On the General Position of Special Polygons¹

Mariusz Giero University of Białystok

Summary. In this paper we introduce the notion of general position. We also show some auxiliary theorems for proving Jordan curve theorem. The following main theorems are proved:

- 1. End points of a polygon are in the same component of a complement of another polygon if number of common points of these polygons is even;
- 2. Two points of polygon L are in the same component of a complement of polygon M if two points of polygon M are in the same component of polygon L.

MML Identifier: JORDAN12.

The papers [23], [6], [26], [20], [2], [18], [22], [16], [27], [1], [8], [5], [3], [25], [11], [4], [21], [19], [9], [10], [14], [15], [12], [13], [17], [24], and [7] provide the terminology and notation for this paper.

1. Preliminaries

We adopt the following rules: i, j, k, n denote natural numbers, a, b, c, x denote sets, and r denotes a real number.

The following four propositions are true:

- (1) If 1 < i, then 0 < i 1.
- (2) If $1 \le i$, then i 1 < i.
- (3) 1 is odd.
- (4) Let given n, f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}$, and given i. If $1 \leq i$ and $i + 1 \leq \mathrm{len} f$, then $f_i \in \mathrm{rng} f$ and $f_{i+1} \in \mathrm{rng} f$.

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

C 2002 University of Białystok ISSN 1426-2630

MARIUSZ GIERO

Let us mention that every finite sequence of elements of \mathcal{E}_T^2 which is s.n.c. is also s.c.c..

Next we state two propositions:

- (5) Let f, g be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. If $f \frown g$ is unfolded and s.c.c. and len $g \ge 2$, then f is unfolded and s.n.c..
- (6) For all finite sequences g_1, g_2 of elements of $\mathcal{E}^2_{\mathrm{T}}$ holds $\widetilde{\mathcal{L}}(g_1) \subseteq \widetilde{\mathcal{L}}(g_1 \frown g_2)$.

2. The Notion of General Position and Its Properties

Let us consider n and let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^n_{\mathrm{T}}$. We say that f_1 is in general position wrt f_2 if and only if:

(Def. 1) $\mathcal{L}(f_1)$ misses rng f_2 and for every i such that $1 \leq i$ and $i < \text{len } f_2$ holds $\widetilde{\mathcal{L}}(f_1) \cap \mathcal{L}(f_2, i)$ is trivial.

Let us consider n and let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^n_{\mathrm{T}}$. We say that f_1 and f_2 are in general position if and only if:

(Def. 2) f_1 is in general position wrt f_2 and f_2 is in general position wrt f_1 .

Let us note that the predicate f_1 and f_2 are in general position is symmetric. The following propositions are true:

- (7) Let f_1 , f_2 be finite sequences of elements of \mathcal{E}_T^2 . Suppose f_1 and f_2 are in general position. Let f be a finite sequence of elements of \mathcal{E}_T^2 . If $f = f_2 \upharpoonright \text{Seg } k$, then f_1 and f are in general position.
- (8) Let f_1, f_2, g_1, g_2 be finite sequences of elements of \mathcal{E}_T^2 . Suppose $f_1 \frown f_2$ and $g_1 \frown g_2$ are in general position. Then $f_1 \frown f_2$ and g_1 are in general position.

In the sequel f, g are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. The following propositions are true:

- (9) For all k, f, g such that $1 \leq k$ and $k+1 \leq \log g$ and f and g are in general position holds $g(k) \in (\widetilde{\mathcal{L}}(f))^{c}$ and $g(k+1) \in (\widetilde{\mathcal{L}}(f))^{c}$.
- (10) Let f_1 , f_2 be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose f_1 and f_2 are in general position. Let given i, j. If $1 \leq i$ and $i + 1 \leq \text{len } f_1$ and $1 \leq j$ and $j + 1 \leq \text{len } f_2$, then $\mathcal{L}(f_1, i) \cap \mathcal{L}(f_2, j)$ is trivial.
- (11) For all f, g holds $\{\mathcal{L}(f,i) : 1 \leq i \land i+1 \leq \operatorname{len} f\} \cap \{\mathcal{L}(g,j) : 1 \leq j \land j+1 \leq \operatorname{len} g\}$ is finite.
- (12) For all f, g such that f and g are in general position holds $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)$ is finite.
- (13) For all f, g such that f and g are in general position and for every k holds $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(g, k)$ is finite.

90

3. PROPERTIES OF BEING IN THE SAME COMPONENT OF A COMPLEMENT OF A POLYGON

We use the following convention: f is a non constant standard special circular sequence, g is a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and p, p_1 , p_2 , q are points of $\mathcal{E}_{\mathrm{T}}^2$.

One can prove the following propositions:

- (14) For all f, p_1 , p_2 such that $\mathcal{L}(p_1, p_2)$ misses $\widetilde{\mathcal{L}}(f)$ there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.
- (15) There exists a subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that C is a component of $(\mathcal{L}(f))^c$ and $a \in C$ and $b \in C$ if and only if $a \in \mathrm{RightComp}(f)$ and $b \in \mathrm{RightComp}(f)$ or $a \in \mathrm{LeftComp}(f)$ and $b \in \mathrm{LeftComp}(f)$.
- (16) $a \in (\mathcal{L}(f))^{c}$ and $b \in (\mathcal{L}(f))^{c}$ and it is not true that there exists a subset C of \mathcal{E}_{T}^{c} such that C is a component of $(\mathcal{\widetilde{L}}(f))^{c}$ and $a \in C$ and $b \in C$ if and only if $a \in \text{LeftComp}(f)$ and $b \in \text{RightComp}(f)$ or $a \in \text{RightComp}(f)$ and $b \in \text{LeftComp}(f)$.
- (17) Let given f, a, b, c. Suppose that
 - (i) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\hat{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $b \in C$, and
- (ii) there exists a subset C of $\mathcal{E}^2_{\mathcal{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^c$ and $b \in C$ and $c \in C$.

Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^c$ and $a \in C$ and $c \in C$.

- (18) Let given f, a, b, c. Suppose that
 - (i) $a \in (\mathcal{L}(f))^{c}$,
- (ii) $b \in (\mathcal{L}(f))^{c}$,
- (iii) $c \in (\mathcal{L}(f))^{c}$,
- (iv) it is not true that there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $b \in C$, and
- (v) it is not true that there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $b \in C$ and $c \in C$. Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $a \in C$ and $c \in C$.

4. Cells Are Convex

In the sequel G denotes a Go-board.

One can prove the following propositions:

- (19) If $i \leq \text{len } G$, then vstrip(G, i) is convex.
- (20) If $j \leq \text{width } G$, then hstrip(G, j) is convex.

MARIUSZ GIERO

- (21) If $i \leq \text{len } G$ and $j \leq \text{width } G$, then cell(G, i, j) is convex.
- (22) For all f, k such that $1 \leq k$ and $k + 1 \leq \text{len } f$ holds leftcell(f, k) is convex.
- (23) For all f, k such that $1 \leq k$ and $k+1 \leq len f$ holds $left_cell(f, k, the Go-board of f)$ is convex and right_cell(f, k, the Go-board of f) is convex.

5. Properties of Points Lying on the Same Line

The following propositions are true:

- (24) Let given p_1 , p_2 , f and r be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $r \in \mathcal{L}(p_1, p_2)$ and there exists x such that $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(p_1, p_2) = \{x\}$ and $r \notin \widetilde{\mathcal{L}}(f)$. Then $\widetilde{\mathcal{L}}(f)$ misses $\mathcal{L}(p_1, r)$ or $\widetilde{\mathcal{L}}(f)$ misses $\mathcal{L}(r, p_2)$.
- (25) For all points p, q, r, s of $\mathcal{E}_{\mathrm{T}}^2$ such that $\mathcal{L}(p,q)$ is vertical and $\mathcal{L}(r,s)$ is vertical and $\mathcal{L}(p,q)$ meets $\mathcal{L}(r,s)$ holds $p_1 = r_1$.
- (26) For all p, p_1 , p_2 such that $p \notin \mathcal{L}(p_1, p_2)$ and $(p_1)_2 = (p_2)_2$ and $(p_2)_2 = p_2$ holds $p_1 \in \mathcal{L}(p, p_2)$ or $p_2 \in \mathcal{L}(p, p_1)$.
- (27) For all p, p_1 , p_2 such that $p \notin \mathcal{L}(p_1, p_2)$ and $(p_1)_1 = (p_2)_1$ and $(p_2)_1 = p_1$ holds $p_1 \in \mathcal{L}(p, p_2)$ or $p_2 \in \mathcal{L}(p, p_1)$.
- (28) If $p \neq p_1$ and $p \neq p_2$ and $p \in \mathcal{L}(p_1, p_2)$, then $p_1 \notin \mathcal{L}(p, p_2)$.
- (29) Let given p, p_1, p_2, q . Suppose $q \notin \mathcal{L}(p_1, p_2)$ and $p \in \mathcal{L}(p_1, p_2)$ and $p \neq p_1$ and $p \neq p_2$ and $(p_1)_1 = (p_2)_1$ and $(p_2)_1 = q_1$ or $(p_1)_2 = (p_2)_2$ and $(p_2)_2 = q_2$. Then $p_1 \in \mathcal{L}(q, p)$ or $p_2 \in \mathcal{L}(q, p)$.
- (30) Let p_1, p_2, p_3, p_4, p be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $(p_1)_1 = (p_2)_1$ and $(p_3)_1 = (p_4)_1$ or $(p_1)_2 = (p_2)_2$ and $(p_3)_2 = (p_4)_2$ but $\mathcal{L}(p_1, p_2) \cap \mathcal{L}(p_3, p_4) = \{p\}$. Then $p = p_1$ or $p = p_2$ or $p = p_3$.

6. The Position of the Points of a Polygon with Respect to Another Polygon

We now state several propositions:

- (31) Let given p, p_1, p_2, f . Suppose $\mathcal{L}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$. Let r be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $r \notin \mathcal{L}(p_1, p_2),$
 - (ii) $p_1 \notin \widetilde{\mathcal{L}}(f)$,
- (iii) $p_2 \notin \widetilde{\mathcal{L}}(f),$
- (iv) $(p_1)_1 = (p_2)_1$ and $(p_1)_1 = r_1$ or $(p_1)_2 = (p_2)_2$ and $(p_1)_2 = r_2$,
- (v) there exists *i* such that $1 \leq i$ and $i+1 \leq \text{len } f$ and $r \in \text{right_cell}(f, i, \text{the Go-board of } f)$ or $r \in \text{left_cell}(f, i, \text{the Go-board of } f)$ and $p \in \mathcal{L}(f, i)$, and

92

⁽vi) $r \notin \mathcal{L}(f)$.

Then

- (vii) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\mathcal{L}(f))^c$ and $r \in C$ and $p_1 \in C$, or
- (viii) there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $r \in C$ and $p_2 \in C$.
- (32) Let given f, p_1 , p_2 , p. Suppose $\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$. Let r_1 , r_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $p_1 \notin \mathcal{L}(f)$,
 - (ii) $p_2 \notin \mathcal{L}(f),$
- (iii) $(p_1)_1 = (p_2)_1$ and $(p_1)_1 = (r_1)_1$ and $(r_1)_1 = (r_2)_1$ or $(p_1)_2 = (p_2)_2$ and $(p_1)_2 = (r_1)_2$ and $(r_1)_2 = (r_2)_2$,
- (iv) there exists *i* such that $1 \leq i$ and $i+1 \leq \text{len } f$ and $r_1 \in \text{left_cell}(f, i, \text{the Go-board of } f)$ and $r_2 \in \text{right_cell}(f, i, \text{the Go-board of } f)$ and $p \in \mathcal{L}(f, i)$,
- (v) $r_1 \notin \mathcal{L}(f)$, and
- (vi) $r_2 \notin \mathcal{L}(f)$.

Then it is not true that there exists a subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.

- (33) Let given p, f, p_1, p_2 . Suppose $\mathcal{L}(f) \cap \mathcal{L}(p_1, p_2) = \{p\}$ and $(p_1)_1 = (p_2)_1$ or $(p_1)_2 = (p_2)_2$ and $p_1 \notin \mathcal{L}(f)$ and $p_2 \notin \mathcal{L}(f)$ and rng f misses $\mathcal{L}(p_1, p_2)$. Then it is not true that there exists a subset C of \mathcal{E}_T^2 such that C is a component of $(\mathcal{L}(f))^c$ and $p_1 \in C$ and $p_2 \in C$.
- (34) Let f be a non constant standard special circular sequence and g be a special finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f and g are in general position. Let given k. Suppose $1 \leq k$ and $k+1 \leq \log g$. Then $\overline{\widetilde{\mathcal{L}}(f) \cap \mathcal{L}(g,k)}$ is an even natural number if and only if there exists a subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that C is a component of $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $g(k) \in C$ and $g(k+1) \in C$.
- (35) Let f_1, f_2, g_1 be special finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $f_1 \sim f_2$ is a non constant standard special circular sequence,
 - (ii) $f_1 \frown f_2$ and g_1 are in general position,
- (iii) $\operatorname{len} g_1 \ge 2$, and
- (iv) g_1 is unfolded and s.n.c..

Then $\widetilde{\mathcal{L}}(f_1 \frown f_2) \cap \widetilde{\mathcal{L}}(g_1)$ is an even natural number if and only if there exists a subset C of \mathcal{E}^2_T such that C is a component of $(\widetilde{\mathcal{L}}(f_1 \frown f_2))^c$ and $g_1(1) \in C$ and $g_1(\operatorname{len} g_1) \in C$.

- (36) Let f_1, f_2, g_1, g_2 be special finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) $f_1 \sim f_2$ is a non constant standard special circular sequence,
 - (ii) $g_1 \frown g_2$ is a non constant standard special circular sequence,
- (iii) $\mathcal{L}(f_1)$ misses $\mathcal{L}(g_2)$,
- (iv) $\hat{\mathcal{L}}(f_2)$ misses $\hat{\mathcal{L}}(g_1)$, and

MARIUSZ GIERO

- (v) $f_1 \frown f_2$ and $g_1 \frown g_2$ are in general position.
 - Let p_1, p_2, q_1, q_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that $f_1(1) = p_1$ and $f_1(\mathrm{len} f_1) = p_2$ and $g_1(1) = q_1$ and $g_1(\mathrm{len} g_1) = q_2$ and $(f_1)_{\mathrm{len} f_1} = (f_2)_1$ and $(g_1)_{\mathrm{len} g_1} = (g_2)_1$ and $p_1 \neq p_2$ and $q_1 \neq q_2$ and $p_1 \in \widetilde{\mathcal{L}}(f_1) \cap \widetilde{\mathcal{L}}(f_2)$ and $q_1 \in \widetilde{\mathcal{L}}(g_1) \cap \widetilde{\mathcal{L}}(g_2)$ and there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(f_1 \cap f_2))^{\mathrm{c}}$ and $q_1 \in C$ and $q_2 \in C$. Then there exists a subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that C is a component of $(\widetilde{\mathcal{L}}(g_1 \frown g_2))^{\mathrm{c}}$ and $p_1 \in C$ and $p_2 \in C$.

Acknowledgments

I would like to thank Prof. Andrzej Trybulec for his help in preparation of this article. I also thank Adam Grabowski, Robert Milewski and Adam Naumowicz for their helpful comments.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [6] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [7] Czesław Byliński. Some properties of cells on Go-board. Formalized Mathematics, 8(1):139–146, 1999.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [14] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [15] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. *Formalized Mathematics*, 3(2):137–142, 1992.
- [16] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297–304, 1996.
- [17] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [19] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [20] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [22] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.

94

- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.[24] Andrzej Trybulec. Left and right component of the complement of a special closed curve.
- Formalized Mathematics, 5(4):465–468, 1996.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- 1(1):73-83, 1990.

Received May 27, 2002