Half Open Intervals in Real Numbers

Yatsuka Nakamura Shinshu University Nagano

Summary. Left and right half open intervals in the real line are defined. Their properties are investigated. A class of all finite union of such intervals are, in a sense, closed by operations of union, intersection and the difference of sets.

MML Identifier: RCOMP_2.

The terminology and notation used here are introduced in the following articles: [5], [1], [3], [4], and [2].

In this paper s, g, h, r, p, p_1 , p_2 , q, q_1 , q_2 , x, y, z denote real numbers. The following two propositions are true:

- (1) x < y and x < z iff $x < \min(y, z)$.
- (2) y < x and z < x iff $\max(y, z) < x$.

Let g, s be real numbers. The functor [g, s[yielding a subset of \mathbb{R} is defined as follows:

(Def. 1) $[g, s] = \{r; r \text{ ranges over real numbers: } g \leq r \land r < s\}.$

The functor]g, s] yields a subset of \mathbb{R} and is defined as follows:

(Def. 2) $]g, s] = \{r; r \text{ ranges over real numbers: } g < r \land r \leq s\}.$

Next we state a number of propositions:

- (3) $r \in [p, q]$ iff $p \leq r$ and r < q.
- (4) $r \in [p, q]$ iff p < r and $r \leq q$.
- (5) For all g, s such that g < s holds $[g, s[=]g, s[\cup \{g\}]$.
- (6) For all g, s such that g < s holds $]g, s] =]g, s[\cup \{s\}.$
- (7) $[g,g]=\emptyset.$
- $(8) \quad]g,g] = \emptyset.$
- (9) If $p \leq g$, then $[g, p] = \emptyset$.

C 2002 University of Białystok ISSN 1426-2630

YATSUKA NAKAMURA

- (10) If $p \leq g$, then $]g, p] = \emptyset$.
- (11) If $g \leq p$ and $p \leq h$, then $[g, p[\cup[p, h] = [g, h]]$.
- (12) If $g \leq p$ and $p \leq h$, then $]g, p] \cup]p, h] =]g, h]$.
- (13) If $g \leq p_1$ and $g \leq p_2$ and $p_1 \leq h$ and $p_2 \leq h$, then $[g,h] = [g,p_1[\cup[p_1,p_2]\cup]p_2,h].$
- (14) If $g < p_1$ and $g < p_2$ and $p_1 < h$ and $p_2 < h$, then $]g,h[=]g,p_1] \cup]p_1, p_2[\cup [p_2,h[.$
- (15) $[q_1, q_2] \cap [p_1, p_2] = [\max(q_1, p_1), \min(q_2, p_2)].$
- (16) $|q_1, q_2| \cap |p_1, p_2| = |\max(q_1, p_1), \min(q_2, p_2)|.$
- (17) $]p,q[\subseteq [p,q[\text{ and }]p,q[\subseteq]p,q] \text{ and } [p,q[\subseteq [p,q] \text{ and }]p,q]\subseteq [p,q].$
- (18) If $r \in [p, g[$ and $s \in [p, g[$, then $[r, s] \subseteq [p, g[$.
- (19) If $r \in [p, g]$ and $s \in [p, g]$, then $[r, s] \subseteq [p, g]$.
- (20) If $p \leq q$ and $q \leq r$, then $[p,q] \cup]q,r] = [p,r]$.
- (21) If $p \leq q$ and $q \leq r$, then $[p, q[\cup[q, r] = [p, r]]$.
- (22) If $[q_1, q_2]$ meets $[p_1, p_2]$, then $q_2 \ge p_1$.
- (23) If $]q_1, q_2]$ meets $]p_1, p_2]$, then $q_2 \ge p_1$.
- (24) If $[q_1, q_2]$ meets $[p_1, p_2]$, then $[q_1, q_2] \cup [p_1, p_2] = [\min(q_1, p_1), \max(q_2, p_2)]$.
- (25) If $|q_1, q_2|$ meets $|p_1, p_2|$, then $|q_1, q_2| \cup |p_1, p_2| = |\min(q_1, p_1), \max(q_2, p_2)|$.
- (26) If $[p_1, p_2]$ meets $[q_1, q_2]$, then $[p_1, p_2] \setminus [q_1, q_2] = [p_1, q_1] \cup [q_2, p_2]$.
- (27) If $|p_1, p_2|$ meets $|q_1, q_2|$, then $|p_1, p_2| \setminus |q_1, q_2| = |p_1, q_1| \cup |q_2, p_2|$.

References

- Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [3] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [5] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received February 1, 2002