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The articles [19], [25], [14], [10], [1], [16], [2], [3], [24], [11], [18], [9], [26], [6], [17],

[7], [8], [12], [13], [20], [15], [4], [5], [21], [23], and [22] provide the notation and

terminology for this paper.

One can prove the following propositions:

(1) For every non constant standard special circular sequence f holds

BDD L̃(f) = RightComp(f) or BDD L̃(f) = LeftComp(f).

(2) For every non constant standard special circular sequence f holds

UBD L̃(f) = RightComp(f) or UBD L̃(f) = LeftComp(f).

(3) Let G be a Go-board, f be a finite sequence of elements of E2

T, and k be

a natural number. Suppose 1 ¬ k and k + 1 ¬ len f and f is a sequence

which elements belong to G. Then left cell(f, k,G) is closed.

(4) Let G be a Go-board, p be a point of E2

T, and i, j be natural numbers.

Suppose 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG. Then

p ∈ Int cell(G, i, j) if and only if the following conditions are satisfied:

(i) (G ◦ (i, j))1 < p1,

(ii) p1 < (G ◦ (i + 1, j))1,

(iii) (G ◦ (i, j))2 < p2, and

(iv) p2 < (G ◦ (i, j + 1))2.

(5) For every non constant standard special circular sequence f holds

BDD L̃(f) is connected.

Let f be a non constant standard special circular sequence. Observe that

BDD L̃(f) is connected.
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Let C be a simple closed curve and let n be a natural number. The functor

SpanStart(C, n) yields a point of E2

T and is defined as follows:

(Def. 1) SpanStart(C, n) = Gauge(C, n)◦(X-SpanStart(C, n),Y-SpanStart(C, n)).

The following four propositions are true:

(6) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then (Span(C, n))1 = SpanStart(C, n).

(7) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds SpanStart(C, n) ∈ BDDC.

(8) Let C be a simple closed curve and n, k be natural numbers. Sup-

pose n is sufficiently large for C. Suppose 1 ¬ k and k + 1 ¬

len Span(C, n). Then right cell(Span(C, n), k,Gauge(C, n)) misses C and

left cell(Span(C, n), k,Gauge(C, n)) meets C.

(9) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then C misses L̃(Span(C, n)).

Let C be a simple closed curve and let n be a natural number. Observe that

RightComp(Span(C, n)) is compact.

Next we state a number of propositions:

(10) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then C meets LeftComp(Span(C, n)).

(11) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then C misses RightComp(Span(C, n)).

(12) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds C ⊆ LeftComp(Span(C, n)).

(13) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds C ⊆ UBD L̃(Span(C, n)).

(14) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds BDD L̃(Span(C, n)) ⊆ BDDC.

(15) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds UBDC ⊆ UBD L̃(Span(C, n)).

(16) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds RightComp(Span(C, n)) ⊆ BDDC.

(17) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds UBDC ⊆ LeftComp(Span(C, n)).

(18) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then UBDC misses BDD L̃(Span(C, n)).

(19) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then UBDC misses RightComp(Span(C, n)).

(20) Let C be a simple closed curve, P be a subset of E2

T, and n be a natural

number. Suppose n is sufficiently large for C. If P is outside component
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of C, then P misses L̃(Span(C, n)).

(21) Let C be a simple closed curve and n be a natural number. If n is

sufficiently large for C, then UBDC misses L̃(Span(C, n)).

(22) For every simple closed curve C and for every natural number n such

that n is sufficiently large for C holds L̃(Span(C, n)) ⊆ BDDC.

(23) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose

n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,

j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).

Then i > 1.

(24) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose

n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,

j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).

Then i < lenGauge(C, n).

(25) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose

n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,

j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).

Then j > 1.

(26) Let C be a simple closed curve and i, j, k, n be natural numbers. Suppose

n is sufficiently large for C and 1 ¬ k and k ¬ len Span(C, n) and 〈〈i,

j〉〉 ∈ the indices of Gauge(C, n) and (Span(C, n))k = Gauge(C, n) ◦ (i, j).

Then j < widthGauge(C, n).

(27) For every simple closed curve C and for every natural number n such that

n is sufficiently large for C holds Y-SpanStart(C, n) < widthGauge(C, n).

(28) Let C be a compact non vertical non horizontal subset of E2

T and n,

m be natural numbers. If m  n and n  1, then X-SpanStart(C,m) =

2m−′n · (X-SpanStart(C, n)− 2) + 2.

(29) Let C be a compact non vertical non horizontal subset of E2

T and n, m

be natural numbers. Suppose n ¬ m and n is sufficiently large for C. Then

m is sufficiently large for C.

(30) Let G be a Go-board, f be a finite sequence of elements of E2

T, and i,

j be natural numbers. Suppose f is a sequence which elements belong to

G and special and i ¬ lenG and j ¬ widthG. Then cell(G, i, j) \ L̃(f) is

connected.

(31) Let C be a simple closed curve and n, k be natural num-

bers. Suppose n is sufficiently large for C and Y-SpanStart(C, n) ¬

k and k ¬ 2n−′ApproxIndexC · (Y-InitStartC −′ 2) + 2. Then

cell(Gauge(C, n),X-SpanStart(C, n)−′ 1, k) \ L̃(Span(C, n)) ⊆

BDD L̃(Span(C, n)).

(32) Let C be a subset of E2

T and n, m, i be natural numbers. If m ¬ n

and 1 < i and i + 1 < lenGauge(C, m), then 2n−′m · (i − 2) + 2 + 1 <
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lenGauge(C, n).

(33) Let C be a simple closed curve and n, m be natural numbers. If n is

sufficiently large for C and n ¬ m, then RightComp(Span(C, n)) meets

RightComp(Span(C, m)).

(34) Let G be a Go-board and f be a finite sequence of elements of E2

T.

Suppose f is a sequence which elements belong to G and special. Let i, j

be natural numbers. If i ¬ lenG and j ¬ widthG, then Int cell(G, i, j) ⊆

(L̃(f))c.

(35) Let C be a simple closed curve and n, m be natural numbers. If

n is sufficiently large for C and n ¬ m, then L̃(Span(C,m)) ⊆

LeftComp(Span(C, n)).

(36) Let C be a simple closed curve and n, m be natural numbers. If n

is sufficiently large for C and n ¬ m, then RightComp(Span(C, n)) ⊆

RightComp(Span(C, m)).

(37) Let C be a simple closed curve and n, m be natural numbers. If n

is sufficiently large for C and n ¬ m, then LeftComp(Span(C, m)) ⊆

LeftComp(Span(C, n)).
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