Fan Homeomorphisms in the Plane

Yatsuka Nakamura Shinshu University Nagano

Summary. We will introduce four homeomorphisms (Fan morphisms) which give spoke-like distortion to the plane. They do not change the norms of vectors and preserve halfplanes invariant. These morphisms are used to regulate placement of points on the circle.

 ${\rm MML} \ {\rm Identifier:} \ {\tt JGRAPH_4}.$

The articles [14], [18], [5], [7], [1], [2], [11], [12], [10], [3], [13], [4], [9], [19], [16], [17], [15], [8], and [6] provide the notation and terminology for this paper.

1. Preliminaries

In this paper x, a denote real numbers and p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$. The following propositions are true:

- (1) If |x| < a, then -a < x and x < a.
- (2) If $a \ge 0$ and $(x-a) \cdot (x+a) < 0$, then -a < x and x < a.
- (3) For every real number s_1 such that $-1 < s_1$ and $s_1 < 1$ holds $1 + s_1 > 0$ and $1 - s_1 > 0$.
- (4) For every real number a such that $a^2 \leq 1$ holds $-1 \leq a$ and $a \leq 1$.
- (5) For every real number a such that $a^2 < 1$ holds -1 < a and a < 1.
- (6) Let X be a non empty topological structure, g be a map from X into \mathbb{R}^1 , B be a subset of X, and a be a real number. If g is continuous and $B = \{p; p \text{ ranges over points of } X: \pi_p g > a\}$, then B is open.
- (7) Let X be a non empty topological structure, g be a map from X into \mathbb{R}^1 , B be a subset of X, and a be a real number. If g is continuous and $B = \{p; p \text{ ranges over points of } X: \pi_p g < a\}$, then B is open.

C 2002 University of Białystok ISSN 1426-2630

- (8) Let f be a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$. Suppose that
- (i) f is continuous and one-to-one,
- (ii) $\operatorname{rng} f = \Omega_{\mathcal{E}^2_{\mathcal{T}}}$, and
- (iii) for every point p_2 of \mathcal{E}_T^2 there exists a non empty compact subset K of \mathcal{E}_T^2 such that $K = f^{\circ}K$ and there exists a subset V_2 of \mathcal{E}_T^2 such that $p_2 \in V_2$ and V_2 is open and $V_2 \subseteq K$ and $f(p_2) \in V_2$. Then f is a homeomorphism.
- (9) Let X be a non empty topological space, f_1 , f_2 be maps from X into \mathbb{R}^1 , and a, b be real numbers. Suppose f_1 is continuous and f_2 is continuous and $b \neq 0$ and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
- (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{\frac{r_1}{r_2} - a}{b}$, and
- (ii) g is continuous.
- (10) Let X be a non empty topological space, f_1 , f_2 be maps from X into \mathbb{R}^1 , and a, b be real numbers. Suppose f_1 is continuous and f_2 is continuous and $b \neq 0$ and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map q from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_2 \cdot \frac{\frac{r_1}{r_2} - a}{b}$, and
 - (ii) g is continuous.
- (11) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = r_1^2$ and g is continuous.
- (12) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = |r_1|$ and g is continuous.
- (13) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = -r_1$ and g is continuous.
- (14) Let X be a non empty topological space, f_1 , f_2 be maps from X into \mathbb{R}^1 , and a, b be real numbers. Suppose f_1 is continuous and f_2 is continuous and $b \neq 0$ and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_2 \cdot -\sqrt{\left|1 - \left(\frac{r_1}{r_2} - a}{b}\right)^2\right|}$, and

 $\mathbf{2}$

- (ii) g is continuous.
- (15) Let X be a non empty topological space, f_1 , f_2 be maps from X into \mathbb{R}^1 , and a, b be real numbers. Suppose f_1 is continuous and f_2 is continuous and $b \neq 0$ and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_2 \cdot \sqrt{|1 - (\frac{r_1}{r_2} - a)^2|}$, and
 - (ii) g is continuous.

Let *n* be a natural number. The functor *n* NormF yields a function from the carrier of $\mathcal{E}^n_{\mathrm{T}}$ into the carrier of \mathbb{R}^1 and is defined by:

(Def. 1) For every point q of $\mathcal{E}_{\mathrm{T}}^n$ holds $n \operatorname{NormF}(q) = |q|$.

Next we state several propositions:

- (16) For every natural number n holds dom $(n \operatorname{Norm} F)$ = the carrier of \mathcal{E}_T^n and dom $(n \operatorname{Norm} F) = \mathcal{R}^n$.
- (18)¹ For every natural number n and for all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $||p|-|q|| \leq |p-q|$.
- (19) For every natural number n and for every map f from $\mathcal{E}_{\mathrm{T}}^{n}$ into \mathbb{R}^{1} such that f = n NormF holds f is continuous.
- (20) Let *n* be a natural number, K_0 be a subset of \mathcal{E}_T^n , and *f* be a map from $(\mathcal{E}_T^n) \upharpoonright K_0$ into \mathbb{R}^1 . If for every point *p* of $(\mathcal{E}_T^n) \upharpoonright K_0$ holds $f(p) = n \operatorname{NormF}(p)$, then *f* is continuous.
- (21) Let *n* be a natural number, *p* be a point of \mathcal{E}^n , *r* be a real number, and *B* be a subset of $\mathcal{E}^n_{\mathrm{T}}$. If $B = \overline{\mathrm{Ball}}(p, r)$, then *B* is Bounded and closed.
- (22) For every point p of \mathcal{E}^2 and for every real number r and for every subset B of $\mathcal{E}^2_{\mathrm{T}}$ such that $B = \overline{\mathrm{Ball}}(p, r)$ holds B is compact.

2. FAN MORPHISM FOR WEST

Let s be a real number and let q be a point of $\mathcal{E}_{\mathrm{T}}^2$. The functor FanW(s,q) yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined as follows:

$$\text{(Def. 2)} \quad \text{FanW}(s,q) = \begin{cases} |q| \cdot \left[-\sqrt{1 - \left(\frac{q_2}{|q|} - s\right)^2}, \frac{q_2}{|q|} - s\right], \text{ if } \frac{q_2}{|q|} \ge s \text{ and } q_1 < 0, \\ |q| \cdot \left[-\sqrt{1 - \left(\frac{q_2}{|q|} - s\right)^2}, \frac{q_2}{|q|} - s\right], \text{ if } \frac{q_2}{|q|} \ge s \text{ and } q_1 < 0, \\ q, \text{ otherwise.} \end{cases}$$

Let s be a real number. The functor s-FanMorphW yields a function from the carrier of \mathcal{E}_{T}^{2} into the carrier of \mathcal{E}_{T}^{2} and is defined by:

¹The proposition (17) has been removed.

(Def. 3) For every point q of $\mathcal{E}_{\mathrm{T}}^2$ holds s-FanMorphW(q) = FanW(s,q).

Next we state a number of propositions:

- (23) Let s_1 be a real number. Then
 - (i) if $\frac{q_2}{|q|} \ge s_1$ and $q_1 < 0$, then s_1 -FanMorphW $(q) = [|q| \cdot -\sqrt{1 (\frac{q_2}{|q|} s_1)^2}, |q| \cdot \frac{\frac{q_2}{|q|} s_1}{1 s_1}]$, and
 - (ii) if $q_1 \ge 0$, then s_1 -FanMorphW(q) = q.
- (24) For every real number s_1 such that $\frac{q_2}{|q|} \leq s_1$ and $q_1 < 0$ holds s_1 -FanMorphW $(q) = [|q| \cdot -\sqrt{1 - (\frac{q_2}{|q|} - s_1)^2}, |q| \cdot \frac{q_2}{|q|} - s_1].$
- (25) Let s_1 be a real number such that $-1 < s_1$ and $s_1 < 1$. Then
- (i) if $\frac{q_2}{|q|} \ge s_1$ and $q_1 \le 0$ and $q \ne 0_{\mathcal{E}^2_{\mathrm{T}}}$, then s_1 -FanMorphW $(q) = [|q| \cdot -\sqrt{1 (\frac{q_2}{|q|} s_1)^2}, |q| \cdot \frac{q_2}{|q|} s_1]$, and (ii) if $\frac{q_2}{|q|} \le s_1$ and $q_1 \le 0$ and $q \ne 0_{\mathcal{E}^2_{\mathrm{T}}}$, then s_1 -FanMorphW $(q) = [|q| \cdot q]$

$$-\sqrt{1 - (\frac{\frac{q_2}{|q|} - s_1}{1 + s_1})^2, |q| \cdot \frac{\frac{q_2}{|q|} - s_1}{1 + s_1}]}$$

- (26) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
 - (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \frac{\frac{p_2}{|p|} s_1}{1 s_1}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \leq 0$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$.

Then f is continuous.

- (27) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
 - (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \frac{p_2 s_1}{1 + s_1}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \leq 0$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (28) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a
 - map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that (i) $-1 < s_1$,
 - (ii) $s_1 < 1$,

- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot -\sqrt{1 (\frac{p_2}{|p|} s_1)^2}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \leq 0$ and $\frac{q_2}{|q|} \geq s_1$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (29) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
- (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot -\sqrt{1 (\frac{p_2}{|p|} s_1)^2}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \leq 0$ and $\frac{q_2}{|q|} \leq s_1$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (30) Let s_1 be a real number, K_0 , B_0 be subsets of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_T^2: q_1 \leq 0 \land q \neq 0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : \frac{p_2}{|p|} \geq s_1 \land p_1 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (31) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $q_1 \leq 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : \frac{p_2}{|p|} \leq s_1 \land p_1 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (32) For every real number s_1 and for every subset K_3 of \mathcal{E}_T^2 such that $K_3 = \{p : p_2 \ge s_1 \cdot |p| \land p_1 \le 0\}$ holds K_3 is closed.
- (33) For every real number s_1 and for every subset K_3 of \mathcal{E}_T^2 such that $K_3 = \{p : p_2 \leq s_1 \cdot |p| \land p_1 \leq 0\}$ holds K_3 is closed.
- (34) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (35) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_1 \ge 0 \land p \ne 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (36) Let B_0 be a subset of \mathcal{E}_T^2 and K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $B_0 =$ (the carrier of $\mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then K_0 is

closed.

- (37) Let s_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (38) Let B_0 be a subset of \mathcal{E}_T^2 and K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $B_0 =$ (the carrier of \mathcal{E}_T^2) \ $\{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_1 \ge 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then K_0 is closed.
- (39) Let s_1 be a real number, B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphW $\upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_1 \ge 0 \land p \ne 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (40) For every real number s_1 and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|s_1$ -FanMorphW(p)| = |p|.
- (41) For every real number s_1 and for all sets x, K_0 such that $-1 < s_1$ and $s_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds s_1 -FanMorphW $(x) \in K_0$.
- (42) For every real number s_1 and for all sets x, K_0 such that $-1 < s_1$ and $s_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_1 \ge 0 \land p \ne 0_{\mathcal{E}^2_T}\}$ holds s_1 -FanMorphW $(x) \in K_0$.
- (43) Let s_1 be a real number and D be a non empty subset of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $D^c = \{0_{\mathcal{E}_T^2}\}$. Then there exists a map h from $(\mathcal{E}_T^2) \upharpoonright D$ into $(\mathcal{E}_T^2) \upharpoonright D$ such that $h = s_1$ -FanMorphW $\upharpoonright D$ and h is continuous.
- (44) Let s_1 be a real number. Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = s_1$ -FanMorphW and h is continuous.
- (45) For every real number s_1 such that $-1 < s_1$ and $s_1 < 1$ holds s_1 -FanMorphW is one-to-one.
- (46) For every real number s_1 such that $-1 < s_1$ and $s_1 < 1$ holds s_1 -FanMorphW is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 and $\operatorname{rng}(s_1$ -FanMorphW) = the carrier of \mathcal{E}_T^2 .
- (47) Let s_1 be a real number and p_2 be a point of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a non empty compact subset K of \mathcal{E}_T^2 such that $K = s_1$ -FanMorphW° K and there exists a subset V_2 of \mathcal{E}_T^2 such that $p_2 \in V_2$ and V_2 is open and $V_2 \subseteq K$ and s_1 -FanMorphW(p_2) $\in V_2$.
- (48) Let s_1 be a real number. Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $f = s_1$ -FanMorphW and f is a homeomorphism.
- (49) Let s_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < s_1$

and $s_1 < 1$ and $q_1 < 0$ and $\frac{q_2}{|q|} \ge s_1$. Let p be a point of \mathcal{E}_T^2 . If $p = s_1$ -FanMorphW(q), then $p_1 < 0$ and $p_2 \ge 0$.

- (50) Let s_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $q_1 < 0$ and $\frac{q_2}{|q|} < s_1$. Let p be a point of \mathcal{E}_T^2 . If $p = s_1$ -FanMorphW(q), then $p_1 < 0$ and $p_2 < 0$.
- (51) Let s_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 < 0$ and $\frac{(q_1)_2}{|q_1|} \ge s_1$ and $(q_2)_1 < 0$ and $\frac{(q_2)_2}{|q_2|} \ge s_1$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_1$ -FanMorphW(q_1) and $p_2 = s_1$ -FanMorphW(q_2), then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (52) Let s_1 be a real number and q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 < 0$ and $\frac{(q_1)_2}{|q_1|} < s_1$ and $(q_2)_1 < 0$ and $\frac{(q_2)_2}{|q_2|} < s_1$ and $\frac{(q_1)_2}{|q_2|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of \mathcal{E}_T^2 . If $p_1 = s_1$ -FanMorphW(q_1) and $p_2 = s_1$ -FanMorphW(q_2), then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (53) Let s_1 be a real number and q_1 , q_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 < 0$ and $(q_2)_1 < 0$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. If $p_1 = s_1$ -FanMorphW (q_1) and $p_2 = s_1$ -FanMorphW (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (54) Let s_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_1$ and $s_1 < 1$ and $q_1 < 0$ and $\frac{q_2}{|q|} = s_1$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = s_1$ -FanMorphW(q), then $p_1 < 0$ and $p_2 = 0$.
- (55) For every real number s_1 holds $0_{\mathcal{E}^2_{\mathcal{T}}} = s_1$ -FanMorphW $(0_{\mathcal{E}^2_{\mathcal{T}}})$.

3. Fan Morphism for North

Let s be a real number and let q be a point of $\mathcal{E}_{\mathrm{T}}^2$. The functor FanN(s,q) yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by:

$$(\text{Def. 4}) \quad \text{FanN}(s,q) = \begin{cases} |q| \cdot \left[\frac{q_1}{|q|} - s\right], \sqrt{1 - \left(\frac{q_1}{|q|} - s\right)^2}, \text{ if } \frac{q_1}{|q|} \ge s \text{ and } q_2 > 0, \\ |q| \cdot \left[\frac{q_1}{|q|} - s\right], \sqrt{1 - \left(\frac{q_1}{|q|} - s\right)^2}, \text{ if } \frac{q_1}{|q|} < s \text{ and } q_2 > 0, \\ q, \text{ otherwise.} \end{cases}$$

Let c be a real number. The functor c-FanMorphN yielding a function from the carrier of \mathcal{E}_{T}^{2} into the carrier of \mathcal{E}_{T}^{2} is defined as follows:

(Def. 5) For every point q of $\mathcal{E}_{\mathrm{T}}^2$ holds c-FanMorphN(q) = FanN(c,q).

One can prove the following propositions:

(56) Let c_1 be a real number. Then

- (i) if $\frac{q_1}{|q|} \ge c_1$ and $q_2 > 0$, then c_1 -FanMorphN $(q) = [|q| \cdot \frac{q_1}{|q|} c_1, |q| \cdot \frac{q_1}{1-c_1}, |q| \cdot \frac{q_1}{1-c_1}, |q| \cdot \frac{q_1}{1-c_1}, |q| \cdot \frac{q_1}{1-c_1}$ $\sqrt{1-(\frac{q_1}{|q|}-c_1)^2}$, and
- if $q_2 \leq 0$, then c_1 -FanMorphN(q) = q. (ii)
- (57) For every real number c_1 such that $\frac{q_1}{|q|} \leq c_1$ and $q_2 > 0$ holds
- $c_1 \text{-FanMorphN}(q) = [|q| \cdot \frac{\frac{q_1}{|q|} c_1}{1 + c_1}, |q| \cdot \sqrt{1 (\frac{\frac{q_1}{|q|} c_1}{1 + c_1})^2}].$ (58) Let c_1 be a real number such that $-1 < c_1$ and $c_1 < 1$. Then
 - (i) if $\frac{q_1}{|q|} \ge c_1$ and $q_2 \ge 0$ and $q \ne 0_{\mathcal{E}^2_T}$, then c_1 -FanMorphN $(q) = [|q| \cdot \frac{\frac{q_1}{|q|} c_1}{1 c_1}$, $|q| \cdot \sqrt{1 - (\frac{q_1}{|q|} - c_1)^2}$, and
 - (ii) if $\frac{q_1}{|q|} \leq c_1$ and $q_2 \geq 0$ and $q \neq 0_{\mathcal{E}^2_{\mathrm{T}}}$, then c_1 -FanMorphN $(q) = [|q| \cdot \frac{q_1}{|q|} c_1, q_1]$ $|q| \cdot \sqrt{1 - (\frac{\frac{q_1}{|q|} - c_1}{1 + c_1})^2}].$
- (59) Let c_1 be a real number, K_1 be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$, and f be a map from $(\mathcal{E}_{T}^{2}) \upharpoonright K_{1}$ into \mathbb{R}^{1} . Suppose that
 - $-1 < c_1,$ (i)
- (ii) $c_1 < 1$,
- for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) $f(p) = |p| \cdot \frac{\frac{p_1}{|p|} - c_1}{1 - c_1}, \text{ and}$ (iv) for every point q of \mathcal{E}_T^2 such that $q \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_1 \text{ holds } q_2 \ge 0$
- and $q \neq 0_{\mathcal{E}^2_{\mathcal{T}}}$.

Then f is continuous.

- (60) Let c_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_{T}^{2}) \upharpoonright K_{1}$ into \mathbb{R}^{1} . Suppose that
 - $-1 < c_1,$ (i)
 - (ii) $c_1 < 1$,
- for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) (iii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in \text{the carrier of } (\mathcal{E}_{\mathrm{T}}^{2}) \upharpoonright K_{1} \text{ holds } q_{2} \geq 0$
- and $q \neq 0_{\mathcal{E}^2_{\mathrm{T}}}$.

Then f is continuous.

- (61) Let c_1 be a real number, K_1 be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$, and f be a map from $(\mathcal{E}_{T}^{2}) \upharpoonright K_{1}$ into \mathbb{R}^{1} . Suppose that
 - $-1 < c_1,$ (i)
- (ii) $c_1 < 1,$
- for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) $f(p) = |p| \cdot \sqrt{1 - (\frac{\frac{p_1}{|p|} - c_1}{1 - c_1})^2}$, and

- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \ge 0$ and $\frac{q_1}{|q|} \ge c_1$ and $q \ne 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (62) Let c_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < c_1$,
- (ii) $c_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \sqrt{1 (\frac{p_1}{|p|} c_1)^2}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \ge 0$ and $\frac{q_1}{|q|} \le c_1$ and $q \ne 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (63) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_2 \ge 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$ and $K_0 = \{p : \frac{p_1}{|p|} \ge c_1 \land p_2 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$. Then f is continuous.
- (64) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_2 \ge 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$ and $K_0 = \{p : \frac{p_1}{|p|} \le c_1 \land p_2 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$. Then f is continuous.
- (65) For every real number c_1 and for every subset K_3 of \mathcal{E}_T^2 such that $K_3 = \{p : p_1 \ge c_1 \cdot |p| \land p_2 \ge 0\}$ holds K_3 is closed.
- (66) For every real number c_1 and for every subset K_3 of \mathcal{E}_T^2 such that $K_3 = \{p : p_1 \leq c_1 \cdot |p| \land p_2 \geq 0\}$ holds K_3 is closed.
- (67) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2$) \ $\{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_2 \ge 0 \land p \ne 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (68) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2$) \ $\{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (69) Let B_0 be a subset of \mathcal{E}_T^2 and K_0 be a subset of $(\mathcal{E}_T^2) | B_0$. Suppose $B_0 =$ (the carrier of \mathcal{E}_T^2) \ $\{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_2 \ge 0 \land p \ne 0_{\mathcal{E}_T^2}\}$. Then K_0 is closed.
- (70) Let B_0 be a subset of \mathcal{E}_T^2 and K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $B_0 =$ (the carrier of $\mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then K_0 is

closed.

- (71) Let c_1 be a real number, B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_2 \ge 0 \land p \ne 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (72) Let c_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphN $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (73) For every real number c_1 and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|c_1$ -FanMorphN(p)| = |p|.
- (74) For every real number c_1 and for all sets x, K_0 such that $-1 < c_1$ and $c_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_2 \ge 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds c_1 -FanMorphN $(x) \in K_0$.
- (75) For every real number c_1 and for all sets x, K_0 such that $-1 < c_1$ and $c_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds c_1 -FanMorphN $(x) \in K_0$.
- (76) Let c_1 be a real number and D be a non empty subset of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $D^c = \{0_{\mathcal{E}_T^2}\}$. Then there exists a map h from $(\mathcal{E}_T^2) \upharpoonright D$ into $(\mathcal{E}_T^2) \upharpoonright D$ such that $h = c_1$ -FanMorphN $\upharpoonright D$ and h is continuous.
- (77) Let c_1 be a real number. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = c_1$ -FanMorphN and h is continuous.
- (78) For every real number c_1 such that $-1 < c_1$ and $c_1 < 1$ holds c_1 -FanMorphN is one-to-one.
- (79) For every real number c_1 such that $-1 < c_1$ and $c_1 < 1$ holds c_1 -FanMorphN is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 and $\operatorname{rng}(c_1$ -FanMorphN) = the carrier of \mathcal{E}_T^2 .
- (80) Let c_1 be a real number and p_2 be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a non empty compact subset K of $\mathcal{E}^2_{\mathrm{T}}$ such that $K = c_1$ -FanMorphN° K and there exists a subset V_2 of $\mathcal{E}^2_{\mathrm{T}}$ such that $p_2 \in V_2$ and V_2 is open and $V_2 \subseteq K$ and c_1 -FanMorphN(p_2) $\in V_2$.
- (81) Let c_1 be a real number. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $f = c_1$ -FanMorphN and f is a homeomorphism.
- (82) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 > 0$ and $\frac{q_1}{|q|} \ge c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphN(q), then $p_2 > 0$ and $p_1 \ge 0$.
- (83) Let c_1 be a real number and q be a point of \mathcal{E}^2_T . Suppose $-1 < c_1$ and $c_1 < c_2$

1 and $q_2 > 0$ and $\frac{q_1}{|q|} < c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphN(q), then $p_2 > 0$ and $p_1 < 0$.

- (84) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 > 0$ and $\frac{(q_1)_1}{|q_1|} \ge c_1$ and $(q_2)_2 > 0$ and $\frac{(q_2)_1}{|q_2|} \ge c_1$ and $\frac{(q_1)_1}{|q_2|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphN (q_1) and $p_2 = c_1$ -FanMorphN (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (85) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 > 0$ and $\frac{(q_1)_1}{|q_1|} < c_1$ and $(q_2)_2 > 0$ and $\frac{(q_2)_1}{|q_2|} < c_1$ and $\frac{(q_1)_1}{|q_2|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = c_1$ -FanMorphN (q_1) and $p_2 = c_1$ -FanMorphN (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (86) Let c_1 be a real number and q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 > 0$ and $(q_2)_2 > 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of \mathcal{E}_T^2 . If $p_1 = c_1$ -FanMorphN (q_1) and $p_2 = c_1$ -FanMorphN (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (87) Let c_1 be a real number and q be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 > 0$ and $\frac{q_1}{|q|} = c_1$. Let p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $p = c_1$ -FanMorphN(q), then $p_2 > 0$ and $p_1 = 0$.
- (88) For every real number c_1 holds $0_{\mathcal{E}^2_{\mathrm{T}}} = c_1$ -FanMorphN $(0_{\mathcal{E}^2_{\mathrm{T}}})$.

4. FAN MORPHISM FOR EAST

Let s be a real number and let q be a point of $\mathcal{E}_{\mathrm{T}}^2$. The functor $\operatorname{FanE}(s,q)$ yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined as follows:

(Def. 6) FanE(s,q) =
$$\begin{cases} |q| \cdot \left[\sqrt{1 - \left(\frac{q_2}{|q|} - s\right)^2}, \frac{q_2}{|q|} - s\right], & \text{if } \frac{q_2}{|q|} \ge s \text{ and } q_1 > 0, \\ |q| \cdot \left[\sqrt{1 - \left(\frac{q_2}{|q|} - s\right)^2}, \frac{q_2}{|q|} - s\right], & \text{if } \frac{q_2}{|q|} \le s \text{ and } q_1 > 0, \\ q, & \text{otherwise.} \end{cases}$$

Let s be a real number. The functor s-FanMorphE yielding a function from the carrier of \mathcal{E}_{T}^{2} into the carrier of \mathcal{E}_{T}^{2} is defined as follows:

(Def. 7) For every point q of \mathcal{E}_{T}^{2} holds s-FanMorphE(q) = FanE(s, q). Next we state a number of propositions:

- (89) Let s_1 be a real number. Then
 - (i) if $\frac{q_2}{|q|} \ge s_1$ and $q_1 > 0$, then s_1 -FanMorphE $(q) = [|q| \cdot \sqrt{1 (\frac{q_2}{|q|} s_1)^2}, |q| \cdot \frac{q_2}{1 s_1}]$, and (ii) if $q_1 \le 0$, then s_1 -FanMorphE(q) = q.

- (90) For every real number s_1 such that $\frac{q_2}{|q|} \leqslant s_1$ and $q_1 > 0$ holds s_1 -FanMorphE $(q) = [|q| \cdot \sqrt{1 - (\frac{q_2}{|q|} - s_1)^2}, |q| \cdot \frac{q_2}{|q|} - s_1].$
- (91) Let s_1 be a real number such that $-1 < s_1$ and $s_1 < 1$. Then
- (i) if $\frac{q_2}{|q|} \ge s_1$ and $q_1 \ge 0$ and $q \ne 0_{\mathcal{E}^2_{\mathrm{T}}}$, then s_1 -FanMorphE $(q) = [|q| \cdot \sqrt{1 (\frac{q_2}{|q|} s_1)^2}, |q| \cdot \frac{q_2}{|q|} s_1]$, and (ii) if $\frac{q_2}{|q|} \le s_1$ and $q_1 \ge 0$ and $q \ne 0_{\mathcal{E}^2_{\mathrm{T}}}$, then s_1 -FanMorphE $(q) = [|q| \cdot \sqrt{1 - (\frac{q_2}{|q|} - s_1)^2}, |q| \cdot \frac{q_2}{|q|} - s_1]$.
- (92) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
- (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \frac{p_2 s_1}{1 s_1}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \ge 0$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$.

Then f is continuous.

- (93) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
- (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \frac{\frac{p_2}{|p|} s_1}{1 + s_1}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \ge 0$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$.

Then f is continuous.

- (94) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < s_1$,
- (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \sqrt{1 (\frac{\frac{p_2}{|p|} s_1}{1 s_1})^2}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \ge 0$ and $\frac{q_2}{|q|} \ge s_1$ and $q \ne 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (95) Let s_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that

- (i) $-1 < s_1$,
- (ii) $s_1 < 1$,
- (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \sqrt{1 (\frac{p_2}{|p|} s_1)^2}$, and
- (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \ge 0$ and $\frac{q_2}{|q|} \le s_1$ and $q \ne 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then f is continuous.
- (96) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_1 \ge 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$ and $K_0 = \{p : \frac{p_2}{|p|} \ge s_1 \land p_1 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$. Then f is continuous.
- (97) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2$: $q_1 \ge 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : \frac{p_2}{|p|} \le s_1 \land p_1 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (98) For every real number s_1 and for every subset K_3 of $\mathcal{E}_{\mathrm{T}}^2$ such that $K_3 = \{p : p_2 \ge s_1 \cdot |p| \land p_1 \ge 0\}$ holds K_3 is closed.
- (99) For every real number s_1 and for every subset K_3 of \mathcal{E}_T^2 such that $K_3 = \{p : p_2 \leq s_1 \cdot |p| \land p_1 \geq 0\}$ holds K_3 is closed.
- (100) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_1 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (101) Let s_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (102) Let s_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_1 \ge 0 \land p \ne 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (103) Let s_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < s_1$ and $s_1 < 1$ and $f = s_1$ -FanMorphE $\upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (104) For every real number s_1 and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|s_1$ -FanMorphE(p)| = |p|.

- (105) For every real number s_1 and for all sets x, K_0 such that $-1 < s_1$ and $s_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_1 \ge 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds s_1 -FanMorphE $(x) \in K_0$.
- (106) For every real number s_1 and for all sets x, K_0 such that $-1 < s_1$ and $s_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_1 \leq 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds s_1 -FanMorphE $(x) \in K_0$.
- (107) Let s_1 be a real number and D be a non empty subset of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $D^c = \{0_{\mathcal{E}_T^2}\}$. Then there exists a map h from $(\mathcal{E}_T^2) \upharpoonright D$ into $(\mathcal{E}_T^2) \upharpoonright D$ such that $h = s_1$ -FanMorphE $\upharpoonright D$ and h is continuous.
- (108) Let s_1 be a real number. Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = s_1$ -FanMorphE and h is continuous.
- (109) For every real number s_1 such that $-1 < s_1$ and $s_1 < 1$ holds s_1 -FanMorphE is one-to-one.
- (110) For every real number s_1 such that $-1 < s_1$ and $s_1 < 1$ holds s_1 -FanMorphE is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 and $rng(s_1$ -FanMorphE) = the carrier of \mathcal{E}_T^2 .
- (111) Let s_1 be a real number and p_2 be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a non empty compact subset K of $\mathcal{E}^2_{\mathrm{T}}$ such that $K = s_1$ -FanMorphE° K and there exists a subset V_2 of $\mathcal{E}^2_{\mathrm{T}}$ such that $p_2 \in V_2$ and V_2 is open and $V_2 \subseteq K$ and s_1 -FanMorphE $(p_2) \in V_2$.
- (112) Let s_1 be a real number. Suppose $-1 < s_1$ and $s_1 < 1$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $f = s_1$ -FanMorphE and f is a homeomorphism.
- (113) Let s_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $q_1 > 0$ and $\frac{q_2}{|q|} \ge s_1$. Let p be a point of \mathcal{E}_T^2 . If $p = s_1$ -FanMorphE(q), then $p_1 > 0$ and $p_2 \ge 0$.
- (114) Let s_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < s_1$ and $s_1 < 1$ and $q_1 > 0$ and $\frac{q_2}{|q|} < s_1$. Let p be a point of \mathcal{E}_T^2 . If $p = s_1$ -FanMorphE(q), then $p_1 > 0$ and $p_2 < 0$.
- (115) Let s_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 > 0$ and $\frac{(q_1)_2}{|q_1|} \ge s_1$ and $(q_2)_1 > 0$ and $\frac{(q_2)_2}{|q_2|} \ge s_1$ and $\frac{(q_1)_2}{|q_2|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_1$ -FanMorphE (q_1) and $p_2 = s_1$ -FanMorphE (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (116) Let s_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 > 0$ and $\frac{(q_1)_2}{|q_1|} < s_1$ and $(q_2)_1 > 0$ and $\frac{(q_2)_2}{|q_2|} < s_1$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_1$ -FanMorphE (q_1) and $p_2 = s_1$ -FanMorphE (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.

- (117) Let s_1 be a real number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < s_1$ and $s_1 < 1$ and $(q_1)_1 > 0$ and $(q_2)_1 > 0$ and $\frac{(q_1)_2}{|q_1|} < \frac{(q_2)_2}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. If $p_1 = s_1$ -FanMorphE (q_1) and $p_2 = s_1$ -FanMorphE (q_2) , then $\frac{(p_1)_2}{|p_1|} < \frac{(p_2)_2}{|p_2|}$.
- (118) Let s_1 be a real number and q be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < s_1$ and $s_1 < 1$ and $q_1 > 0$ and $\frac{q_2}{|q|} = s_1$. Let p be a point of $\mathcal{E}^2_{\mathrm{T}}$. If $p = s_1$ -FanMorphE(q), then $p_1 > 0$ and $p_2 = 0$.
- (119) For every real number s_1 holds $0_{\mathcal{E}^2_{\mathrm{T}}} = s_1$ -FanMorphE $(0_{\mathcal{E}^2_{\mathrm{T}}})$.

5. FAN MORPHISM FOR SOUTH

Let s be a real number and let q be a point of $\mathcal{E}_{\mathrm{T}}^2$. The functor $\mathrm{FanS}(s,q)$ yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by:

$$(\text{Def. 8}) \quad \text{FanS}(s,q) = \begin{cases} |q| \cdot [\frac{q_1}{|q|} - s], -\sqrt{1 - (\frac{q_1}{|q|} - s]}], \text{ if } \frac{q_1}{|q|} \ge s \text{ and } q_2 < 0, \\ |q| \cdot [\frac{q_1}{|q|} - s], -\sqrt{1 - (\frac{q_1}{|q|} - s]}], \text{ if } \frac{q_1}{|q|} \le s \text{ and } q_2 < 0, \\ q, \text{ otherwise.} \end{cases}$$

Let c be a real number. The functor c-FanMorphS yielding a function from the carrier of $\mathcal{E}_{\mathrm{T}}^2$ into the carrier of $\mathcal{E}_{\mathrm{T}}^2$ is defined by:

(Def. 9) For every point q of \mathcal{E}_{T}^{2} holds c-FanMorphS(q) = FanS(c,q).

One can prove the following propositions:

(120) Let c_1 be a real number. Then

- (i) if $\frac{q_1}{|q|} \ge c_1$ and $q_2 < 0$, then c_1 -FanMorphS $(q) = [|q| \cdot \frac{q_1}{|q|-c_1}, |q| \cdot -\sqrt{1 (\frac{q_1}{1-c_1})^2}]$, and
- (ii) if $q_2 \ge 0$, then c_1 -FanMorphS(q) = q.
- (121) For every real number c_1 such that $\frac{q_1}{|q|} \leq c_1$ and $q_2 < 0$ holds c_1 -FanMorphS $(q) = [|q| \cdot \frac{\frac{q_1}{|q|} - c_1}{1 + c_1}, |q| \cdot -\sqrt{1 - (\frac{\frac{q_1}{|q|} - c_1}{1 + c_1})^2}].$

(122) Let c_1 be a real number such that $-1 < c_1$ and $c_1 < 1$. Then

- (i) if $\frac{q_1}{|q|} \ge c_1$ and $q_2 \le 0$ and $q \ne 0_{\mathcal{E}_{\mathrm{T}}^2}$, then c_1 -FanMorphS $(q) = [|q| \cdot \frac{q_1}{|q|-c_1}, |q| \cdot -\sqrt{1 (\frac{q_1}{1-c_1})^2}]$, and
- (ii) if $\frac{q_1}{|q|} \leq c_1$ and $q_2 \leq 0$ and $q \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$, then c_1 -FanMorphS $(q) = [|q| \cdot \frac{q_1}{|q|} c_1}{1 + c_1}$, $|q| \cdot -\sqrt{1 - (\frac{q_1}{|q|} - c_1)^2}].$

- (123) Let c_1 be a real number, K_1 be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - $-1 < c_1,$ (i)
 - $c_1 < 1$, (ii)
 - for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) $f(p) = |p| \cdot \frac{\frac{p_1}{|p|} - c_1}{1 - c_1}$, and
 - (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \leqslant 0$ and $q \neq 0_{\mathcal{E}^2_{\mathrm{T}}}$.

Then f is continuous.

- (124) Let c_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - $-1 < c_1$, (i)
 - (ii) $c_1 < 1$,
 - (iii) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = |p| \cdot \frac{p_1 c_1}{1 + c_1}$, and (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \leq 0$
 - and $q \neq 0_{\mathcal{E}^2_{\mathcal{T}}}$.

Then f is continuous.

- (125) Let c_1 be a real number, K_1 be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) $-1 < c_1,$
 - (ii) $c_1 < 1$,
 - for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) $f(p) = |p| \cdot -\sqrt{1 - (\frac{\frac{p_1}{|p|} - c_1}{1 - c_1})^2}$, and
 - (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \leqslant 0$ and $\frac{q_1}{|q|} \ge c_1$ and $q \neq 0_{\mathcal{E}^2_{\mathcal{T}}}$. Then f is continuous.
- (126) Let c_1 be a real number, K_1 be a non empty subset of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_{\mathrm{T}}^2)$ $\upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - $-1 < c_1,$ (i)
 - (ii) $c_1 < 1$,
 - for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in$ the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright K_1$ holds (iii) $f(p) = |p| \cdot -\sqrt{1 - (\frac{\frac{p_1}{|p|} - c_1}{1 + c_1})^2}$, and
 - (iv) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \leqslant 0$ and $\frac{q_1}{|q|} \leq c_1$ and $q \neq 0_{\mathcal{E}^2_{\mathrm{T}}}$. Then f is continuous.
- (127) Let c_1 be a real number, K_0 , B_0 be subsets of \mathcal{E}_T^2 , and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and f =

 c_1 -FanMorphS $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2 : q_2 \leq 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$ and $K_0 = \{p : \frac{p_1}{|p|} \geq c_1 \land p_2 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$. Then f is continuous.

- (128) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphS $\upharpoonright K_0$ and $B_0 = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_2 \leq 0 \land q \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$ and $K_0 = \{p: \frac{p_1}{|p|} \leq c_1 \land p_2 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2} \}$. Then f is continuous.
- (129) For every real number c_1 and for every subset K_3 of $\mathcal{E}_{\mathrm{T}}^2$ such that $K_3 = \{p : p_1 \ge c_1 \cdot |p| \land p_2 \le 0\}$ holds K_3 is closed.
- (130) For every real number c_1 and for every subset K_3 of $\mathcal{E}_{\mathrm{T}}^2$ such that $K_3 = \{p : p_1 \leq c_1 \cdot |p| \land p_2 \leq 0\}$ holds K_3 is closed.
- (131) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphS $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (132) Let c_1 be a real number, K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphS $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : p_2 \ge 0 \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (133) Let c_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphS $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (134) Let c_1 be a real number, B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $-1 < c_1$ and $c_1 < 1$ and $f = c_1$ -FanMorphS $\upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : p_2 \ge 0 \land p \ne 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (135) For every real number c_1 and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|c_1$ -FanMorphS(p)| = |p|.
- (136) For every real number c_1 and for all sets x, K_0 such that $-1 < c_1$ and $c_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_2 \leq 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds c_1 -FanMorphS $(x) \in K_0$.
- (137) For every real number c_1 and for all sets x, K_0 such that $-1 < c_1$ and $c_1 < 1$ and $x \in K_0$ and $K_0 = \{p : p_2 \ge 0 \land p \neq 0_{\mathcal{E}^2_T}\}$ holds c_1 -FanMorphS $(x) \in K_0$.
- (138) Let c_1 be a real number and D be a non empty subset of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $D^c = \{0_{\mathcal{E}_T^2}\}$. Then there exists a map h from $(\mathcal{E}_T^2) \upharpoonright D$ into $(\mathcal{E}_T^2) \upharpoonright D$ such that $h = c_1$ -FanMorphS $\upharpoonright D$ and h is continuous.
- (139) Let c_1 be a real number. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = c_1$ -FanMorphS and h is continuous.

- (140) For every real number c_1 such that $-1 < c_1$ and $c_1 < 1$ holds c_1 -FanMorphS is one-to-one.
- (141) For every real number c_1 such that $-1 < c_1$ and $c_1 < 1$ holds c_1 -FanMorphS is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 and $\operatorname{rng}(c_1$ -FanMorphS) = the carrier of \mathcal{E}_T^2 .
- (142) Let c_1 be a real number and p_2 be a point of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a non empty compact subset K of $\mathcal{E}^2_{\mathrm{T}}$ such that $K = c_1$ -FanMorphS° K and there exists a subset V_2 of $\mathcal{E}^2_{\mathrm{T}}$ such that $p_2 \in V_2$ and V_2 is open and $V_2 \subseteq K$ and c_1 -FanMorphS($p_2) \in V_2$.
- (143) Let c_1 be a real number. Suppose $-1 < c_1$ and $c_1 < 1$. Then there exists a map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $f = c_1$ -FanMorphS and f is a homeomorphism.
- (144) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$ and $\frac{q_1}{|q|} \ge c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphS(q), then $p_2 < 0$ and $p_1 \ge 0$.
- (145) Let c_1 be a real number and q be a point of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$ and $\frac{q_1}{|q|} < c_1$. Let p be a point of \mathcal{E}_T^2 . If $p = c_1$ -FanMorphS(q), then $p_2 < 0$ and $p_1 < 0$.
- (146) Let c_1 be a real number and q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 < 0$ and $\frac{(q_1)_1}{|q_1|} \ge c_1$ and $(q_2)_2 < 0$ and $\frac{(q_2)_1}{|q_2|} \ge c_1$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of \mathcal{E}_T^2 . If $p_1 = c_1$ -FanMorphS (q_1) and $p_2 = c_1$ -FanMorphS (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (147) Let c_1 be a real number and q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 < 0$ and $\frac{(q_1)_1}{|q_1|} < c_1$ and $(q_2)_2 < 0$ and $\frac{(q_2)_1}{|q_2|} < c_1$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of \mathcal{E}_T^2 . If $p_1 = c_1$ -FanMorphS (q_1) and $p_2 = c_1$ -FanMorphS (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (148) Let c_1 be a real number and q_1 , q_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $-1 < c_1$ and $c_1 < 1$ and $(q_1)_2 < 0$ and $(q_2)_2 < 0$ and $\frac{(q_1)_1}{|q_1|} < \frac{(q_2)_1}{|q_2|}$. Let p_1 , p_2 be points of $\mathcal{E}^2_{\mathrm{T}}$. If $p_1 = c_1$ -FanMorphS (q_1) and $p_2 = c_1$ -FanMorphS (q_2) , then $\frac{(p_1)_1}{|p_1|} < \frac{(p_2)_1}{|p_2|}$.
- (149) Let c_1 be a real number and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $-1 < c_1$ and $c_1 < 1$ and $q_2 < 0$ and $\frac{q_1}{|q|} = c_1$. Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. If $p = c_1$ -FanMorphS(q), then $p_2 < 0$ and $p_1 = 0$.
- (150) For every real number c_1 holds $0_{\mathcal{E}^2_{\mathcal{T}}} = c_1$ -FanMorphS $(0_{\mathcal{E}^2_{\mathcal{T}}})$.

References

[1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.

- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427-440, 1997.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
 [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces funda-
- mental concepts. Formalized Mathematics, 2(4):605–608, 1991.[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
- 1(1):35-40, 1990.
 [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [11] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193–201, 1998.
- [12] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 8, 2002