Properties of the Internal Approximation of Jordan's Curve ${ }^{1}$

Robert Milewski
University of Białystok

MML Identifier: JORDAN14.

The articles [19], [25], [14], [10], [1], [16], [2], [3], [24], [11], [18], [9], [26], [6], [17], [7], [8], [12], [13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and terminology for this paper.

One can prove the following propositions:
(1) For every non constant standard special circular sequence f holds $\operatorname{BDD} \widetilde{\mathcal{L}}(f)=\operatorname{RightComp}(f)$ or $\operatorname{BDD} \widetilde{\mathcal{L}}(f)=\operatorname{LeftComp}(f)$.
(2) For every non constant standard special circular sequence f holds $\operatorname{UBD} \widetilde{\mathcal{L}}(f)=\operatorname{RightComp}(f)$ or $\operatorname{UBD} \widetilde{\mathcal{L}}(f)=\operatorname{LeftComp}(f)$.
(3) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and k be a natural number. Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. Then left_cell (f, k, G) is closed.
(4) Let G be a Go-board, p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$, and i, j be natural numbers. Suppose $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} G$ and $1 \leqslant j$ and $j+1 \leqslant$ width G. Then $p \in \operatorname{Int} \operatorname{cell}(G, i, j)$ if and only if the following conditions are satisfied:
(i) $(G \circ(i, j))_{\mathbf{1}}<p_{\mathbf{1}}$,
(ii) $p_{\mathbf{1}}<(G \circ(i+1, j))_{\mathbf{1}}$,
(iii) $\quad(G \circ(i, j))_{2}<p_{\mathbf{2}}$, and
(iv) $\quad p_{\mathbf{2}}<(G \circ(i, j+1))_{\mathbf{2}}$.
(5) For every non constant standard special circular sequence f holds $\operatorname{BDD} \widetilde{\mathcal{L}}(f)$ is connected.
Let f be a non constant standard special circular sequence. Observe that $\operatorname{BDD} \widetilde{\mathcal{L}}(f)$ is connected.

[^0]Let C be a simple closed curve and let n be a natural number. The functor SpanStart (C, n) yields a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 1) $\quad \operatorname{SpanStart}(C, n)=\operatorname{Gauge}(C, n) \circ(\mathrm{X}-\operatorname{SpanStart}(C, n)$, Y-SpanStart $(C, n))$.
The following four propositions are true:
(6) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then $(\operatorname{Span}(C, n))_{1}=\operatorname{SpanStart}(C, n)$.
(7) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\operatorname{SpanStart}(C, n) \in \operatorname{BDD} C$.
(8) Let C be a simple closed curve and n, k be natural numbers. Suppose n is sufficiently large for C. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len $\operatorname{Span}(C, n)$. Then right_cell $(\operatorname{Span}(C, n), k$, Gauge $(C, n))$ misses C and left_cell(Span $(C, n), k$, Gauge $(C, n))$ meets C.
(9) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C misses $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
Let C be a simple closed curve and let n be a natural number. Observe that $\overline{\operatorname{RightComp}(\operatorname{Span}(C, n))}$ is compact.

Next we state a number of propositions:
(10) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C meets $\operatorname{LeftComp}(\operatorname{Span}(C, n))$.
(11) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then C misses $\operatorname{RightComp}(\operatorname{Span}(C, n))$.
(12) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $C \subseteq \operatorname{LeftComp}(\operatorname{Span}(C, n))$.
(13) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $C \subseteq \operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(14) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq \operatorname{BDD} C$.
(15) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\mathrm{UBD} C \subseteq \mathrm{UBD} \widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(16) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\operatorname{RightComp}(\operatorname{Span}(C, n)) \subseteq \operatorname{BDD} C$.
(17) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\mathrm{UBD} C \subseteq \operatorname{LeftComp}(\operatorname{Span}(C, n))$.
(18) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then $\mathrm{UBD} C$ misses $\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(19) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then UBD C misses $\operatorname{RightComp}(\operatorname{Span}(C, n))$.
(20) Let C be a simple closed curve, P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and n be a natural number. Suppose n is sufficiently large for C. If P is outside component
of C, then P misses $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(21) Let C be a simple closed curve and n be a natural number. If n is sufficiently large for C, then $\operatorname{UBD} C$ misses $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(22) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds $\widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq \operatorname{BDD} C$.
(23) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leqslant k$ and $k \leqslant \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i$, $j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_{k}=\operatorname{Gauge}(C, n) \circ(i, j)$. Then $i>1$.
(24) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leqslant k$ and $k \leqslant \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i$, $j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_{k}=\operatorname{Gauge}(C, n) \circ(i, j)$. Then $i<$ len Gauge (C, n).
(25) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leqslant k$ and $k \leqslant \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i$, $j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ and $(\operatorname{Span}(C, n))_{k}=\operatorname{Gauge}(C, n) \circ(i, j)$. Then $j>1$.
(26) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose n is sufficiently large for C and $1 \leqslant k$ and $k \leqslant \operatorname{len} \operatorname{Span}(C, n)$ and $\langle i$, $j\rangle \in$ the indices of Gauge (C, n) and $(\operatorname{Span}(C, n))_{k}=\operatorname{Gauge}(C, n) \circ(i, j)$. Then $j<$ width Gauge (C, n).
(27) For every simple closed curve C and for every natural number n such that n is sufficiently large for C holds Y-SpanStart $(C, n)<\operatorname{width} \operatorname{Gauge}(C, n)$.
(28) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n, m be natural numbers. If $m \geqslant n$ and $n \geqslant 1$, then X -SpanStart $(C, m)=$ $2^{m-^{\prime} n} \cdot(\mathrm{X}-\operatorname{SpanStart}(C, n)-2)+2$.
(29) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n, m be natural numbers. Suppose $n \leqslant m$ and n is sufficiently large for C. Then m is sufficiently large for C.
(30) Let G be a Go-board, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and i, j be natural numbers. Suppose f is a sequence which elements belong to G and special and $i \leqslant \operatorname{len} G$ and $j \leqslant \operatorname{width} G$. Then $\operatorname{cell}(G, i, j) \backslash \widetilde{\mathcal{L}}(f)$ is connected.
(31) Let C be a simple closed curve and n, k be natural numbers. Suppose n is sufficiently large for C and Y-SpanStart $(C, n) \leqslant$ k and $k \leqslant 2^{n-{ }^{\prime} A p p r o x I n d e x ~} C \cdot(Y-I n i t S t a r t C-12)+2$. Then $\operatorname{cell}\left(\operatorname{Gauge}(C, n), \mathrm{X}-\operatorname{SpanStart}(C, n)-{ }^{\prime} 1, k\right) \backslash \widetilde{\mathcal{L}}(\operatorname{Span}(C, n)) \subseteq$ $\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{Span}(C, n))$.
(32) Let C be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n, m, i be natural numbers. If $m \leqslant n$ and $1<i$ and $i+1<$ len $\operatorname{Gauge}(C, m)$, then $2^{n-{ }^{\prime} m} \cdot(i-2)+2+1<$
len Gauge (C, n).
(33) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leqslant m$, then $\operatorname{RightComp}(\operatorname{Span}(C, n))$ meets $\operatorname{RightComp}(\operatorname{Span}(C, m))$.
(34) Let G be a Go-board and f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is a sequence which elements belong to G and special. Let i, j be natural numbers. If $i \leqslant \operatorname{len} G$ and $j \leqslant$ width G, then $\operatorname{Int} \operatorname{cell}(G, i, j) \subseteq$ $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$.
(35) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leqslant m$, then $\widetilde{\mathcal{L}}(\operatorname{Span}(C, m)) \subseteq$ $\overline{\operatorname{LeftComp}}(\operatorname{Span}(C, n))$.
(36) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leqslant m$, then $\operatorname{RightComp}(\operatorname{Span}(C, n)) \subseteq$ $\operatorname{RightComp}(\operatorname{Span}(C, m))$.
(37) Let C be a simple closed curve and n, m be natural numbers. If n is sufficiently large for C and $n \leqslant m$, then $\operatorname{LeftComp}(\operatorname{Span}(C, m)) \subseteq$ $\operatorname{LeftComp}(\operatorname{Span}(C, n))$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[5] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139-146, 1999.
[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[15] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[21] Andrzej Trybulec. More on the external approximation of a continuum. Formalized Mathematics, 9(4):831-841, 2001.
[22] Andrzej Trybulec. Introducing spans. Formalized Mathematics, 10(2):97-98, 2002.
[23] Andrzej Trybulec. Preparing the internal approximations of simple closed curves. Formalized Mathematics, 10(2):85-87, 2002.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received June 27, 2002

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

