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Summary. We will introduce four homeomorphisms (Fan morphisms)
which give spoke-like distortion to the plane. They do not change the norms of
vectors and preserve halfplanes invariant. These morphisms are used to regulate
placement of points on the circle.
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The articles [14], [18], [5], [7], [1], [2], [11], [12], [10], [3], [13], [4], [9], [19], [16],

[17], [15], [8], and [6] provide the notation and terminology for this paper.

1. Preliminaries

In this paper x, a denote real numbers and p, q denote points of E2
T
.

The following propositions are true:

(1) If |x| < a, then −a < x and x < a.

(2) If a  0 and (x− a) · (x + a) < 0, then −a < x and x < a.

(3) For every real number s1 such that −1 < s1 and s1 < 1 holds 1 + s1 > 0

and 1− s1 > 0.

(4) For every real number a such that a2 ¬ 1 holds −1 ¬ a and a ¬ 1.

(5) For every real number a such that a2 < 1 holds −1 < a and a < 1.

(6) Let X be a non empty topological structure, g be a map from X into

R
1, B be a subset of X, and a be a real number. If g is continuous and

B = {p; p ranges over points of X: πpg > a}, then B is open.

(7) Let X be a non empty topological structure, g be a map from X into

R
1, B be a subset of X, and a be a real number. If g is continuous and

B = {p; p ranges over points of X: πpg < a}, then B is open.
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(8) Let f be a map from E2
T
into E2

T
. Suppose that

(i) f is continuous and one-to-one,

(ii) rng f = ΩE2
T

, and

(iii) for every point p2 of E
2
T
there exists a non empty compact subset K

of E2
T
such that K = f◦K and there exists a subset V2 of E

2
T
such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and f(p2) ∈ V2.

Then f is a homeomorphism.

(9) Let X be a non empty topological space, f1, f2 be maps from X into R
1,

and a, b be real numbers. Suppose f1 is continuous and f2 is continuous

and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a

map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) =
r1

r2
−a

b
, and

(ii) g is continuous.

(10) Let X be a non empty topological space, f1, f2 be maps from X into R
1,

and a, b be real numbers. Suppose f1 is continuous and f2 is continuous

and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a

map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·
r1

r2
−a

b
, and

(ii) g is continuous.

(11) Let X be a non empty topological space and f1 be a map from X into

R
1. Suppose f1 is continuous. Then there exists a map g from X into R

1

such that for every point p of X and for every real number r1 such that

f1(p) = r1 holds g(p) = r1
2 and g is continuous.

(12) Let X be a non empty topological space and f1 be a map from X into

R
1. Suppose f1 is continuous. Then there exists a map g from X into R

1

such that for every point p of X and for every real number r1 such that

f1(p) = r1 holds g(p) = |r1| and g is continuous.

(13) Let X be a non empty topological space and f1 be a map from X into

R
1. Suppose f1 is continuous. Then there exists a map g from X into R

1

such that for every point p of X and for every real number r1 such that

f1(p) = r1 holds g(p) = −r1 and g is continuous.

(14) Let X be a non empty topological space, f1, f2 be maps from X into R
1,

and a, b be real numbers. Suppose f1 is continuous and f2 is continuous

and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a

map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 · −

√

|1− (
r1

r2
−a

b
)2|, and
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(ii) g is continuous.

(15) Let X be a non empty topological space, f1, f2 be maps from X into R
1,

and a, b be real numbers. Suppose f1 is continuous and f2 is continuous

and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a

map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·

√

|1− (
r1

r2
−a

b
)2|, and

(ii) g is continuous.

Let n be a natural number. The functor nNormF yields a function from the

carrier of En
T
into the carrier of R1 and is defined by:

(Def. 1) For every point q of En
T
holds nNormF(q) = |q|.

Next we state several propositions:

(16) For every natural number n holds dom(nNormF) = the carrier of En
T

and dom(nNormF) = Rn.

(18)1 For every natural number n and for all points p, q of En
T
holds ||p|−|q|| ¬

|p− q|.

(19) For every natural number n and for every map f from En
T
into R

1 such

that f = nNormF holds f is continuous.

(20) Let n be a natural number, K0 be a subset of E
n
T
, and f be a map from

(En
T
)↾K0 into R

1. If for every point p of (En
T
)↾K0 holds f(p) = nNormF(p),

then f is continuous.

(21) Let n be a natural number, p be a point of En, r be a real number, and

B be a subset of En
T
. If B = Ball(p, r), then B is Bounded and closed.

(22) For every point p of E2 and for every real number r and for every subset

B of E2
T
such that B = Ball(p, r) holds B is compact.

2. Fan Morphism for West

Let s be a real number and let q be a point of E2
T
. The functor FanW(s, q)

yields a point of E2
T
and is defined as follows:

(Def. 2) FanW(s, q) =























|q| · [−

√

1− (
q2

|q|
−s

1−s
)2,

q2

|q|
−s

1−s
], if q2

|q|  s and q1 < 0,

|q| · [−

√

1− (
q2

|q|
−s

1+s
)2,

q2

|q|
−s

1+s
], if q2

|q| < s and q1 < 0,

q, otherwise.

Let s be a real number. The functor s -FanMorphW yields a function from

the carrier of E2
T
into the carrier of E2

T
and is defined by:

1The proposition (17) has been removed.
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(Def. 3) For every point q of E2
T
holds s -FanMorphW(q) = FanW(s, q).

Next we state a number of propositions:

(23) Let s1 be a real number. Then

(i) if q2
|q|  s1 and q1 < 0, then s1 -FanMorphW(q) = [|q| ·−

√

1− (
q2

|q|
−s1

1−s1
)2,

|q| ·
q2

|q|
−s1

1−s1
], and

(ii) if q1  0, then s1 -FanMorphW(q) = q.

(24) For every real number s1 such that
q2
|q| ¬ s1 and q1 < 0 holds

s1 -FanMorphW(q) = [|q| · −

√

1− (
q2

|q|
−s1

1+s1
)2, |q| ·

q2

|q|
−s1

1+s1
].

(25) Let s1 be a real number such that −1 < s1 and s1 < 1. Then

(i) if q2
|q|  s1 and q1 ¬ 0 and q 6= 0E2

T

, then s1 -FanMorphW(q) = [|q| ·

−

√

1− (
q2

|q|
−s1

1−s1
)2, |q| ·

q2

|q|
−s1

1−s1
], and

(ii) if q2
|q| ¬ s1 and q1 ¬ 0 and q 6= 0E2

T

, then s1 -FanMorphW(q) = [|q| ·

−

√

1− (
q2

|q|
−s1

1+s1
)2, |q| ·

q2

|q|
−s1

1+s1
].

(26) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p2

|p|
−s1

1−s1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1 ¬ 0

and q 6= 0E2
T

.

Then f is continuous.

(27) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p2

|p|
−s1

1+s1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1 ¬ 0

and q 6= 0E2
T

.

Then f is continuous.

(28) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,
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(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| · −

√

1− (
p2

|p|
−s1

1−s1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1 ¬ 0

and q2
|q|  s1 and q 6= 0E2

T

.

Then f is continuous.

(29) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| · −

√

1− (
p2

|p|
−s1

1+s1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1 ¬ 0

and q2
|q| ¬ s1 and q 6= 0E2

T

.

Then f is continuous.

(30) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphW ↾K0 and B0 = {q; q ranges over points of E2
T
:

q1 ¬ 0 ∧ q 6= 0E2
T

} and K0 = {p : p2
|p|  s1 ∧ p1 ¬ 0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(31) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphW ↾K0 and B0 = {q; q ranges over points of E2
T
:

q1 ¬ 0 ∧ q 6= 0E2
T

} and K0 = {p : p2
|p| ¬ s1 ∧ p1 ¬ 0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(32) For every real number s1 and for every subset K3 of E
2
T
such that K3 =

{p : p2  s1 · |p| ∧ p1 ¬ 0} holds K3 is closed.

(33) For every real number s1 and for every subset K3 of E
2
T
such that K3 =

{p : p2 ¬ s1 · |p| ∧ p1 ¬ 0} holds K3 is closed.

(34) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphW ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(35) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphW ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p1  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(36) Let B0 be a subset of E
2
T
and K0 be a subset of (E

2
T
)↾B0. Suppose B0 =

(the carrier of E2
T
) \ {0E2

T

} and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

}. Then K0 is
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closed.

(37) Let s1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and

s1 < 1 and f = s1 -FanMorphW ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(38) Let B0 be a subset of E
2
T
and K0 be a subset of (E

2
T
)↾B0. Suppose B0 =

(the carrier of E2
T
) \ {0E2

T

} and K0 = {p : p1  0 ∧ p 6= 0E2
T

}. Then K0 is

closed.

(39) Let s1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and

s1 < 1 and f = s1 -FanMorphW ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p1  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(40) For every real number s1 and for every point p of E2
T
holds

|s1 -FanMorphW(p)| = |p|.

(41) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

} holds

s1 -FanMorphW(x) ∈ K0.

(42) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1  0 ∧ p 6= 0E2
T

} holds

s1 -FanMorphW(x) ∈ K0.

(43) Let s1 be a real number and D be a non empty subset of E2
T
. Suppose

−1 < s1 and s1 < 1 and Dc = {0E2
T

}. Then there exists a map h from

(E2
T
)↾D into (E2

T
)↾D such that h = s1 -FanMorphW ↾D and h is continuous.

(44) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there

exists a map h from E2
T
into E2

T
such that h = s1 -FanMorphW and h is

continuous.

(45) For every real number s1 such that −1 < s1 and s1 < 1 holds

s1 -FanMorphW is one-to-one.

(46) For every real number s1 such that −1 < s1 and s1 < 1 holds

s1 -FanMorphW is a map from E
2
T
into E2

T
and rng(s1 -FanMorphW) = the

carrier of E2
T
.

(47) Let s1 be a real number and p2 be a point of E
2
T
. Suppose −1 < s1

and s1 < 1. Then there exists a non empty compact subset K of E2
T
such

that K = s1 -FanMorphW
◦K and there exists a subset V2 of E

2
T
such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and s1 -FanMorphW(p2) ∈ V2.

(48) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there

exists a map f from E2
T
into E2

T
such that f = s1 -FanMorphW and f is a

homeomorphism.

(49) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1
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and s1 < 1 and q1 < 0 and q2
|q|  s1. Let p be a point of E2

T
. If p =

s1 -FanMorphW(q), then p1 < 0 and p2  0.

(50) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1

and s1 < 1 and q1 < 0 and q2
|q| < s1. Let p be a point of E2

T
. If p =

s1 -FanMorphW(q), then p1 < 0 and p2 < 0.

(51) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q1)2
|q1|
 s1 and (q2)1 < 0 and (q2)2

|q2|
 s1 and

(q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = s1 -FanMorphW(q1) and

p2 = s1 -FanMorphW(q2), then
(p1)2
|p1|

<
(p2)2
|p2|

.

(52) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q1)2
|q1|

< s1 and (q2)1 < 0 and (q2)2
|q2|

< s1 and
(q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = s1 -FanMorphW(q1) and

p2 = s1 -FanMorphW(q2), then
(p1)2
|p1|

<
(p2)2
|p2|

.

(53) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q2)1 < 0 and (q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be

points of E2
T
. If p1 = s1 -FanMorphW(q1) and p2 = s1 -FanMorphW(q2),

then (p1)2
|p1|

<
(p2)2
|p2|

.

(54) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1

and s1 < 1 and q1 < 0 and q2
|q| = s1. Let p be a point of E2

T
. If p =

s1 -FanMorphW(q), then p1 < 0 and p2 = 0.

(55) For every real number s1 holds 0E2
T

= s1 -FanMorphW(0E2
T

).

3. Fan Morphism for North

Let s be a real number and let q be a point of E2
T
. The functor FanN(s, q)

yields a point of E2
T
and is defined by:

(Def. 4) FanN(s, q) =























|q| · [
q1

|q|
−s

1−s
,

√

1− (
q1

|q|
−s

1−s
)2], if q1

|q|  s and q2 > 0,

|q| · [
q1

|q|
−s

1+s
,

√

1− (
q1

|q|
−s

1+s
)2], if q1

|q| < s and q2 > 0,

q, otherwise.

Let c be a real number. The functor c -FanMorphN yielding a function from

the carrier of E2
T
into the carrier of E2

T
is defined as follows:

(Def. 5) For every point q of E2
T
holds c -FanMorphN(q) = FanN(c, q).

One can prove the following propositions:

(56) Let c1 be a real number. Then
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(i) if q1
|q|  c1 and q2 > 0, then c1 -FanMorphN(q) = [|q| ·

q1

|q|
−c1

1−c1
, |q| ·

√

1− (
q1

|q|
−c1

1−c1
)2], and

(ii) if q2 ¬ 0, then c1 -FanMorphN(q) = q.

(57) For every real number c1 such that
q1
|q| ¬ c1 and q2 > 0 holds

c1 -FanMorphN(q) = [|q| ·
q1

|q|
−c1

1+c1
, |q| ·

√

1− (
q1

|q|
−c1

1+c1
)2].

(58) Let c1 be a real number such that −1 < c1 and c1 < 1. Then

(i) if q1
|q|  c1 and q2  0 and q 6= 0E2

T

, then c1 -FanMorphN(q) = [|q|·
q1

|q|
−c1

1−c1
,

|q| ·

√

1− (
q1

|q|
−c1

1−c1
)2], and

(ii) if q1
|q| ¬ c1 and q2  0 and q 6= 0E2

T

, then c1 -FanMorphN(q) = [|q|·
q1

|q|
−c1

1+c1
,

|q| ·

√

1− (
q1

|q|
−c1

1+c1
)2].

(59) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p1

|p|
−c1

1−c1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2  0

and q 6= 0E2
T

.

Then f is continuous.

(60) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p1

|p|
−c1

1+c1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2  0

and q 6= 0E2
T

.

Then f is continuous.

(61) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·

√

1− (
p1

|p|
−c1

1−c1
)2, and
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(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2  0

and q1
|q|  c1 and q 6= 0E2

T

.

Then f is continuous.

(62) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·

√

1− (
p1

|p|
−c1

1+c1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2  0

and q1
|q| ¬ c1 and q 6= 0E2

T

.

Then f is continuous.

(63) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphN ↾K0 and B0 = {q; q ranges over points of E2
T
:

q2  0 ∧ q 6= 0E2
T

} and K0 = {p : p1
|p|  c1 ∧ p2  0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(64) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphN ↾K0 and B0 = {q; q ranges over points of E2
T
:

q2  0 ∧ q 6= 0E2
T

} and K0 = {p : p1
|p| ¬ c1 ∧ p2  0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(65) For every real number c1 and for every subset K3 of E
2
T
such that K3 =

{p : p1  c1 · |p| ∧ p2  0} holds K3 is closed.

(66) For every real number c1 and for every subset K3 of E
2
T
such that K3 =

{p : p1 ¬ c1 · |p| ∧ p2  0} holds K3 is closed.

(67) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphN ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p2  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(68) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphN ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(69) Let B0 be a subset of E
2
T
and K0 be a subset of (E

2
T
)↾B0. Suppose B0 =

(the carrier of E2
T
) \ {0E2

T

} and K0 = {p : p2  0 ∧ p 6= 0E2
T

}. Then K0 is

closed.

(70) Let B0 be a subset of E
2
T
and K0 be a subset of (E

2
T
)↾B0. Suppose B0 =

(the carrier of E2
T
) \ {0E2

T

} and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

}. Then K0 is
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closed.

(71) Let c1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and

c1 < 1 and f = c1 -FanMorphN ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p2  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(72) Let c1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and

c1 < 1 and f = c1 -FanMorphN ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(73) For every real number c1 and for every point p of E2
T
holds

|c1 -FanMorphN(p)| = |p|.

(74) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2  0 ∧ p 6= 0E2
T

} holds

c1 -FanMorphN(x) ∈ K0.

(75) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

} holds

c1 -FanMorphN(x) ∈ K0.

(76) Let c1 be a real number and D be a non empty subset of E2
T
. Suppose

−1 < c1 and c1 < 1 and Dc = {0E2
T

}. Then there exists a map h from

(E2
T
)↾D into (E2

T
)↾D such that h = c1 -FanMorphN ↾D and h is continuous.

(77) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there

exists a map h from E2
T
into E2

T
such that h = c1 -FanMorphN and h is

continuous.

(78) For every real number c1 such that −1 < c1 and c1 < 1 holds

c1 -FanMorphN is one-to-one.

(79) For every real number c1 such that −1 < c1 and c1 < 1 holds

c1 -FanMorphN is a map from E
2
T
into E2

T
and rng(c1 -FanMorphN) = the

carrier of E2
T
.

(80) Let c1 be a real number and p2 be a point of E
2
T
. Suppose −1 < c1

and c1 < 1. Then there exists a non empty compact subset K of E2
T
such

that K = c1 -FanMorphN
◦K and there exists a subset V2 of E

2
T
such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and c1 -FanMorphN(p2) ∈ V2.

(81) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there

exists a map f from E2
T
into E2

T
such that f = c1 -FanMorphN and f is a

homeomorphism.

(82) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 > 0 and q1
|q|  c1. Let p be a point of E

2
T
. If p = c1 -FanMorphN(q),

then p2 > 0 and p1  0.

(83) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <



fan homeomorphisms in the plane 11

1 and q2 > 0 and q1
|q| < c1. Let p be a point of E

2
T
. If p = c1 -FanMorphN(q),

then p2 > 0 and p1 < 0.

(84) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q1)1
|q1|
 c1 and (q2)2 > 0 and (q2)1

|q2|
 c1 and

(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

(85) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q1)1
|q1|

< c1 and (q2)2 > 0 and (q2)1
|q2|

< c1 and
(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

(86) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q2)2 > 0 and (q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2

be points of E2
T
. If p1 = c1 -FanMorphN(q1) and p2 = c1 -FanMorphN(q2),

then (p1)1
|p1|

<
(p2)1
|p2|

.

(87) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 > 0 and q1
|q| = c1. Let p be a point of E

2
T
. If p = c1 -FanMorphN(q),

then p2 > 0 and p1 = 0.

(88) For every real number c1 holds 0E2
T

= c1 -FanMorphN(0E2
T

).

4. Fan Morphism for East

Let s be a real number and let q be a point of E2
T
. The functor FanE(s, q)

yields a point of E2
T
and is defined as follows:

(Def. 6) FanE(s, q) =























|q| · [

√

1− (
q2

|q|
−s

1−s
)2,

q2

|q|
−s

1−s
], if q2

|q|  s and q1 > 0,

|q| · [

√

1− (
q2

|q|
−s

1+s
)2,

q2

|q|
−s

1+s
], if q2

|q| < s and q1 > 0,

q, otherwise.

Let s be a real number. The functor s -FanMorphE yielding a function from

the carrier of E2
T
into the carrier of E2

T
is defined as follows:

(Def. 7) For every point q of E2
T
holds s -FanMorphE(q) = FanE(s, q).

Next we state a number of propositions:

(89) Let s1 be a real number. Then

(i) if q2
|q|  s1 and q1 > 0, then s1 -FanMorphE(q) = [|q| ·

√

1− (
q2

|q|
−s1

1−s1
)2,

|q| ·
q2

|q|
−s1

1−s1
], and

(ii) if q1 ¬ 0, then s1 -FanMorphE(q) = q.
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(90) For every real number s1 such that
q2
|q| ¬ s1 and q1 > 0 holds

s1 -FanMorphE(q) = [|q| ·

√

1− (
q2

|q|
−s1

1+s1
)2, |q| ·

q2

|q|
−s1

1+s1
].

(91) Let s1 be a real number such that −1 < s1 and s1 < 1. Then

(i) if q2
|q|  s1 and q1  0 and q 6= 0E2

T

, then s1 -FanMorphE(q) = [|q| ·
√

1− (
q2

|q|
−s1

1−s1
)2, |q| ·

q2

|q|
−s1

1−s1
], and

(ii) if q2
|q| ¬ s1 and q1  0 and q 6= 0E2

T

, then s1 -FanMorphE(q) = [|q| ·
√

1− (
q2

|q|
−s1

1+s1
)2, |q| ·

q2

|q|
−s1

1+s1
].

(92) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p2

|p|
−s1

1−s1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1  0

and q 6= 0E2
T

.

Then f is continuous.

(93) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p2

|p|
−s1

1+s1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1  0

and q 6= 0E2
T

.

Then f is continuous.

(94) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·

√

1− (
p2

|p|
−s1

1−s1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1  0

and q2
|q|  s1 and q 6= 0E2

T

.

Then f is continuous.

(95) Let s1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that
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(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·

√

1− (
p2

|p|
−s1

1+s1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q1  0

and q2
|q| ¬ s1 and q 6= 0E2

T

.

Then f is continuous.

(96) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphE ↾K0 and B0 = {q; q ranges over points of E2
T
:

q1  0 ∧ q 6= 0E2
T

} and K0 = {p : p2
|p|  s1 ∧ p1  0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(97) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphE ↾K0 and B0 = {q; q ranges over points of E2
T
:

q1  0 ∧ q 6= 0E2
T

} and K0 = {p : p2
|p| ¬ s1 ∧ p1  0 ∧ p 6= 0E2

T

}.

Then f is continuous.

(98) For every real number s1 and for every subset K3 of E
2
T
such that K3 =

{p : p2  s1 · |p| ∧ p1  0} holds K3 is closed.

(99) For every real number s1 and for every subset K3 of E
2
T
such that K3 =

{p : p2 ¬ s1 · |p| ∧ p1  0} holds K3 is closed.

(100) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphE ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p1  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(101) Let s1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and s1 < 1 and

f = s1 -FanMorphE ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(102) Let s1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and

s1 < 1 and f = s1 -FanMorphE ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p1  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(103) Let s1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < s1 and

s1 < 1 and f = s1 -FanMorphE ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(104) For every real number s1 and for every point p of E2
T
holds

|s1 -FanMorphE(p)| = |p|.
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(105) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1  0 ∧ p 6= 0E2
T

} holds

s1 -FanMorphE(x) ∈ K0.

(106) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2
T

} holds

s1 -FanMorphE(x) ∈ K0.

(107) Let s1 be a real number and D be a non empty subset of E2
T
. Suppose

−1 < s1 and s1 < 1 and Dc = {0E2
T

}. Then there exists a map h from

(E2
T
)↾D into (E2

T
)↾D such that h = s1 -FanMorphE ↾D and h is continuous.

(108) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there

exists a map h from E2
T
into E2

T
such that h = s1 -FanMorphE and h is

continuous.

(109) For every real number s1 such that −1 < s1 and s1 < 1 holds

s1 -FanMorphE is one-to-one.

(110) For every real number s1 such that −1 < s1 and s1 < 1 holds

s1 -FanMorphE is a map from E
2
T
into E2

T
and rng(s1 -FanMorphE) = the

carrier of E2
T
.

(111) Let s1 be a real number and p2 be a point of E
2
T
. Suppose −1 < s1

and s1 < 1. Then there exists a non empty compact subset K of E2
T
such

that K = s1 -FanMorphE
◦K and there exists a subset V2 of E

2
T
such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and s1 -FanMorphE(p2) ∈ V2.

(112) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there

exists a map f from E2
T
into E2

T
such that f = s1 -FanMorphE and f is a

homeomorphism.

(113) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q|  s1. Let p be a point of E2

T
. If p =

s1 -FanMorphE(q), then p1 > 0 and p2  0.

(114) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q| < s1. Let p be a point of E2

T
. If p =

s1 -FanMorphE(q), then p1 > 0 and p2 < 0.

(115) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q1)2
|q1|
 s1 and (q2)1 > 0 and (q2)2

|q2|
 s1 and

(q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = s1 -FanMorphE(q1) and

p2 = s1 -FanMorphE(q2), then
(p1)2
|p1|

<
(p2)2
|p2|

.

(116) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q1)2
|q1|

< s1 and (q2)1 > 0 and (q2)2
|q2|

< s1 and
(q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = s1 -FanMorphE(q1) and

p2 = s1 -FanMorphE(q2), then
(p1)2
|p1|

<
(p2)2
|p2|

.
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(117) Let s1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q2)1 > 0 and (q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2

be points of E2
T
. If p1 = s1 -FanMorphE(q1) and p2 = s1 -FanMorphE(q2),

then (p1)2
|p1|

<
(p2)2
|p2|

.

(118) Let s1 be a real number and q be a point of E2
T
. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q| = s1. Let p be a point of E2

T
. If p =

s1 -FanMorphE(q), then p1 > 0 and p2 = 0.

(119) For every real number s1 holds 0E2
T

= s1 -FanMorphE(0E2
T

).

5. Fan Morphism for South

Let s be a real number and let q be a point of E2
T
. The functor FanS(s, q)

yields a point of E2
T
and is defined by:

(Def. 8) FanS(s, q) =























|q| · [
q1

|q|
−s

1−s
,−

√

1− (
q1

|q|
−s

1−s
)2], if q1

|q|  s and q2 < 0,

|q| · [
q1

|q|
−s

1+s
,−

√

1− (
q1

|q|
−s

1+s
)2], if q1

|q| < s and q2 < 0,

q, otherwise.

Let c be a real number. The functor c -FanMorphS yielding a function from

the carrier of E2
T
into the carrier of E2

T
is defined by:

(Def. 9) For every point q of E2
T
holds c -FanMorphS(q) = FanS(c, q).

One can prove the following propositions:

(120) Let c1 be a real number. Then

(i) if q1
|q|  c1 and q2 < 0, then c1 -FanMorphS(q) = [|q| ·

q1

|q|
−c1

1−c1
,

|q| · −

√

1− (
q1

|q|
−c1

1−c1
)2], and

(ii) if q2  0, then c1 -FanMorphS(q) = q.

(121) For every real number c1 such that
q1
|q| ¬ c1 and q2 < 0 holds

c1 -FanMorphS(q) = [|q| ·
q1

|q|
−c1

1+c1
, |q| · −

√

1− (
q1

|q|
−c1

1+c1
)2].

(122) Let c1 be a real number such that −1 < c1 and c1 < 1. Then

(i) if q1
|q|  c1 and q2 ¬ 0 and q 6= 0E2

T

, then c1 -FanMorphS(q) = [|q|·
q1

|q|
−c1

1−c1
,

|q| · −

√

1− (
q1

|q|
−c1

1−c1
)2], and

(ii) if q1
|q| ¬ c1 and q2 ¬ 0 and q 6= 0E2

T

, then c1 -FanMorphS(q) = [|q|·
q1

|q|
−c1

1+c1
,

|q| · −

√

1− (
q1

|q|
−c1

1+c1
)2].
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(123) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p1

|p|
−c1

1−c1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2 ¬ 0

and q 6= 0E2
T

.

Then f is continuous.

(124) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| ·
p1

|p|
−c1

1+c1
, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2 ¬ 0

and q 6= 0E2
T

.

Then f is continuous.

(125) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| · −

√

1− (
p1

|p|
−c1

1−c1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2 ¬ 0

and q1
|q|  c1 and q 6= 0E2

T

.

Then f is continuous.

(126) Let c1 be a real number, K1 be a non empty subset of E
2
T
, and f be a

map from (E2
T
)↾K1 into R

1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = |p| · −

√

1− (
p1

|p|
−c1

1+c1
)2, and

(iv) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds q2 ¬ 0

and q1
|q| ¬ c1 and q 6= 0E2

T

.

Then f is continuous.

(127) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a map

from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and f =
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c1 -FanMorphS ↾K0 and B0 = {q; q ranges over points of E2
T
: q2 ¬ 0 ∧ q 6=

0E2
T

} and K0 = {p : p1
|p|  c1 ∧ p2 ¬ 0 ∧ p 6= 0E2

T

}. Then f is continuous.

(128) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a map

from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and f =

c1 -FanMorphS ↾K0 and B0 = {q; q ranges over points of E2
T
: q2 ¬ 0 ∧ q 6=

0E2
T

} and K0 = {p : p1
|p| ¬ c1 ∧ p2 ¬ 0 ∧ p 6= 0E2

T

}. Then f is continuous.

(129) For every real number c1 and for every subset K3 of E
2
T
such that K3 =

{p : p1  c1 · |p| ∧ p2 ¬ 0} holds K3 is closed.

(130) For every real number c1 and for every subset K3 of E
2
T
such that K3 =

{p : p1 ¬ c1 · |p| ∧ p2 ¬ 0} holds K3 is closed.

(131) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphS ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(132) Let c1 be a real number, K0, B0 be subsets of E
2
T
, and f be a

map from (E2
T
)↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and c1 < 1 and

f = c1 -FanMorphS ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and

K0 = {p : p2  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(133) Let c1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and

c1 < 1 and f = c1 -FanMorphS ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

}. Then f is continuous.

(134) Let c1 be a real number, B0 be a subset of E
2
T
, K0 be a subset of (E

2
T
)↾B0,

and f be a map from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose −1 < c1 and

c1 < 1 and f = c1 -FanMorphS ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

}

and K0 = {p : p2  0 ∧ p 6= 0E2
T

}. Then f is continuous.

(135) For every real number c1 and for every point p of E2
T
holds

|c1 -FanMorphS(p)| = |p|.

(136) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2
T

} holds

c1 -FanMorphS(x) ∈ K0.

(137) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2  0 ∧ p 6= 0E2
T

} holds

c1 -FanMorphS(x) ∈ K0.

(138) Let c1 be a real number and D be a non empty subset of E2
T
. Suppose

−1 < c1 and c1 < 1 and Dc = {0E2
T

}. Then there exists a map h from

(E2
T
)↾D into (E2

T
)↾D such that h = c1 -FanMorphS ↾D and h is continuous.

(139) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there exists a

map h from E2
T
into E2

T
such that h = c1 -FanMorphS and h is continuous.
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(140) For every real number c1 such that −1 < c1 and c1 < 1 holds

c1 -FanMorphS is one-to-one.

(141) For every real number c1 such that −1 < c1 and c1 < 1 holds

c1 -FanMorphS is a map from E
2
T
into E2

T
and rng(c1 -FanMorphS) = the

carrier of E2
T
.

(142) Let c1 be a real number and p2 be a point of E
2
T
. Suppose −1 < c1

and c1 < 1. Then there exists a non empty compact subset K of E2
T
such

that K = c1 -FanMorphS
◦K and there exists a subset V2 of E

2
T
such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and c1 -FanMorphS(p2) ∈ V2.

(143) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there

exists a map f from E2
T
into E2

T
such that f = c1 -FanMorphS and f is a

homeomorphism.

(144) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q|  c1. Let p be a point of E

2
T
. If p = c1 -FanMorphS(q),

then p2 < 0 and p1  0.

(145) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| < c1. Let p be a point of E

2
T
. If p = c1 -FanMorphS(q),

then p2 < 0 and p1 < 0.

(146) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q1)1
|q1|
 c1 and (q2)2 < 0 and (q2)1

|q2|
 c1 and

(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

(147) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q1)1
|q1|

< c1 and (q2)2 < 0 and (q2)1
|q2|

< c1 and
(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

(148) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q2)2 < 0 and (q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2

be points of E2
T
. If p1 = c1 -FanMorphS(q1) and p2 = c1 -FanMorphS(q2),

then (p1)1
|p1|

<
(p2)1
|p2|

.

(149) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| = c1. Let p be a point of E

2
T
. If p = c1 -FanMorphS(q),

then p2 < 0 and p1 = 0.

(150) For every real number c1 holds 0E2
T

= c1 -FanMorphS(0E2
T

).
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