Some Remarks on Clockwise Oriented Sequences on Go-boards ${ }^{1}$

Adam Naumowicz ${ }^{2}$
University of Białystok

Robert Milewski
University of Białystok

Abstract

Summary. The main goal of this paper is to present alternative characterizations of clockwise oriented sequences on Go-boards.

MML Identifier: JORDAN1I.

The articles [8], [21], [9], [2], [3], [26], [24], [4], [16], [18], [23], [14], [20], [19], [5], [7], [13], [1], [6], [12], [28], [15], [17], [25], [27], [22], [10], and [11] provide the terminology and notation for this paper.

1. Preliminaries

In this paper i, j, k, n denote natural numbers.
Next we state several propositions:
(1) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A is Bounded or B is Bounded holds $A \cap B$ is Bounded.
(2) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A is not Bounded and B is Bounded holds $A \backslash B$ is not Bounded.
(3) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $(W-m i n ~ \widetilde{\mathcal{L}}($ Cage $(C, n))) \leftrightarrow$ Cage $(C, n)>1$.
(4) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $($ E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))) \leftrightarrow \operatorname{Cage}(C, n)>1$.
(5) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $($ S-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))) \leftrightarrow \operatorname{Cage}(C, n)>1$.

[^0]
2. On Bounding Points of Circular Sequences

Next we state several propositions:
(6) Let f be a non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{rng} f$, then leftcell $(f, p \leftrightarrow f)=\operatorname{leftcell}\left(f_{\circlearrowleft}^{p}, 1\right)$.
(7) Let f be a non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{rng} f$, then $\operatorname{rightcell}(f, p \leftrightarrow f)=\operatorname{rightcell}\left(f_{\circlearrowleft}^{p}, 1\right)$.
(8) For every compact connected non vertical non horizontal non empty subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathrm{W}-\min C \in \operatorname{rightcell}\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min } \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)), 1\right)$.
(9) For every compact connected non vertical non horizontal non empty subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds E-max $\left.C \in \operatorname{rightcell((\operatorname {Cage}(C,n))_{\circlearrowleft }^{\mathrm {E}-\operatorname {max}}\widetilde {\mathcal {L}}(\operatorname {Cage}(C,n))}, 1\right)$.
(10) For every compact connected non vertical non horizontal non empty subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{S-max} C \in \operatorname{rightcell}\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{S}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}, 1\right)$.

3. On Clockwise Oriented Sequences

One can prove the following propositions:
(11) Let f be a clockwise oriented non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{\mathbf{1}}<\mathrm{W}$-bound $\widetilde{\mathcal{L}}(f)$, then $p \in \operatorname{LeftComp}(f)$.
(12) Let f be a clockwise oriented non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{\mathbf{1}}>\mathrm{E}$-bound $\widetilde{\mathcal{L}}(f)$, then $p \in \operatorname{LeftComp}(f)$.
(13) Let f be a clockwise oriented non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{\mathbf{2}}<$ S-bound $\widetilde{\mathcal{L}}(f)$, then $p \in \operatorname{LeftComp}(f)$.
(14) Let f be a clockwise oriented non constant standard special circular sequence and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p_{\mathbf{2}}>\mathrm{N}$-bound $\widetilde{\mathcal{L}}(f)$, then $p \in \operatorname{LeftComp}(f)$.
(15) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $f_{k}=G \circ(i+1, j)$ and $f_{k+1}=G \circ(i, j)$. Then $j<$ width G.
(16) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i, j+1)$. Then $i<\operatorname{len} G$.
(17) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$
len f and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i+1, j)$. Then $j>1$.
(18) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $f_{k}=G \circ(i, j+1)$ and $f_{k+1}=G \circ(i, j)$. Then $i>1$.
(19) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $f_{k}=G \circ(i+1, j)$ and $f_{k+1}=G \circ(i, j)$. Then $\left(f_{k}\right)_{\mathbf{2}} \neq \mathrm{N}$-bound $\widetilde{\mathcal{L}}(f)$.
(20) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i, j+1)$. Then $\left(f_{k}\right)_{1} \neq$ E-bound $\widetilde{\mathcal{L}}(f)$.
(21) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i+1, j)$. Then $\left(f_{k}\right)_{\mathbf{2}} \neq$ S-bound $\widetilde{\mathcal{L}}(f)$.
(22) Let f be a clockwise oriented non constant standard special circular sequence and G be a Go-board. Suppose f is a sequence which elements belong to G. Let i, j, k be natural numbers. Suppose $1 \leqslant k$ and $k+1 \leqslant$ len f and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $f_{k}=G \circ(i, j+1)$ and $f_{k+1}=G \circ(i, j)$. Then $\left(f_{k}\right)_{\mathbf{1}} \neq \mathrm{W}$-bound $\widetilde{\mathcal{L}}(f)$.
(23) Let f be a clockwise oriented non constant standard special circular sequence, G be a Go-board, and k be a natural number. Suppose f is a sequence which elements belong to G and $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and $f_{k}=\mathrm{W}-\min \widetilde{\mathcal{L}}(f)$. Then there exist natural numbers i, j such that $\langle i$, $j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i, j+1)$.
(24) Let f be a clockwise oriented non constant standard special circular sequence, G be a Go-board, and k be a natural number. Suppose f is a sequence which elements belong to G and $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and $f_{k}=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$. Then there exist natural numbers i, j such that $\langle i$, $j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $f_{k}=G \circ(i, j)$ and $f_{k+1}=G \circ(i+1, j)$.
(25) Let f be a clockwise oriented non constant standard special circular sequence, G be a Go-board, and k be a natural number. Suppose f is
a sequence which elements belong to G and $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and $f_{k}=\mathrm{E}-\max \widetilde{\mathcal{L}}(f)$. Then there exist natural numbers i, j such that $\langle i$, $j+1\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f_{k}=G \circ(i, j+1)$ and $f_{k+1}=G \circ(i, j)$.
(26) Let f be a clockwise oriented non constant standard special circular sequence, G be a Go-board, and k be a natural number. Suppose f is a sequence which elements belong to G and $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and $f_{k}=\mathrm{S}$-max $\widetilde{\mathcal{L}}(f)$. Then there exist natural numbers i, j such that $\langle i+1$, $j\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $f_{k}=G \circ(i+1, j)$ and $f_{k+1}=G \circ(i, j)$.
(27) Let f be a non constant standard special circular sequence. Then f is clockwise oriented if and only if $\left(f_{\circlearrowleft}^{\mathrm{W}-\min \tilde{\mathcal{L}}(f)}\right)_{2} \in \mathrm{~W}$-most $\widetilde{\mathcal{L}}(f)$.
(28) Let f be a non constant standard special circular sequence. Then f is clockwise oriented if and only if $\left(f_{\circlearrowleft}^{\mathrm{E}-m a x} \widetilde{\mathcal{L}}(f)\right)_{2} \in \mathrm{E}-$ most $\widetilde{\mathcal{L}}(f)$.
(29) Let f be a non constant standard special circular sequence. Then f is clockwise oriented if and only if $\left(f_{\circlearrowleft}^{S-m a x} \widetilde{\mathcal{L}}(f)\right)_{2} \in$ S-most $\widetilde{\mathcal{L}}(f)$.
(30) Let C be a compact non vertical non horizontal non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ satisfying conditions of simple closed curve and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{\mathbf{1}}=\frac{\mathrm{W} \text {-bound } C+\mathrm{E} \text {-bound } C}{2}$ and $i>0$ and $1 \leqslant k$ and $k \leqslant$ width Gauge (C, i) and Gauge $(C, i) \circ($ Center Gauge $(C, i), k) \in \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))$ and $p_{2}=\sup \left(\operatorname{proj} 2^{\circ}(\mathcal{L}(\operatorname{Gauge}(C, 1) \circ(\right.$ Center Gauge $(C, 1), 1)$, Gauge $(C, i) \circ$ (Center Gauge $(C, i), k)) \cap$ LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))))$. Then there exists j such that $1 \leqslant j$ and $j \leqslant$ len Gauge (C, i) and $p=\operatorname{Gauge}(C, i) \circ$ (Center Gauge $(C, i), j$).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[7] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan’s curve. Formalized Mathematics, 9(1):19-24, 2001.
[8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[14] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.
[15] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[17] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[19] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[20] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[21] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[24] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[25] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received March 1, 2002

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
 ${ }^{2}$ This work was completed during the authors's visit to Shinshu University.

