holds

c ¬ a and b ¬ d.

(16) For all real numbers a, b, c, d such that a < b and ]a, b[ ⊆ [c, d] holds

[a, b] ⊆ [c, d].

(17) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = ]a, b[, then [a, b] ⊆ the carrier of I.

(18) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = ]a, b], then [a, b] ⊆ the carrier of I.
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(19) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = [a, b[, then [a, b] ⊆ the carrier of I.

(20) For all real numbers a, b such that a 6= b holds ]a, b] = [a, b].

(21) For all real numbers a, b such that a 6= b holds [a, b[ = [a, b].

(22) For every subset A of I and for all real numbers a, b such that a < b and

A = ]a, b[ holds A = [a, b].

(23) For every subset A of the carrier of I and for all real numbers a, b such

that a < b and A = ]a, b] holds A = [a, b].

(24) For every subset A of the carrier of I and for all real numbers a, b such

that a < b and A = [a, b[ holds A = [a, b].

(25) For all real numbers a, b such that a < b holds [a, b] 6= ]a, b].

(26) For all real numbers a, b holds [a, b[ misses {b} and ]a, b] misses {a}.

(27) For all real numbers a, b such that a ¬ b holds [a, b] \ {a} = ]a, b].

(28) For all real numbers a, b such that a ¬ b holds [a, b] \ {b} = [a, b[.

(29) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∩ [b, c[=

{b}.

(30) For all real numbers a, b, c holds [a, b[ misses [b, c] and [a, b] misses ]b, c].

(31) For all real numbers a, b, c such that a ¬ b and b ¬ c holds [a, c] \ {b} =

[a, b[∪]b, c].

(32) Let A be a subset of the carrier of I and a, b be real numbers. If a ¬ b

and A = [a, b], then 0 ¬ a and b ¬ 1.

(33) Let A, B be subsets of I and a, b, c be real numbers. If a < b and b < c

and A = [a, b[ and B = ]b, c], then A and B are separated.

(34) For all real numbers a, b such that a ¬ b holds [a, b] = [a, b[∪{b}.

(35) For all real numbers a, b such that a ¬ b holds [a, b] = {a} ∪ ]a, b].

(36) For all real numbers a, b, c, d such that a ¬ b and b < c and c ¬ d holds

[a, d] = [a, b] ∪ ]b, c[ ∪ [c, d].

(37) For all real numbers a, b, c, d such that a ¬ b and b < c and c ¬ d holds

[a, d] \ ([a, b] ∪ [c, d]) = ]b, c[.

(38) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∪ ]b, c[ =

]a, c[.

(39) For all real numbers a, b, c such that a < b and b < c holds [b, c[⊆ ]a, c[.

(40) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∪ [b, c[=

]a, c[.

(41) For all real numbers a, b, c such that a < b and b < c holds ]a, c[\ ]a, b] =

]b, c[.

(42) For all real numbers a, b, c such that a < b and b < c holds ]a, c[ \ [b, c[=

]a, b[.
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(43) For all points p1, p2 of I holds [p1, p2] is a subset of I.

(44) For all points a, b of I holds ]a, b[ is a subset of I.

2. Decompositions of Intervals

The following propositions are true:

(45) For every real number p holds {p} is a closed-interval subset of R.

(46) Let A be a non empty connected subset of I and a, b, c be points of I. If

a ¬ b and b ¬ c and a ∈ A and c ∈ A, then b ∈ A.

(47) For every non empty connected subset A of I and for all real numbers a,

b such that a ∈ A and b ∈ A holds [a, b] ⊆ A.

(48) For all real numbers a, b and for every subset A of I such that a ¬ b and

A = [a, b] holds A is closed.

(49) For all points p1, p2 of I such that p1 ¬ p2 holds [p1, p2] is a non empty

compact connected subset of I.

(50) Let X be a subset of the carrier of I and X ′ be a subset of R. If X ′ = X,

then X ′ is upper bounded and lower bounded.

(51) Let X be a subset of the carrier of I, X ′ be a subset of R, and x be a

real number. If x ∈ X ′ and X ′ = X, then infX ′ ¬ x and x ¬ supX ′.

(52) For every subset A of R and for every subset B of I such that A = B

holds A is closed iff B is closed.

(53) For every closed-interval subset C of R holds inf C ¬ supC.

(54) Let C be a non empty compact connected subset of I and C ′ be a subset

of R. If C = C ′ and [inf C ′, supC ′] ⊆ C ′, then [inf C ′, supC ′] = C ′.

(55) Every non empty compact connected subset of I is a closed-interval sub-

set of R.

(56) For every non empty compact connected subset C of I there exist points

p1, p2 of I such that p1 ¬ p2 and C = [p1, p2].

3. Decompositions of Simple Closed Curves

The strict non empty subspace I(01) of I is defined as follows:

(Def. 1) The carrier of I(01) = ]0, 1[.

One can prove the following propositions:

(57) For every subset A of I such that A = the carrier of I(01) holds I(01) =

I↾A.

(58) The carrier of I(01) = (the carrier of I) \ {0, 1}.

(59) I(01) is an open subspace of I.
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(60) For every real number r holds r ∈ the carrier of I(01) iff 0 < r and r < 1.

(61) For all points a, b of I such that a < b and b 6= 1 holds ]a, b] is a non

empty subset of I(01).

(62) For all points a, b of I such that a < b and a 6= 0 holds [a, b[ is a non

empty subset of I(01).

(63) For every simple closed curve D holds (E2

T
)↾¤E2 and (E2

T
)↾D are home-

omorphic.

(64) Let D be a non empty subset of E2

T
and p1, p2 be points of E

2

T
. If D is an

arc from p1 to p2, then I(01) and (E2

T
)↾(D \ {p1, p2}) are homeomorphic.

(65) Let D be a subset of the carrier of E2

T
and p1, p2 be points of E

2

T
. If D is

an arc from p1 to p2, then I and (E2

T
)↾D are homeomorphic.

(66) For all points p1, p2 of E
2

T
such that p1 6= p2 holds I and (E2

T
)↾L(p1, p2)

are homeomorphic.

(67) Let E be a subset of I(01). Given points p1, p2 of I such that p1 < p2

and E = [p1, p2]. Then I and I(01)↾E are homeomorphic.

(68) Let A be a non empty subset of the carrier of E2

T
, p, q be points of E2

T
,

and a, b be points of I. Suppose A is an arc from p to q and a < b. Then

there exists a non empty subset E of I and there exists a map f from I↾E

into (E2

T
)↾A such that E = [a, b] and f is a homeomorphism and f(a) = p

and f(b) = q.

(69) Let A be a topological space, B be a non empty topological space, f be

a map from A into B, C be a topological space, and X be a subset of A.

Suppose f is continuous and C is a subspace of B. Let h be a map from

A↾X into C. If h = f↾X, then h is continuous.

(70) For every subset X of I and for all points a, b of I such that a ¬ b and

X = ]a, b[ holds X is open.

(71) For every subset X of I(01) and for all points a, b of I such that a ¬ b

and X = ]a, b[ holds X is open.

(72) For every non empty subset X of I(01) and for every point a of I such

that 0 < a and X = ]0, a] holds X is closed.

(73) For every non empty subset X of I(01) and for every point a of I such

that X = [a, 1[ holds X is closed.

(74) Let A be a non empty subset of the carrier of E2

T
, p, q be points of E2

T
,

and a, b be points of I. Suppose A is an arc from p to q and a < b and

b 6= 1. Then there exists a non empty subset E of I(01) and there exists

a map f from I(01)↾E into (E2

T
)↾(A \ {p}) such that E = ]a, b] and f is a

homeomorphism and f(b) = q.

(75) Let A be a non empty subset of the carrier of E2

T
, p, q be points of E2

T
,

and a, b be points of I. Suppose A is an arc from p to q and a < b and

a 6= 0. Then there exists a non empty subset E of I(01) and there exists
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a map f from I(01)↾E into (E2

T
)↾(A \ {q}) such that E = [a, b[ and f is a

homeomorphism and f(a) = p.

(76) Let A, B be non empty subsets of the carrier of E2

T
and p, q be points

of E2

T
. Suppose A is an arc from p to q and B is an arc from q to p and

A∩B = {p, q} and p 6= q. Then I(01) and (E2

T
)↾((A \ {p})∪ (B \ {p})) are

homeomorphic.

(77) For every simple closed curve D and for every point p of E2

T
such that

p ∈ D holds (E2

T
)↾(D \ {p}) and I(01) are homeomorphic.

(78) Let D be a simple closed curve and p, q be points of E2

T
. If p ∈ D and

q ∈ D, then (E2

T
)↾(D \ {p}) and (E2

T
)↾(D \ {q}) are homeomorphic.

(79) Let C be a non empty subset of E2

T
and E be a subset of I(01). Suppose

there exist points p1, p2 of I such that p1 < p2 and E = [p1, p2] and

I(01)↾E and (E2

T
)↾C are homeomorphic. Then there exist points s1, s2 of

E2

T
such that C is an arc from s1 to s2.

(80) LetD1 be a non empty subset of E
2

T
, f be a map from (E2

T
)↾D1 into I(01),

and C be a non empty subset of E2

T
. Suppose f is a homeomorphism

and C ⊆ D1 and there exist points p1, p2 of I such that p1 < p2 and

f◦C = [p1, p2]. Then there exist points s1, s2 of E
2

T
such that C is an arc

from s1 to s2.

(81) LetD be a simple closed curve and C be a non empty compact connected

subset of E2

T
. Suppose C ⊆ D. Then C = D or there exist points p1, p2 of

E2

T
such that C is an arc from p1 to p2 or there exists a point p of E

2

T
such

that C = {p}.
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