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Summary. We will introduce four homeomorphisms (Fan morphisms)
which give spoke-like distortion to the plane. They do not change the norms of
vectors and preserve halfplanes invariant. These morphisms are used to regulate
placement of points on the circle.
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The articles [14], [18], [5], [7], [1], [2], [11], [12], [10], [3], [13], [4], [9], [19], [16],
[17], [15], [8], and [6] provide the notation and terminology for this paper.

1. Preliminaries

In this paper x, a denote real numbers and p, q denote points of E2
T.

The following propositions are true:

(1) If |x| < a, then −a < x and x < a.

(2) If a ­ 0 and (x− a) · (x + a) < 0, then −a < x and x < a.

(3) For every real number s1 such that −1 < s1 and s1 < 1 holds 1 + s1 > 0
and 1− s1 > 0.

(4) For every real number a such that a2 ¬ 1 holds −1 ¬ a and a ¬ 1.

(5) For every real number a such that a2 < 1 holds −1 < a and a < 1.

(6) Let X be a non empty topological structure, g be a map from X into
R1, B be a subset of X, and a be a real number. If g is continuous and
B = {p; p ranges over points of X: πpg > a}, then B is open.

(7) Let X be a non empty topological structure, g be a map from X into
R1, B be a subset of X, and a be a real number. If g is continuous and
B = {p; p ranges over points of X: πpg < a}, then B is open.
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(8) Let f be a map from E2
T into E2

T. Suppose that
(i) f is continuous and one-to-one,
(ii) rng f = ΩE2T , and

(iii) for every point p2 of E2
T there exists a non empty compact subset K

of E2
T such that K = f◦K and there exists a subset V2 of E2

T such that
p2 ∈ V2 and V2 is open and V2 ⊆ K and f(p2) ∈ V2.

Then f is a homeomorphism.

(9) Let X be a non empty topological space, f1, f2 be maps from X into R1,
and a, b be real numbers. Suppose f1 is continuous and f2 is continuous
and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a
map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) =
r1
r2
−a

b , and
(ii) g is continuous.

(10) Let X be a non empty topological space, f1, f2 be maps from X into R1,
and a, b be real numbers. Suppose f1 is continuous and f2 is continuous
and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a
map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·
r1
r2
−a

b , and
(ii) g is continuous.

(11) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous. Then there exists a map g from X into R1

such that for every point p of X and for every real number r1 such that
f1(p) = r1 holds g(p) = r1

2 and g is continuous.

(12) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous. Then there exists a map g from X into R1

such that for every point p of X and for every real number r1 such that
f1(p) = r1 holds g(p) = |r1| and g is continuous.

(13) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous. Then there exists a map g from X into R1

such that for every point p of X and for every real number r1 such that
f1(p) = r1 holds g(p) = −r1 and g is continuous.

(14) Let X be a non empty topological space, f1, f2 be maps from X into R1,
and a, b be real numbers. Suppose f1 is continuous and f2 is continuous
and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a
map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 · −
√
|1− (

r1
r2
−a

b )2|, and
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(ii) g is continuous.

(15) Let X be a non empty topological space, f1, f2 be maps from X into R1,
and a, b be real numbers. Suppose f1 is continuous and f2 is continuous
and b 6= 0 and for every point q of X holds f2(q) 6= 0. Then there exists a
map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·
√
|1− (

r1
r2
−a

b )2|, and

(ii) g is continuous.

Let n be a natural number. The functor n NormF yields a function from the
carrier of En

T into the carrier of R1 and is defined by:

(Def. 1) For every point q of En
T holds n NormF(q) = |q|.

Next we state several propositions:

(16) For every natural number n holds dom(n NormF) = the carrier of En
T

and dom(n NormF) = Rn.

(18)1 For every natural number n and for all points p, q of En
T holds ||p|−|q|| ¬

|p− q|.
(19) For every natural number n and for every map f from En

T into R1 such
that f = n NormF holds f is continuous.

(20) Let n be a natural number, K0 be a subset of En
T, and f be a map from

(En
T)¹K0 into R1. If for every point p of (En

T)¹K0 holds f(p) = n NormF(p),
then f is continuous.

(21) Let n be a natural number, p be a point of En, r be a real number, and
B be a subset of En

T. If B = Ball(p, r), then B is Bounded and closed.

(22) For every point p of E2 and for every real number r and for every subset
B of E2

T such that B = Ball(p, r) holds B is compact.

2. Fan Morphism for West

Let s be a real number and let q be a point of E2
T. The functor FanW(s, q)

yields a point of E2
T and is defined as follows:

(Def. 2) FanW(s, q) =





|q| · [−
√

1− (
q2
|q|−s

1−s )2,
q2
|q|−s

1−s ], if q2
|q| ­ s and q1 < 0,

|q| · [−
√

1− (
q2
|q|−s

1+s )2,
q2
|q|−s

1+s ], if q2
|q| < s and q1 < 0,

q, otherwise.
Let s be a real number. The functor s -FanMorphW yields a function from

the carrier of E2
T into the carrier of E2

T and is defined by:

1The proposition (17) has been removed.
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(Def. 3) For every point q of E2
T holds s -FanMorphW(q) = FanW(s, q).

Next we state a number of propositions:

(23) Let s1 be a real number. Then

(i) if q2
|q| ­ s1 and q1 < 0, then s1 -FanMorphW(q) = [|q| ·−

√
1− (

q2
|q|−s1

1−s1
)2,

|q| ·
q2
|q|−s1

1−s1
], and

(ii) if q1 ­ 0, then s1 -FanMorphW(q) = q.

(24) For every real number s1 such that q2
|q| ¬ s1 and q1 < 0 holds

s1 -FanMorphW(q) = [|q| · −
√

1− (
q2
|q|−s1

1+s1
)2, |q| ·

q2
|q|−s1

1+s1
].

(25) Let s1 be a real number such that −1 < s1 and s1 < 1. Then
(i) if q2

|q| ­ s1 and q1 ¬ 0 and q 6= 0E2T , then s1 -FanMorphW(q) = [|q| ·

−
√

1− (
q2
|q|−s1

1−s1
)2, |q| ·

q2
|q|−s1

1−s1
], and

(ii) if q2
|q| ¬ s1 and q1 ¬ 0 and q 6= 0E2T , then s1 -FanMorphW(q) = [|q| ·

−
√

1− (
q2
|q|−s1

1+s1
)2, |q| ·

q2
|q|−s1

1+s1
].

(26) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p2
|p|−s1

1−s1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ¬ 0
and q 6= 0E2T .

Then f is continuous.

(27) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p2
|p|−s1

1+s1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ¬ 0
and q 6= 0E2T .

Then f is continuous.

(28) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,
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(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| · −
√

1− (
p2
|p|−s1

1−s1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ¬ 0
and q2

|q| ­ s1 and q 6= 0E2T .

Then f is continuous.

(29) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| · −
√

1− (
p2
|p|−s1

1+s1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ¬ 0
and q2

|q| ¬ s1 and q 6= 0E2T .

Then f is continuous.

(30) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphW ¹K0 and B0 = {q; q ranges over points of E2

T:
q1 ¬ 0 ∧ q 6= 0E2T} and K0 = {p : p2

|p| ­ s1 ∧ p1 ¬ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(31) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphW ¹K0 and B0 = {q; q ranges over points of E2

T:
q1 ¬ 0 ∧ q 6= 0E2T} and K0 = {p : p2

|p| ¬ s1 ∧ p1 ¬ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(32) For every real number s1 and for every subset K3 of E2
T such that K3 =

{p : p2 ­ s1 · |p| ∧ p1 ¬ 0} holds K3 is closed.

(33) For every real number s1 and for every subset K3 of E2
T such that K3 =

{p : p2 ¬ s1 · |p| ∧ p1 ¬ 0} holds K3 is closed.

(34) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphW ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(35) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphW ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p1 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(36) Let B0 be a subset of E2
T and K0 be a subset of (E2

T)¹B0. Suppose B0 =
(the carrier of E2

T) \ {0E2T} and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T}. Then K0 is
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closed.

(37) Let s1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < s1 and
s1 < 1 and f = s1 -FanMorphW ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(38) Let B0 be a subset of E2
T and K0 be a subset of (E2

T)¹B0. Suppose B0 =
(the carrier of E2

T) \ {0E2T} and K0 = {p : p1 ­ 0 ∧ p 6= 0E2T}. Then K0 is
closed.

(39) Let s1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < s1 and
s1 < 1 and f = s1 -FanMorphW ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p1 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(40) For every real number s1 and for every point p of E2
T holds

|s1 -FanMorphW(p)| = |p|.
(41) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T} holds
s1 -FanMorphW(x) ∈ K0.

(42) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ­ 0 ∧ p 6= 0E2T} holds
s1 -FanMorphW(x) ∈ K0.

(43) Let s1 be a real number and D be a non empty subset of E2
T. Suppose

−1 < s1 and s1 < 1 and Dc = {0E2T}. Then there exists a map h from
(E2

T)¹D into (E2
T)¹D such that h = s1 -FanMorphW ¹D and h is continuous.

(44) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there
exists a map h from E2

T into E2
T such that h = s1 -FanMorphW and h is

continuous.

(45) For every real number s1 such that −1 < s1 and s1 < 1 holds
s1 -FanMorphW is one-to-one.

(46) For every real number s1 such that −1 < s1 and s1 < 1 holds
s1 -FanMorphW is a map from E2

T into E2
T and rng(s1 -FanMorphW) = the

carrier of E2
T.

(47) Let s1 be a real number and p2 be a point of E2
T. Suppose −1 < s1

and s1 < 1. Then there exists a non empty compact subset K of E2
T such

that K = s1 -FanMorphW◦K and there exists a subset V2 of E2
T such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and s1 -FanMorphW(p2) ∈ V2.

(48) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there
exists a map f from E2

T into E2
T such that f = s1 -FanMorphW and f is a

homeomorphism.

(49) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1
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and s1 < 1 and q1 < 0 and q2
|q| ­ s1. Let p be a point of E2

T. If p =
s1 -FanMorphW(q), then p1 < 0 and p2 ­ 0.

(50) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1

and s1 < 1 and q1 < 0 and q2
|q| < s1. Let p be a point of E2

T. If p =
s1 -FanMorphW(q), then p1 < 0 and p2 < 0.

(51) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q1)2
|q1| ­ s1 and (q2)1 < 0 and (q2)2

|q2| ­ s1 and
(q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of E2
T. If p1 = s1 -FanMorphW(q1) and

p2 = s1 -FanMorphW(q2), then (p1)2
|p1| < (p2)2

|p2| .

(52) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q1)2
|q1| < s1 and (q2)1 < 0 and (q2)2

|q2| < s1 and
(q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of E2
T. If p1 = s1 -FanMorphW(q1) and

p2 = s1 -FanMorphW(q2), then (p1)2
|p1| < (p2)2

|p2| .

(53) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 < 0 and (q2)1 < 0 and (q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be

points of E2
T. If p1 = s1 -FanMorphW(q1) and p2 = s1 -FanMorphW(q2),

then (p1)2
|p1| < (p2)2

|p2| .

(54) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1

and s1 < 1 and q1 < 0 and q2
|q| = s1. Let p be a point of E2

T. If p =
s1 -FanMorphW(q), then p1 < 0 and p2 = 0.

(55) For every real number s1 holds 0E2T = s1 -FanMorphW(0E2T).

3. Fan Morphism for North

Let s be a real number and let q be a point of E2
T. The functor FanN(s, q)

yields a point of E2
T and is defined by:

(Def. 4) FanN(s, q) =





|q| · [
q1
|q|−s

1−s ,

√
1− (

q1
|q|−s

1−s )2], if q1
|q| ­ s and q2 > 0,

|q| · [
q1
|q|−s

1+s ,

√
1− (

q1
|q|−s

1+s )2], if q1
|q| < s and q2 > 0,

q, otherwise.
Let c be a real number. The functor c -FanMorphN yielding a function from

the carrier of E2
T into the carrier of E2

T is defined as follows:

(Def. 5) For every point q of E2
T holds c -FanMorphN(q) = FanN(c, q).

One can prove the following propositions:

(56) Let c1 be a real number. Then
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(i) if q1
|q| ­ c1 and q2 > 0, then c1 -FanMorphN(q) = [|q| ·

q1
|q|−c1

1−c1
, |q| ·√

1− (
q1
|q|−c1

1−c1
)2], and

(ii) if q2 ¬ 0, then c1 -FanMorphN(q) = q.

(57) For every real number c1 such that q1
|q| ¬ c1 and q2 > 0 holds

c1 -FanMorphN(q) = [|q| ·
q1
|q|−c1

1+c1
, |q| ·

√
1− (

q1
|q|−c1

1+c1
)2].

(58) Let c1 be a real number such that −1 < c1 and c1 < 1. Then

(i) if q1
|q| ­ c1 and q2 ­ 0 and q 6= 0E2T , then c1 -FanMorphN(q) = [|q|·

q1
|q|−c1

1−c1
,

|q| ·
√

1− (
q1
|q|−c1

1−c1
)2], and

(ii) if q1
|q| ¬ c1 and q2 ­ 0 and q 6= 0E2T , then c1 -FanMorphN(q) = [|q|·

q1
|q|−c1

1+c1
,

|q| ·
√

1− (
q1
|q|−c1

1+c1
)2].

(59) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p1
|p|−c1

1−c1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ­ 0
and q 6= 0E2T .

Then f is continuous.

(60) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p1
|p|−c1

1+c1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ­ 0
and q 6= 0E2T .

Then f is continuous.

(61) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
√

1− (
p1
|p|−c1

1−c1
)2, and
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(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ­ 0
and q1

|q| ­ c1 and q 6= 0E2T .

Then f is continuous.

(62) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
√

1− (
p1
|p|−c1

1+c1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ­ 0
and q1

|q| ¬ c1 and q 6= 0E2T .

Then f is continuous.

(63) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphN ¹K0 and B0 = {q; q ranges over points of E2

T:
q2 ­ 0 ∧ q 6= 0E2T} and K0 = {p : p1

|p| ­ c1 ∧ p2 ­ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(64) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphN ¹K0 and B0 = {q; q ranges over points of E2

T:
q2 ­ 0 ∧ q 6= 0E2T} and K0 = {p : p1

|p| ¬ c1 ∧ p2 ­ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(65) For every real number c1 and for every subset K3 of E2
T such that K3 =

{p : p1 ­ c1 · |p| ∧ p2 ­ 0} holds K3 is closed.

(66) For every real number c1 and for every subset K3 of E2
T such that K3 =

{p : p1 ¬ c1 · |p| ∧ p2 ­ 0} holds K3 is closed.

(67) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphN ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p2 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(68) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphN ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(69) Let B0 be a subset of E2
T and K0 be a subset of (E2

T)¹B0. Suppose B0 =
(the carrier of E2

T) \ {0E2T} and K0 = {p : p2 ­ 0 ∧ p 6= 0E2T}. Then K0 is
closed.

(70) Let B0 be a subset of E2
T and K0 be a subset of (E2

T)¹B0. Suppose B0 =
(the carrier of E2

T) \ {0E2T} and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T}. Then K0 is
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closed.

(71) Let c1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < c1 and
c1 < 1 and f = c1 -FanMorphN ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p2 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(72) Let c1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < c1 and
c1 < 1 and f = c1 -FanMorphN ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(73) For every real number c1 and for every point p of E2
T holds

|c1 -FanMorphN(p)| = |p|.
(74) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ­ 0 ∧ p 6= 0E2T} holds
c1 -FanMorphN(x) ∈ K0.

(75) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T} holds
c1 -FanMorphN(x) ∈ K0.

(76) Let c1 be a real number and D be a non empty subset of E2
T. Suppose

−1 < c1 and c1 < 1 and Dc = {0E2T}. Then there exists a map h from
(E2

T)¹D into (E2
T)¹D such that h = c1 -FanMorphN ¹D and h is continuous.

(77) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there
exists a map h from E2

T into E2
T such that h = c1 -FanMorphN and h is

continuous.

(78) For every real number c1 such that −1 < c1 and c1 < 1 holds
c1 -FanMorphN is one-to-one.

(79) For every real number c1 such that −1 < c1 and c1 < 1 holds
c1 -FanMorphN is a map from E2

T into E2
T and rng(c1 -FanMorphN) = the

carrier of E2
T.

(80) Let c1 be a real number and p2 be a point of E2
T. Suppose −1 < c1

and c1 < 1. Then there exists a non empty compact subset K of E2
T such

that K = c1 -FanMorphN◦K and there exists a subset V2 of E2
T such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and c1 -FanMorphN(p2) ∈ V2.

(81) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there
exists a map f from E2

T into E2
T such that f = c1 -FanMorphN and f is a

homeomorphism.

(82) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 > 0 and q1
|q| ­ c1. Let p be a point of E2

T. If p = c1 -FanMorphN(q),
then p2 > 0 and p1 ­ 0.

(83) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <
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1 and q2 > 0 and q1
|q| < c1. Let p be a point of E2

T. If p = c1 -FanMorphN(q),
then p2 > 0 and p1 < 0.

(84) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q1)1
|q1| ­ c1 and (q2)2 > 0 and (q2)1

|q2| ­ c1 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then (p1)1
|p1| < (p2)1

|p2| .

(85) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q1)1
|q1| < c1 and (q2)2 > 0 and (q2)1

|q2| < c1 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then (p1)1
|p1| < (p2)1

|p2| .

(86) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 > 0 and (q2)2 > 0 and (q1)1
|q1| < (q2)1

|q2| . Let p1, p2

be points of E2
T. If p1 = c1 -FanMorphN(q1) and p2 = c1 -FanMorphN(q2),

then (p1)1
|p1| < (p2)1

|p2| .

(87) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 > 0 and q1
|q| = c1. Let p be a point of E2

T. If p = c1 -FanMorphN(q),
then p2 > 0 and p1 = 0.

(88) For every real number c1 holds 0E2T = c1 -FanMorphN(0E2T).

4. Fan Morphism for East

Let s be a real number and let q be a point of E2
T. The functor FanE(s, q)

yields a point of E2
T and is defined as follows:

(Def. 6) FanE(s, q) =





|q| · [
√

1− (
q2
|q|−s

1−s )2,
q2
|q|−s

1−s ], if q2
|q| ­ s and q1 > 0,

|q| · [
√

1− (
q2
|q|−s

1+s )2,
q2
|q|−s

1+s ], if q2
|q| < s and q1 > 0,

q, otherwise.
Let s be a real number. The functor s -FanMorphE yielding a function from

the carrier of E2
T into the carrier of E2

T is defined as follows:

(Def. 7) For every point q of E2
T holds s -FanMorphE(q) = FanE(s, q).

Next we state a number of propositions:

(89) Let s1 be a real number. Then

(i) if q2
|q| ­ s1 and q1 > 0, then s1 -FanMorphE(q) = [|q| ·

√
1− (

q2
|q|−s1

1−s1
)2,

|q| ·
q2
|q|−s1

1−s1
], and

(ii) if q1 ¬ 0, then s1 -FanMorphE(q) = q.
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(90) For every real number s1 such that q2
|q| ¬ s1 and q1 > 0 holds

s1 -FanMorphE(q) = [|q| ·
√

1− (
q2
|q|−s1

1+s1
)2, |q| ·

q2
|q|−s1

1+s1
].

(91) Let s1 be a real number such that −1 < s1 and s1 < 1. Then
(i) if q2

|q| ­ s1 and q1 ­ 0 and q 6= 0E2T , then s1 -FanMorphE(q) = [|q| ·√
1− (

q2
|q|−s1

1−s1
)2, |q| ·

q2
|q|−s1

1−s1
], and

(ii) if q2
|q| ¬ s1 and q1 ­ 0 and q 6= 0E2T , then s1 -FanMorphE(q) = [|q| ·√

1− (
q2
|q|−s1

1+s1
)2, |q| ·

q2
|q|−s1

1+s1
].

(92) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p2
|p|−s1

1−s1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ­ 0
and q 6= 0E2T .

Then f is continuous.

(93) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p2
|p|−s1

1+s1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ­ 0
and q 6= 0E2T .

Then f is continuous.

(94) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
√

1− (
p2
|p|−s1

1−s1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ­ 0
and q2

|q| ­ s1 and q 6= 0E2T .

Then f is continuous.

(95) Let s1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that
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(i) −1 < s1,

(ii) s1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
√

1− (
p2
|p|−s1

1+s1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q1 ­ 0
and q2

|q| ¬ s1 and q 6= 0E2T .

Then f is continuous.

(96) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphE ¹K0 and B0 = {q; q ranges over points of E2

T:
q1 ­ 0 ∧ q 6= 0E2T} and K0 = {p : p2

|p| ­ s1 ∧ p1 ­ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(97) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphE ¹K0 and B0 = {q; q ranges over points of E2

T:
q1 ­ 0 ∧ q 6= 0E2T} and K0 = {p : p2

|p| ¬ s1 ∧ p1 ­ 0 ∧ p 6= 0E2T}.
Then f is continuous.

(98) For every real number s1 and for every subset K3 of E2
T such that K3 =

{p : p2 ­ s1 · |p| ∧ p1 ­ 0} holds K3 is closed.

(99) For every real number s1 and for every subset K3 of E2
T such that K3 =

{p : p2 ¬ s1 · |p| ∧ p1 ­ 0} holds K3 is closed.

(100) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphE ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p1 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(101) Let s1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < s1 and s1 < 1 and
f = s1 -FanMorphE ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(102) Let s1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < s1 and
s1 < 1 and f = s1 -FanMorphE ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p1 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(103) Let s1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < s1 and
s1 < 1 and f = s1 -FanMorphE ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(104) For every real number s1 and for every point p of E2
T holds

|s1 -FanMorphE(p)| = |p|.
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(105) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ­ 0 ∧ p 6= 0E2T} holds
s1 -FanMorphE(x) ∈ K0.

(106) For every real number s1 and for all sets x, K0 such that −1 < s1

and s1 < 1 and x ∈ K0 and K0 = {p : p1 ¬ 0 ∧ p 6= 0E2T} holds
s1 -FanMorphE(x) ∈ K0.

(107) Let s1 be a real number and D be a non empty subset of E2
T. Suppose

−1 < s1 and s1 < 1 and Dc = {0E2T}. Then there exists a map h from
(E2

T)¹D into (E2
T)¹D such that h = s1 -FanMorphE ¹D and h is continuous.

(108) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there
exists a map h from E2

T into E2
T such that h = s1 -FanMorphE and h is

continuous.

(109) For every real number s1 such that −1 < s1 and s1 < 1 holds
s1 -FanMorphE is one-to-one.

(110) For every real number s1 such that −1 < s1 and s1 < 1 holds
s1 -FanMorphE is a map from E2

T into E2
T and rng(s1 -FanMorphE) = the

carrier of E2
T.

(111) Let s1 be a real number and p2 be a point of E2
T. Suppose −1 < s1

and s1 < 1. Then there exists a non empty compact subset K of E2
T such

that K = s1 -FanMorphE◦K and there exists a subset V2 of E2
T such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and s1 -FanMorphE(p2) ∈ V2.

(112) Let s1 be a real number. Suppose −1 < s1 and s1 < 1. Then there
exists a map f from E2

T into E2
T such that f = s1 -FanMorphE and f is a

homeomorphism.

(113) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q| ­ s1. Let p be a point of E2

T. If p =
s1 -FanMorphE(q), then p1 > 0 and p2 ­ 0.

(114) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q| < s1. Let p be a point of E2

T. If p =
s1 -FanMorphE(q), then p1 > 0 and p2 < 0.

(115) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q1)2
|q1| ­ s1 and (q2)1 > 0 and (q2)2

|q2| ­ s1 and
(q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of E2
T. If p1 = s1 -FanMorphE(q1) and

p2 = s1 -FanMorphE(q2), then (p1)2
|p1| < (p2)2

|p2| .

(116) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q1)2
|q1| < s1 and (q2)1 > 0 and (q2)2

|q2| < s1 and
(q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of E2
T. If p1 = s1 -FanMorphE(q1) and

p2 = s1 -FanMorphE(q2), then (p1)2
|p1| < (p2)2

|p2| .
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(117) Let s1 be a real number and q1, q2 be points of E2
T. Suppose −1 < s1

and s1 < 1 and (q1)1 > 0 and (q2)1 > 0 and (q1)2
|q1| < (q2)2

|q2| . Let p1, p2

be points of E2
T. If p1 = s1 -FanMorphE(q1) and p2 = s1 -FanMorphE(q2),

then (p1)2
|p1| < (p2)2

|p2| .

(118) Let s1 be a real number and q be a point of E2
T. Suppose −1 < s1

and s1 < 1 and q1 > 0 and q2
|q| = s1. Let p be a point of E2

T. If p =
s1 -FanMorphE(q), then p1 > 0 and p2 = 0.

(119) For every real number s1 holds 0E2T = s1 -FanMorphE(0E2T).

5. Fan Morphism for South

Let s be a real number and let q be a point of E2
T. The functor FanS(s, q)

yields a point of E2
T and is defined by:

(Def. 8) FanS(s, q) =





|q| · [
q1
|q|−s

1−s ,−
√

1− (
q1
|q|−s

1−s )2], if q1
|q| ­ s and q2 < 0,

|q| · [
q1
|q|−s

1+s ,−
√

1− (
q1
|q|−s

1+s )2], if q1
|q| < s and q2 < 0,

q, otherwise.
Let c be a real number. The functor c -FanMorphS yielding a function from

the carrier of E2
T into the carrier of E2

T is defined by:

(Def. 9) For every point q of E2
T holds c -FanMorphS(q) = FanS(c, q).

One can prove the following propositions:

(120) Let c1 be a real number. Then

(i) if q1
|q| ­ c1 and q2 < 0, then c1 -FanMorphS(q) = [|q| ·

q1
|q|−c1

1−c1
,

|q| · −
√

1− (
q1
|q|−c1

1−c1
)2], and

(ii) if q2 ­ 0, then c1 -FanMorphS(q) = q.

(121) For every real number c1 such that q1
|q| ¬ c1 and q2 < 0 holds

c1 -FanMorphS(q) = [|q| ·
q1
|q|−c1

1+c1
, |q| · −

√
1− (

q1
|q|−c1

1+c1
)2].

(122) Let c1 be a real number such that −1 < c1 and c1 < 1. Then

(i) if q1
|q| ­ c1 and q2 ¬ 0 and q 6= 0E2T , then c1 -FanMorphS(q) = [|q|·

q1
|q|−c1

1−c1
,

|q| · −
√

1− (
q1
|q|−c1

1−c1
)2], and

(ii) if q1
|q| ¬ c1 and q2 ¬ 0 and q 6= 0E2T , then c1 -FanMorphS(q) = [|q|·

q1
|q|−c1

1+c1
,

|q| · −
√

1− (
q1
|q|−c1

1+c1
)2].
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(123) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p1
|p|−c1

1−c1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ¬ 0
and q 6= 0E2T .

Then f is continuous.

(124) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| ·
p1
|p|−c1

1+c1
, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ¬ 0
and q 6= 0E2T .

Then f is continuous.

(125) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| · −
√

1− (
p1
|p|−c1

1−c1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ¬ 0
and q1

|q| ­ c1 and q 6= 0E2T .

Then f is continuous.

(126) Let c1 be a real number, K1 be a non empty subset of E2
T, and f be a

map from (E2
T)¹K1 into R1. Suppose that

(i) −1 < c1,

(ii) c1 < 1,

(iii) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = |p| · −
√

1− (
p1
|p|−c1

1+c1
)2, and

(iv) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds q2 ¬ 0
and q1

|q| ¬ c1 and q 6= 0E2T .

Then f is continuous.

(127) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a map

from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and f =
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c1 -FanMorphS ¹K0 and B0 = {q; q ranges over points of E2
T: q2 ¬ 0 ∧ q 6=

0E2T} and K0 = {p : p1
|p| ­ c1 ∧ p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(128) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a map

from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and f =
c1 -FanMorphS ¹K0 and B0 = {q; q ranges over points of E2

T: q2 ¬ 0 ∧ q 6=
0E2T} and K0 = {p : p1

|p| ¬ c1 ∧ p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(129) For every real number c1 and for every subset K3 of E2
T such that K3 =

{p : p1 ­ c1 · |p| ∧ p2 ¬ 0} holds K3 is closed.

(130) For every real number c1 and for every subset K3 of E2
T such that K3 =

{p : p1 ¬ c1 · |p| ∧ p2 ¬ 0} holds K3 is closed.

(131) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphS ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(132) Let c1 be a real number, K0, B0 be subsets of E2
T, and f be a

map from (E2
T)¹K0 into (E2

T)¹B0. Suppose −1 < c1 and c1 < 1 and
f = c1 -FanMorphS ¹K0 and B0 = (the carrier of E2

T) \ {0E2T} and
K0 = {p : p2 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(133) Let c1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < c1 and
c1 < 1 and f = c1 -FanMorphS ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T}. Then f is continuous.

(134) Let c1 be a real number, B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0,

and f be a map from (E2
T)¹B0¹K0 into (E2

T)¹B0. Suppose −1 < c1 and
c1 < 1 and f = c1 -FanMorphS ¹K0 and B0 = (the carrier of E2

T) \ {0E2T}
and K0 = {p : p2 ­ 0 ∧ p 6= 0E2T}. Then f is continuous.

(135) For every real number c1 and for every point p of E2
T holds

|c1 -FanMorphS(p)| = |p|.
(136) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ¬ 0 ∧ p 6= 0E2T} holds
c1 -FanMorphS(x) ∈ K0.

(137) For every real number c1 and for all sets x, K0 such that −1 < c1

and c1 < 1 and x ∈ K0 and K0 = {p : p2 ­ 0 ∧ p 6= 0E2T} holds
c1 -FanMorphS(x) ∈ K0.

(138) Let c1 be a real number and D be a non empty subset of E2
T. Suppose

−1 < c1 and c1 < 1 and Dc = {0E2T}. Then there exists a map h from
(E2

T)¹D into (E2
T)¹D such that h = c1 -FanMorphS ¹D and h is continuous.

(139) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there exists a
map h from E2

T into E2
T such that h = c1 -FanMorphS and h is continuous.
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(140) For every real number c1 such that −1 < c1 and c1 < 1 holds
c1 -FanMorphS is one-to-one.

(141) For every real number c1 such that −1 < c1 and c1 < 1 holds
c1 -FanMorphS is a map from E2

T into E2
T and rng(c1 -FanMorphS) = the

carrier of E2
T.

(142) Let c1 be a real number and p2 be a point of E2
T. Suppose −1 < c1

and c1 < 1. Then there exists a non empty compact subset K of E2
T such

that K = c1 -FanMorphS◦K and there exists a subset V2 of E2
T such that

p2 ∈ V2 and V2 is open and V2 ⊆ K and c1 -FanMorphS(p2) ∈ V2.

(143) Let c1 be a real number. Suppose −1 < c1 and c1 < 1. Then there
exists a map f from E2

T into E2
T such that f = c1 -FanMorphS and f is a

homeomorphism.

(144) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| ­ c1. Let p be a point of E2

T. If p = c1 -FanMorphS(q),
then p2 < 0 and p1 ­ 0.

(145) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| < c1. Let p be a point of E2

T. If p = c1 -FanMorphS(q),
then p2 < 0 and p1 < 0.

(146) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q1)1
|q1| ­ c1 and (q2)2 < 0 and (q2)1

|q2| ­ c1 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then (p1)1
|p1| < (p2)1

|p2| .

(147) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q1)1
|q1| < c1 and (q2)2 < 0 and (q2)1

|q2| < c1 and
(q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of E2
T. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then (p1)1
|p1| < (p2)1

|p2| .

(148) Let c1 be a real number and q1, q2 be points of E2
T. Suppose −1 < c1

and c1 < 1 and (q1)2 < 0 and (q2)2 < 0 and (q1)1
|q1| < (q2)1

|q2| . Let p1, p2

be points of E2
T. If p1 = c1 -FanMorphS(q1) and p2 = c1 -FanMorphS(q2),

then (p1)1
|p1| < (p2)1

|p2| .

(149) Let c1 be a real number and q be a point of E2
T. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1
|q| = c1. Let p be a point of E2

T. If p = c1 -FanMorphS(q),
then p2 < 0 and p1 = 0.

(150) For every real number c1 holds 0E2T = c1 -FanMorphS(0E2T).
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Yatsuka Nakamura
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Summary. Left and right half open intervals in the real line are defined.
Their properties are investigated. A class of all finite union of such intervals are,
in a sense, closed by operations of union, intersection and the difference of sets.

MML Identifier: RCOMP 2.

The terminology and notation used here are introduced in the following articles:
[5], [1], [3], [4], and [2].

In this paper s, g, h, r, p, p1, p2, q, q1, q2, x, y, z denote real numbers.
The following two propositions are true:

(1) x < y and x < z iff x < min(y, z).
(2) y < x and z < x iff max(y, z) < x.

Let g, s be real numbers. The functor [g, s[ yielding a subset of R is defined
as follows:

(Def. 1) [g, s[= {r; r ranges over real numbers: g ¬ r ∧ r < s}.
The functor ]g, s] yields a subset of R and is defined as follows:

(Def. 2) ]g, s] = {r; r ranges over real numbers: g < r ∧ r ¬ s}.
Next we state a number of propositions:

(3) r ∈ [p, q[ iff p ¬ r and r < q.

(4) r ∈ ]p, q] iff p < r and r ¬ q.

(5) For all g, s such that g < s holds [g, s[= ]g, s[ ∪ {g}.
(6) For all g, s such that g < s holds ]g, s] = ]g, s[ ∪ {s}.
(7) [g, g[= ∅.
(8) ]g, g] = ∅.
(9) If p ¬ g, then [g, p[= ∅.
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(10) If p ¬ g, then ]g, p] = ∅.
(11) If g ¬ p and p ¬ h, then [g, p[∪[p, h[= [g, h[.
(12) If g ¬ p and p ¬ h, then ]g, p] ∪ ]p, h] = ]g, h].
(13) If g ¬ p1 and g ¬ p2 and p1 ¬ h and p2 ¬ h, then [g, h] = [g, p1[∪[p1, p2]∪

]p2, h].
(14) If g < p1 and g < p2 and p1 < h and p2 < h, then ]g, h[ = ]g, p1] ∪

]p1, p2[ ∪ [p2, h[.
(15) [q1, q2[∩[p1, p2[= [max(q1, p1), min(q2, p2)[.
(16) ]q1, q2] ∩ ]p1, p2] = ]max(q1, p1), min(q2, p2)].
(17) ]p, q[ ⊆ [p, q[ and ]p, q[ ⊆ ]p, q] and [p, q[⊆ [p, q] and ]p, q] ⊆ [p, q].
(18) If r ∈ [p, g[ and s ∈ [p, g[, then [r, s] ⊆ [p, g[.
(19) If r ∈ ]p, g] and s ∈ ]p, g], then [r, s] ⊆ ]p, g].
(20) If p ¬ q and q ¬ r, then [p, q] ∪ ]q, r] = [p, r].
(21) If p ¬ q and q ¬ r, then [p, q[∪[q, r] = [p, r].
(22) If [q1, q2[ meets [p1, p2[, then q2 ­ p1.

(23) If ]q1, q2] meets ]p1, p2], then q2 ­ p1.

(24) If [q1, q2[ meets [p1, p2[, then [q1, q2[∪[p1, p2[= [min(q1, p1), max(q2, p2)[.
(25) If ]q1, q2] meets ]p1, p2], then ]q1, q2]∪ ]p1, p2] = ]min(q1, p1), max(q2, p2)].
(26) If [p1, p2[ meets [q1, q2[, then [p1, p2[\[q1, q2[= [p1, q1[∪[q2, p2[.
(27) If ]p1, p2] meets ]q1, q2], then ]p1, p2] \ ]q1, q2] = ]p1, q1] ∪ ]q2, p2].
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Summary. The main goal of this paper is to present alternative charac-
terizations of clockwise oriented sequences on Go-boards.

MML Identifier: JORDAN1I.

The articles [8], [21], [9], [2], [3], [26], [24], [4], [16], [18], [23], [14], [20], [19], [5],
[7], [13], [1], [6], [12], [28], [15], [17], [25], [27], [22], [10], and [11] provide the
terminology and notation for this paper.

1. Preliminaries

In this paper i, j, k, n denote natural numbers.
Next we state several propositions:

(1) For all subsets A, B of En
T such that A is Bounded or B is Bounded holds

A ∩B is Bounded.

(2) For all subsets A, B of En
T such that A is not Bounded and B is Bounded

holds A \B is not Bounded.

(3) For every compact connected non vertical non horizontal subset C of E2
T

holds (W-min L̃(Cage(C, n))) " Cage(C, n) > 1.

(4) For every compact connected non vertical non horizontal subset C of E2
T

holds (E-max L̃(Cage(C, n))) " Cage(C, n) > 1.

(5) For every compact connected non vertical non horizontal subset C of E2
T

holds (S-max L̃(Cage(C, n))) " Cage(C, n) > 1.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
2This work was completed during the authors’s visit to Shinshu University.

23
c© 2002 University of Białystok

ISSN 1426–2630



24 adam naumowicz and robert milewski

2. On Bounding Points of Circular Sequences

Next we state several propositions:

(6) Let f be a non constant standard special circular sequence and p be a
point of E2

T. If p ∈ rng f, then leftcell(f, p " f) = leftcell(fp
ª, 1).

(7) Let f be a non constant standard special circular sequence and p be a
point of E2

T. If p ∈ rng f, then rightcell(f, p " f) = rightcell(fp
ª, 1).

(8) For every compact connected non vertical non horizontal non empty sub-

set C of E2
T holds W-min C ∈ rightcell((Cage(C, n))W-min eL(Cage(C,n))

ª , 1).
(9) For every compact connected non vertical non horizontal non empty sub-

set C of E2
T holds E-max C ∈ rightcell((Cage(C, n))E-max eL(Cage(C,n))

ª , 1).
(10) For every compact connected non vertical non horizontal non empty

subset C of E2
T holds S-max C ∈ rightcell((Cage(C, n))S-max eL(Cage(C,n))

ª , 1).

3. On Clockwise Oriented Sequences

One can prove the following propositions:

(11) Let f be a clockwise oriented non constant standard special circular sequ-
ence and p be a point of E2

T. If p1 < W-bound L̃(f), then p ∈ LeftComp(f).
(12) Let f be a clockwise oriented non constant standard special circular sequ-

ence and p be a point of E2
T. If p1 > E-bound L̃(f), then p ∈ LeftComp(f).

(13) Let f be a clockwise oriented non constant standard special circular sequ-
ence and p be a point of E2

T. If p2 < S-bound L̃(f), then p ∈ LeftComp(f).
(14) Let f be a clockwise oriented non constant standard special circular sequ-

ence and p be a point of E2
T. If p2 > N-bound L̃(f), then p ∈ LeftComp(f).

(15) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
fk = G ◦ (i + 1, j) and fk+1 = G ◦ (i, j). Then j < width G.

(16) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
fk = G ◦ (i, j) and fk+1 = G ◦ (i, j + 1). Then i < len G.

(17) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
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len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
fk = G ◦ (i, j) and fk+1 = G ◦ (i + 1, j). Then j > 1.

(18) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
fk = G ◦ (i, j + 1) and fk+1 = G ◦ (i, j). Then i > 1.

(19) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
fk = G ◦ (i + 1, j) and fk+1 = G ◦ (i, j). Then (fk)2 6= N-bound L̃(f).

(20) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
fk = G ◦ (i, j) and fk+1 = G ◦ (i, j + 1). Then (fk)1 6= E-bound L̃(f).

(21) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
fk = G ◦ (i, j) and fk+1 = G ◦ (i + 1, j). Then (fk)2 6= S-bound L̃(f).

(22) Let f be a clockwise oriented non constant standard special circular
sequence and G be a Go-board. Suppose f is a sequence which elements
belong to G. Let i, j, k be natural numbers. Suppose 1 ¬ k and k + 1 ¬
len f and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
fk = G ◦ (i, j + 1) and fk+1 = G ◦ (i, j). Then (fk)1 6= W-bound L̃(f).

(23) Let f be a clockwise oriented non constant standard special circular
sequence, G be a Go-board, and k be a natural number. Suppose f is a
sequence which elements belong to G and 1 ¬ k and k + 1 ¬ len f and
fk = W-min L̃(f). Then there exist natural numbers i, j such that 〈〈i,
j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and fk = G ◦ (i, j)
and fk+1 = G ◦ (i, j + 1).

(24) Let f be a clockwise oriented non constant standard special circular
sequence, G be a Go-board, and k be a natural number. Suppose f is a
sequence which elements belong to G and 1 ¬ k and k + 1 ¬ len f and
fk = N-min L̃(f). Then there exist natural numbers i, j such that 〈〈i,
j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and fk = G ◦ (i, j)
and fk+1 = G ◦ (i + 1, j).

(25) Let f be a clockwise oriented non constant standard special circular
sequence, G be a Go-board, and k be a natural number. Suppose f is



26 adam naumowicz and robert milewski

a sequence which elements belong to G and 1 ¬ k and k + 1 ¬ len f

and fk = E-max L̃(f). Then there exist natural numbers i, j such that 〈〈i,
j+1〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and fk = G◦(i, j+1)
and fk+1 = G ◦ (i, j).

(26) Let f be a clockwise oriented non constant standard special circular
sequence, G be a Go-board, and k be a natural number. Suppose f is a
sequence which elements belong to G and 1 ¬ k and k + 1 ¬ len f and
fk = S-max L̃(f). Then there exist natural numbers i, j such that 〈〈i + 1,

j〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and fk = G ◦ (i + 1, j)
and fk+1 = G ◦ (i, j).

(27) Let f be a non constant standard special circular sequence. Then f is

clockwise oriented if and only if (fW-min eL(f)
ª )2 ∈W-most L̃(f).

(28) Let f be a non constant standard special circular sequence. Then f is

clockwise oriented if and only if (fE-max eL(f)
ª )2 ∈ E-most L̃(f).

(29) Let f be a non constant standard special circular sequence. Then f is

clockwise oriented if and only if (fS-max eL(f)
ª )2 ∈ S-most L̃(f).

(30) Let C be a compact non vertical non horizontal non empty subset of E2
T

satisfying conditions of simple closed curve and p be a point of E2
T. Suppose

p1 = W-bound C+E-bound C
2 and i > 0 and 1 ¬ k and k ¬ width Gauge(C, i)

and Gauge(C, i) ◦ (Center Gauge(C, i), k) ∈ UpperArc L̃(Cage(C, i)) and
p2 = sup(proj2◦(L(Gauge(C, 1) ◦ (Center Gauge(C, 1), 1), Gauge(C, i) ◦
(Center Gauge(C, i), k)) ∩ LowerArc L̃(Cage(C, i)))). Then there exists j

such that 1 ¬ j and j ¬ len Gauge(C, i) and p = Gauge(C, i) ◦
(Center Gauge(C, i), j).
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Summary. We present a Mizar formalization of the proof of Dickson’s
lemma following [6], chapters 4.2 and 4.3.
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The papers [19], [29], [1], [7], [13], [21], [12], [8], [9], [2], [20], [26], [27], [24], [17],
[18], [30], [32], [31], [28], [23], [4], [11], [5], [14], [22], [3], [15], [16], [25], and [10]
provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following two propositions:

(1) For every function g and for every set x such that dom g = {x} holds
g = x7−→. g(x).

(2) For every natural number n holds n ⊆ n + 1.

The scheme FinSegRng2 deals with natural numbers A, B, a unary functor
F yielding a set, and a unary predicate P, and states that:

{F(i); i ranges over natural numbers: A < i ∧ i ¬ B ∧ P[i]} is
finite

for all values of the parameters.
The following proposition is true

(3) For every infinite set X holds there exists a function from N into X

which is one-to-one.

Let R be a relational structure and let f be a sequence of R. We say that f

is ascending if and only if:
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(Def. 1) For every natural number n holds f(n+1) 6= f(n) and 〈〈f(n), f(n+1)〉〉 ∈
the internal relation of R.

Let R be a relational structure and let f be a sequence of R. We say that f

is weakly ascending if and only if:

(Def. 2) For every natural number n holds 〈〈f(n), f(n+1)〉〉 ∈ the internal relation
of R.

The following propositions are true:

(4) Let R be a non empty transitive relational structure and f be a sequence
of R. Suppose f is weakly ascending. Let i, j be natural numbers. If i < j,

then f(i) ¬ f(j).
(5) Let R be a non empty relational structure. Then R is connected if and

only if the internal relation of R is strongly connected in the carrier of R.

(6) Let R be a binary relation and X be a set. Then R is reflexive in X and
connected in X if and only if R is strongly connected in X.

(7) Let L be a relational structure, Y be a set, and a be an element of L.
Then (the internal relation of L)-Seg(a) misses Y and a ∈ Y if and only
if a is minimal w.r.t. Y , the internal relation of L.

(8) Let L be a non empty transitive antisymmetric relational structure, a, x

be elements of L, and N be a set. Suppose a is minimal w.r.t. (the internal
relation of L)-Seg(x) ∩ N, the internal relation of L. Then a is minimal
w.r.t. N , the internal relation of L.

2. More on Ordering Relations

Let R be a relational structure. We say that R is quasi ordered if and only
if:

(Def. 3) R is reflexive and transitive.

Let R be a relational structure. Let us assume that R is quasi ordered. The
functor EqRel(R) yielding an equivalence relation of the carrier of R is defined
as follows:

(Def. 4) EqRel(R) = (the internal relation of R) ∩ (the internal relation of R)`.

The following proposition is true

(9) Let R be a relational structure and x, y be elements of the carrier of R.
If R is quasi ordered, then x ∈ [y]EqRel(R) iff x ¬ y and y ¬ x.

Let R be a relational structure. The functor ¬ER yielding a binary relation
on Classes EqRel(R) is defined as follows:

(Def. 5) For all sets A, B holds 〈〈A, B〉〉 ∈ ¬ER iff there exist elements a, b of R

such that A = [a]EqRel(R) and B = [b]EqRel(R) and a ¬ b.

We now state two propositions:
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(10) For every relational structure R such that R is quasi ordered holds ¬ER

partially orders Classes EqRel(R).

(11) Let R be a non empty relational structure. If R is quasi ordered and
connected, then ¬ER linearly orders Classes EqRel(R).

Let R be a binary relation. The functor R\` yields a binary relation and is
defined by:

(Def. 6) R\` = R \R`.

Let R be a binary relation. Note that R\` is asymmetric.
Let X be a set and let R be a binary relation on X. Then R\` is a binary

relation on X.
Let R be a relational structure. The functor R\` yielding a strict relational

structure is defined as follows:

(Def. 7) R\` = 〈the carrier of R, the internal relation of R\`〉.
Let R be a non empty relational structure. One can check that R\` is non

empty.
Let R be a transitive relational structure. One can check that R\` is trans-

itive.
Let R be a relational structure. One can check that R\` is antisymmetric.
We now state several propositions:

(12) For every non empty poset R and for every element x of the carrier of
R holds [x]EqRel(R) = {x}.

(13) For every binary relation R holds R = R\` iff R is asymmetric.

(14) For every binary relation R such that R is transitive holds R\` is trans-
itive.

(15) Let R be a binary relation and a, b be sets. If R is antisymmetric, then
〈〈a, b〉〉 ∈ R\` iff 〈〈a, b〉〉 ∈ R and a 6= b.

(16) For every relational structure R such that R is well founded holds R\`
is well founded.

(17) For every relational structure R such that R\` is well founded and R is
antisymmetric holds R is well founded.

3. Foundedness Properties

The following two propositions are true:

(18) Let L be a relational structure, N be a set, and x be an element of L\`.
Then x is minimal w.r.t. N , the internal relation of L\` if and only if
x ∈ N and for every element y of L such that y ∈ N and 〈〈y, x〉〉 ∈ the
internal relation of L holds 〈〈x, y〉〉 ∈ the internal relation of L.
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(19) Let R, S be non empty relational structures and m be a map from R

into S. Suppose that
(i) R is quasi ordered,
(ii) S is antisymmetric,
(iii) S\` is well founded, and
(iv) for all elements a, b of R holds if a ¬ b, then m(a) ¬ m(b) and if

m(a) = m(b), then 〈〈a, b〉〉 ∈ EqRel(R).
Then R\` is well founded.

Let R be a non empty relational structure and let N be a subset of the
carrier of R. The functor MinClasses N yields a family of subsets of the carrier
of R and is defined by the condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ MinClasses N if and only if there exists an
element y of R\` such that y is minimal w.r.t. N , the internal relation of
R\` and x = [y]EqRel(R) ∩N.

Next we state several propositions:

(20) Let R be a non empty relational structure, N be a subset of the carrier
of R, and x be a set. Suppose R is quasi ordered and x ∈ MinClasses N.

Let y be an element of R\`. If y ∈ x, then y is minimal w.r.t. N , the
internal relation of R\`.

(21) Let R be a non empty relational structure. Then R\` is well founded if
and only if for every subset N of the carrier of R such that N 6= ∅ there
exists a set x such that x ∈ MinClasses N.

(22) Let R be a non empty relational structure, N be a subset of the carrier
of R, and y be an element of R\`. If y is minimal w.r.t. N , the internal
relation of R\`, then MinClasses N is non empty.

(23) Let R be a non empty relational structure, N be a subset of the carrier
of R, and x be a set. If R is quasi ordered and x ∈ MinClasses N, then x

is non empty.

(24) Let R be a non empty relational structure. Suppose R is quasi ordered.
Then R is connected and R\` is well founded if and only if for every non
empty subset N of the carrier of R holds MinClasses N = 1.

(25) Let R be a non empty poset. Then the following statements are equiva-
lent

(i) the internal relation of R well orders the carrier of R,

(ii) for every non empty subset N of the carrier of R holds MinClasses N =
1.

Let R be a relational structure, let N be a subset of the carrier of R, and
let B be a set. We say that B is Dickson basis of N , R if and only if:

(Def. 9) B ⊆ N and for every element a of R such that a ∈ N there exists an
element b of R such that b ∈ B and b ¬ a.
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The following two propositions are true:

(26) For every relational structure R holds ∅ is Dickson basis of ∅the carrier of R,
R.

(27) Let R be a non empty relational structure, N be a non empty subset of
the carrier of R, and B be a set. If B is Dickson basis of N , R, then B is
non empty.

Let R be a relational structure. We say that R is Dickson if and only if:

(Def. 10) For every subset N of the carrier of R holds there exists a set which is
Dickson basis of N , R and finite.

The following two propositions are true:

(28) For every non empty relational structure R such that R\` is well founded
and R is connected holds R is Dickson.

(29) Let R, S be relational structures. Suppose that
(i) the internal relation of R ⊆ the internal relation of S,
(ii) R is Dickson, and
(iii) the carrier of R = the carrier of S.

Then S is Dickson.

Let f be a function and let b be a set. Let us assume that dom f = N and
b ∈ rng f. The functor f mindex b yielding a natural number is defined by:

(Def. 11) f(f mindex b) = b and for every natural number i such that f(i) = b

holds f mindex b ¬ i.

Let R be a non empty 1-sorted structure, let f be a sequence of R, let b be
a set, and let m be a natural number. Let us assume that there exists a natural
number j such that m < j and f(j) = b. The functor f mindex(b,m) yielding a
natural number is defined as follows:

(Def. 12) f(f mindex(b,m)) = b and m < f mindex(b,m) and for every natural
number i such that m < i and f(i) = b holds f mindex(b,m) ¬ i.

Next we state several propositions:

(30) Let R be a non empty relational structure. Suppose R is quasi ordered
and Dickson. Let f be a sequence of R. Then there exist natural numbers
i, j such that i < j and f(i) ¬ f(j).

(31) Let R be a relational structure, N be a subset of the carrier of R, and
x be an element of R\`. Suppose R is quasi ordered and x ∈ N and (the
internal relation of R)-Seg(x) ∩N ⊆ [x]EqRel(R). Then x is minimal w.r.t.
N , the internal relation of R\`.

(32) Let R be a non empty relational structure. Suppose R is quasi ordered
and for every sequence f of R there exist natural numbers i, j such that
i < j and f(i) ¬ f(j). Let N be a non empty subset of the carrier of R.
Then MinClasses N is finite and MinClasses N is non empty.
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(33) Let R be a non empty relational structure. Suppose R is quasi ordered
and for every non empty subset N of the carrier of R holds MinClasses N

is finite and MinClasses N is non empty. Then R is Dickson.

(34) For every non empty relational structure R such that R is quasi ordered
and Dickson holds R\` is well founded.

(35) Let R be a non empty poset and N be a non empty subset of the carrier
of R. Suppose R is Dickson. Then there exists a set B such that B is
Dickson basis of N , R and for every set C such that C is Dickson basis of
N , R holds B ⊆ C.

Let R be a non empty relational structure and let N be a subset of the
carrier of R. Let us assume that R is Dickson. The functor Dickson-Bases(N,R)
yields a non empty family of subsets of the carrier of R and is defined as follows:

(Def. 13) For every set B holds B ∈ Dickson-Bases(N, R) iff B is Dickson basis of
N , R.

We now state several propositions:

(36) Let R be a non empty relational structure and s be a sequence of R. If
R is Dickson, then there exists a sequence of R which is a subsequence of
s and weakly ascending.

(37) For every relational structure R such that R is empty holds R is Dickson.

(38) Let M , N be relational structures. Suppose M is Dickson and N is
Dickson and M is quasi ordered and N is quasi ordered. Then [:M, N :] is
quasi ordered and [:M, N :] is Dickson.

(39) Let R, S be relational structures. Suppose R and S are isomorphic and
R is Dickson and quasi ordered. Then S is quasi ordered and Dickson.

(40) Let p be a relational structure yielding many sorted set indexed by 1
and z be an element of 1. Then p(z) and

∏
p are isomorphic.

Let X be a set, let p be a relational structure yielding many sorted set
indexed by X, and let Y be a subset of X. Note that p¹Y is relational structure
yielding.

Next we state three propositions:

(41) Let n be a non empty natural number and p be a relational structure
yielding many sorted set indexed by n. Then

∏
p is non empty if and only

if p is nonempty.

(42) Let n be a non empty natural number, p be a relational structure yielding
many sorted set indexed by n + 1, n1 be a subset of n + 1, and n2 be an
element of n + 1. If n1 = n and n2 = n, then [:

∏
(p¹n1), p(n2) :] and

∏
p

are isomorphic.

(43) Let n be a non empty natural number and p be a relational structure
yielding many sorted set indexed by n. Suppose that for every element
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i of n holds p(i) is Dickson and p(i) is quasi ordered. Then
∏

p is quasi
ordered and

∏
p is Dickson.

Let p be a relational structure yielding many sorted set indexed by ∅. One
can check the following observations:

∗ ∏
p is non empty,

∗ ∏
p is antisymmetric,

∗ ∏
p is quasi ordered, and

∗ ∏
p is Dickson.

The binary relation NATOrd on N is defined by:

(Def. 14) NATOrd = {〈〈x, y〉〉; x ranges over elements of N, y ranges over elements
of N: x ¬ y}.

We now state four propositions:

(44) NATOrd is reflexive in N.

(45) NATOrd is antisymmetric in N.

(46) NATOrd is strongly connected in N.

(47) NATOrd is transitive in N.

The non empty relational structure OrderedNAT is defined as follows:

(Def. 15) OrderedNAT = 〈N, NATOrd〉.
One can verify the following observations:

∗ OrderedNAT is connected,

∗ OrderedNAT is Dickson,

∗ OrderedNAT is quasi ordered,

∗ OrderedNAT is antisymmetric,

∗ OrderedNAT is transitive, and

∗ OrderedNAT is well founded.

Let n be a natural number. One can check the following observations:

∗ ∏
(n 7−→ OrderedNAT) is non empty,

∗ ∏
(n 7−→ OrderedNAT) is Dickson,

∗ ∏
(n 7−→ OrderedNAT) is quasi ordered, and

∗ ∏
(n 7−→ OrderedNAT) is antisymmetric.

We now state three propositions:

(48) Let M be a relational structure. Suppose M is Dickson and quasi orde-
red. Then [:M, OrderedNAT :] is quasi ordered and [:M, OrderedNAT :] is
Dickson.

(49) Let R, S be non empty relational structures. Suppose that
(i) R is Dickson and quasi ordered,
(ii) S is quasi ordered,
(iii) the internal relation of R ⊆ the internal relation of S, and
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(iv) the carrier of R = the carrier of S.
Then S\` is well founded.

(50) Let R be a non empty relational structure. Suppose R is quasi ordered.
Then R is Dickson if and only if for every non empty relational structure S

such that S is quasi ordered and the internal relation of R ⊆ the internal
relation of S and the carrier of R = the carrier of S holds S\` is well
founded.
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1. Preliminaries

The following propositions are true:

(1) For all sets x, y, z such that z ∈ x and z ∈ y holds x \ {z} = y \ {z} iff
x = y.

(2) For all natural numbers n, k holds k ∈ Seg n iff k−1 is a natural number
and k − 1 < n.

Let f be a natural-yielding function and let X be a set. One can verify that
f¹X is natural-yielding.

Let f be a finite-support function and let X be a set. One can check that
f¹X is finite-support.

Next we state three propositions:

(3) For every function f and for every set x such that x ∈ dom f holds
f · 〈x〉 = 〈f(x)〉.
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(4) Let f , g, h be functions. Suppose dom f = dom g and rng f ⊆ dom h

and rng g ⊆ dom h and f and g are fiberwise equipotent. Then h · f and
h · g are fiberwise equipotent.

(5) For every finite sequence f1 of elements of N holds
∑

f1 = 0 iff f1 =
len f1 7→ 0.

Let n, i, j be natural numbers and let b be a many sorted set indexed by
n. The functor 〈b(i), . . . , b(j)〉 yields a many sorted set indexed by j −′ i and is
defined by:

(Def. 1) For every natural number k such that k ∈ j−′i holds 〈b(i), . . . , b(j)〉(k) =
b(i + k).

Let n, i, j be natural numbers and let b be a natural-yielding many sorted
set indexed by n. One can verify that 〈b(i), . . . , b(j)〉 is natural-yielding.

Let n, i, j be natural numbers and let b be a finite-support many sorted set
indexed by n. Note that 〈b(i), . . . , b(j)〉 is finite-support.

One can prove the following proposition

(6) Let n, i be natural numbers and a, b be many sorted sets indexed by n.
Then a = b if and only if the following conditions are satisfied:

(i) 〈a(0), . . . , a(i + 1)〉 = 〈b(0), . . . , b(i + 1)〉, and
(ii) 〈a(i + 1), . . . , a(n)〉 = 〈b(i + 1), . . . , b(n)〉.
Let x be a non empty set and let n be a non empty natural number. The

functor Fin(x, n) is defined as follows:

(Def. 2) Fin(x, n) = {y; y ranges over elements of 2x: y is finite ∧ y is non
empty ∧ y ¬ n}.

Let x be a non empty set and let n be a non empty natural number. Observe
that Fin(x, n) is non empty.

One can prove the following propositions:

(7) Let R be an antisymmetric transitive non empty relational structure and
X be a finite subset of the carrier of R. Suppose X 6= ∅. Then there exists
an element x of R such that x ∈ X and x is maximal w.r.t. X, the internal
relation of R.

(8) Let R be an antisymmetric transitive non empty relational structure and
X be a finite subset of the carrier of R. Suppose X 6= ∅. Then there exists
an element x of R such that x ∈ X and x is minimal w.r.t. X, the internal
relation of R.

(9) Let R be a non empty antisymmetric transitive relational structure and
f be a sequence of R. Suppose f is descending. Let j, i be natural numbers.
If i < j, then f(i) 6= f(j) and 〈〈f(j), f(i)〉〉 ∈ the internal relation of R.

Let R be a non empty relational structure and let s be a sequence of R. We
say that s is non-increasing if and only if:
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(Def. 3) For every natural number i holds 〈〈s(i + 1), s(i)〉〉 ∈ the internal relation
of R.

We now state three propositions:

(10) Let R be a non empty transitive relational structure and f be a sequence
of R. Suppose f is non-increasing. Let j, i be natural numbers. If i < j,

then 〈〈f(j), f(i)〉〉 ∈ the internal relation of R.

(11) Let R be a non empty transitive relational structure and s be a sequence
of R. Suppose R is well founded and s is non-increasing. Then there exists
a natural number p such that for every natural number r if p ¬ r, then
s(p) = s(r).

(12) Let X be a set, a be an element of X, A be a finite subset of X, and R be
an order in X. If A = {a} and R linearly orders A, then SgmX(R,A) = 〈a〉.

2. More About Bags

Let n be an ordinal number and let b be a bag of n. The functor TotDegree b

yielding a natural number is defined by:

(Def. 4) There exists a finite sequence f of elements of N such that TotDegree b =∑
f and f = b · SgmX(⊆n, support b).

The following propositions are true:

(13) Let n be an ordinal number, b be a bag of n, s be a finite subset of n, and
f , g be finite sequences of elements of N. If f = b · SgmX(⊆n, support b)
and g = b · SgmX(⊆n, support b ∪ s), then

∑
f =

∑
g.

(14) For every ordinal number n and for all bags a, b of n holds TotDegree(a+
b) = TotDegree a + TotDegree b.

(15) For every ordinal number n and for all bags a, b of n such that b | a

holds TotDegree(a−′ b) = TotDegree a− TotDegree b.

(16) For every ordinal number n and for every bag b of n holds TotDegree b =
0 iff b = EmptyBag n.

(17) For all natural numbers i, j, n holds 〈(EmptyBag n)(i), . . . , (EmptyBag n)
(j)〉 = EmptyBag(j −′ i).

(18) For all natural numbers i, j, n and for all bags a, b of n holds 〈(a +
b)(i), . . . , (a + b)(j)〉 = 〈a(i), . . . , a(j)〉+ 〈b(i), . . . , b(j)〉.

(19) For every set X holds support EmptyBag X = ∅.
(20) For every set X and for every bag b of X such that support b = ∅ holds

b = EmptyBag X.

(21) For all ordinal numbers n, m and for every bag b of n such that m ∈ n

holds b¹m is a bag of m.
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(22) For every ordinal number n and for all bags a, b of n such that b | a

holds support b ⊆ support a.

3. Some Special Orders

Let n be an ordinal number and let o be an order in Bags n. We say that o is
admissible if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) o is strongly connected in Bags n,

(ii) for every bag a of n holds 〈〈EmptyBag n, a〉〉 ∈ o, and
(iii) for all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o.

Let n be an ordinal number. We introduce LexOrder n as a synonym of
BagOrder n.

One can prove the following propositions:

(23) For every ordinal number n holds LexOrder n is admissible.

(24) For every infinite ordinal number o holds LexOrder o is non well-ordering.

Let n be an ordinal number. The functor InvLexOrder n yields an order in
Bags n and is defined by the condition (Def. 6).

(Def. 6) Let p, q be bags of n. Then 〈〈p, q〉〉 ∈ InvLexOrder n if and only if one of
the following conditions is satisfied:

(i) p = q, or
(ii) there exists an ordinal number i such that i ∈ n and p(i) < q(i) and

for every ordinal number k such that i ∈ k and k ∈ n holds p(k) = q(k).
The following propositions are true:

(25) For every ordinal number n holds InvLexOrder n is admissible.

(26) For every ordinal number o holds InvLexOrder o is well-ordering.

Let n be an ordinal number and let o be an order in Bags n. Let us assume
that for all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o. The
functor Graded o yields an order in Bags n and is defined by:

(Def. 7) For all bags a, b of n holds 〈〈a, b〉〉 ∈ Graded o iff TotDegree a <

TotDegree b or TotDegree a = TotDegree b and 〈〈a, b〉〉 ∈ o.

The following proposition is true

(27) Let n be an ordinal number and o be an order in Bags n. Suppose for
all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o and o is
strongly connected in Bags n. Then Graded o is admissible.

Let n be an ordinal number. The functor GrLexOrder n yielding an order in
Bags n is defined as follows:

(Def. 8) GrLexOrder n = Graded LexOrder n.

The functor GrInvLexOrder n yielding an order in Bags n is defined by:

(Def. 9) GrInvLexOrder n = Graded InvLexOrder n.
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Next we state four propositions:

(28) For every ordinal number n holds GrLexOrder n is admissible.

(29) For every infinite ordinal number o holds GrLexOrder o is non well-
ordering.

(30) For every ordinal number n holds GrInvLexOrder n is admissible.

(31) For every ordinal number o holds GrInvLexOrder o is well-ordering.

Let i, n be natural numbers, let o1 be an order in Bags(i + 1), and let o2 be
an order in Bags(n −′ (i + 1)). The functor BlockOrder(i, n, o1, o2) yielding an
order in Bags n is defined by the condition (Def. 10).

(Def. 10) Let p, q be bags of n. Then 〈〈p, q〉〉 ∈ BlockOrder(i, n, o1, o2) if and only
if one of the following conditions is satisfied:

(i) 〈p(0), . . . , p(i + 1)〉 6= 〈q(0), . . . , q(i + 1)〉 and 〈〈〈p(0), . . . , p(i + 1)〉,
〈q(0), . . . , q(i + 1)〉〉〉 ∈ o1, or

(ii) 〈p(0), . . . , p(i+1)〉 = 〈q(0), . . . , q(i+1)〉 and 〈〈〈p(i+1), . . . , p(n)〉, 〈q(i+
1), . . . , q(n)〉〉〉 ∈ o2.

The following proposition is true

(32) Let i, n be natural numbers, o1 be an order in Bags(i+1), and o2 be an
order in Bags(n −′ (i + 1)). If o1 is admissible and o2 is admissible, then
BlockOrder(i, n, o1, o2) is admissible.

Let n be a natural number. The functor NaivelyOrderedBags n yielding a
strict relational structure is defined by the conditions (Def. 11).

(Def. 11)(i) The carrier of NaivelyOrderedBags n = Bags n, and
(ii) for all bags x, y of n holds 〈〈x, y〉〉 ∈ the internal relation of

NaivelyOrderedBags n iff x | y.

The following propositions are true:

(33) For every natural number n holds the carrier of
∏

(n 7−→
OrderedNAT) = Bags n.

(34) For every natural number n holds NaivelyOrderedBags n =
∏

(n 7−→
OrderedNAT).

(35) Let n be a natural number and o be an order in Bags n. Suppose o is
admissible. Then the internal relation of NaivelyOrderedBags n ⊆ o and o

is well-ordering.

4. Ordering of Finite Subsets

Let R be a connected non empty poset and let X be an element of Fin (the
carrier of R). Let us assume that X is non empty. The functor PosetMin X

yielding an element of R is defined as follows:
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(Def. 12) PosetMin X ∈ X and PosetMin X is minimal w.r.t. X, the internal re-
lation of R.

The functor PosetMax X yields an element of R and is defined as follows:

(Def. 13) PosetMax X ∈ X and PosetMax X is maximal w.r.t. X, the internal
relation of R.

Let R be a connected non empty poset. The functor FinOrd-Approx R yiel-
ding a function from N into 2[: Fin (the carrier of R), Fin (the carrier of R) :] is defined by
the conditions (Def. 14).

(Def. 14)(i) dom FinOrd-Approx R = N,

(ii) (FinOrd-Approx R)(0) = {〈〈x, y〉〉; x ranges over elements of Fin (the
carrier of R), y ranges over elements of Fin (the carrier of R): x = ∅ ∨ x 6=
∅ ∧ y 6= ∅ ∧ PosetMax x 6= PosetMax y ∧ 〈〈PosetMax x, PosetMax y〉〉 ∈ the
internal relation of R}, and

(iii) for every element n of N holds (FinOrd-Approx R)(n + 1) = {〈〈x, y〉〉;x
ranges over elements of Fin (the carrier of R), y ranges over elements of
Fin (the carrier of R): x 6= ∅ ∧ y 6= ∅ ∧ PosetMax x = PosetMax y ∧
〈〈x \ {PosetMax x}, y \ {PosetMax y}〉〉 ∈ (FinOrd-Approx R)(n)}.

One can prove the following propositions:

(36) Let R be a connected non empty poset and x, y be elements of Fin (the
carrier of R). Then 〈〈x, y〉〉 ∈ ⋃

rng FinOrd-Approx R if and only if one of
the following conditions is satisfied:

(i) x = ∅, or
(ii) x 6= ∅ and y 6= ∅ and PosetMax x 6= PosetMax y and 〈〈PosetMax x,

PosetMax y〉〉 ∈ the internal relation of R, or
(iii) x 6= ∅ and y 6= ∅ and PosetMax x = PosetMax y and 〈〈x\{PosetMax x},

y \ {PosetMax y}〉〉 ∈ ⋃
rng FinOrd-Approx R.

(37) For every connected non empty poset R and for every element
x of Fin (the carrier of R) such that x 6= ∅ holds 〈〈x, ∅〉〉 /∈⋃

rng FinOrd-Approx R.

(38) Let R be a connected non empty poset and a be an element of Fin (the
carrier of R). Then a \ {PosetMax a} is an element of Fin (the carrier of
R).

(39) For every connected non empty poset R holds
⋃

rng FinOrd-Approx R

is an order in Fin (the carrier of R).

Let R be a connected non empty poset. The functor FinOrd R yields an
order in Fin (the carrier of R) and is defined as follows:

(Def. 15) FinOrd R =
⋃

rng FinOrd-Approx R.

Let R be a connected non empty poset. The functor FinPoset R yields a
poset and is defined by:

(Def. 16) FinPoset R = 〈Fin (the carrier of R), FinOrd R〉.
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Let R be a connected non empty poset. One can check that FinPoset R is
non empty.

The following proposition is true

(40) Let R be a connected non empty poset and a, b be elements of
FinPoset R. Then 〈〈a, b〉〉 ∈ the internal relation of FinPoset R if and only
if there exist elements x, y of Fin (the carrier of R) such that a = x but
b = y but x = ∅ or x 6= ∅ and y 6= ∅ and PosetMax x 6= PosetMax y

and 〈〈PosetMax x, PosetMax y〉〉 ∈ the internal relation of R or x 6= ∅
and y 6= ∅ and PosetMax x = PosetMax y and 〈〈x \ {PosetMax x},
y \ {PosetMax y}〉〉 ∈ FinOrd R.

Let R be a connected non empty poset. One can verify that FinPoset R is
connected.

Let R be a connected non empty relational structure and let C be a non
empty set. Let us assume that R is well founded and C ⊆ the carrier of R. The
functor MinElement(C, R) yields an element of R and is defined by:

(Def. 17) MinElement(C,R) ∈ C and MinElement(C, R) is minimal w.r.t. C, the
internal relation of R.

Let R be a non empty relational structure, let s be a sequence of R, and let
j be a natural number. The functor SeqShift(s, j) yields a sequence of R and is
defined by:

(Def. 18) For every natural number i holds (SeqShift(s, j))(i) = s(i + j).
One can prove the following propositions:

(41) Let R be a non empty relational structure, s be a sequence of R, and j

be a natural number. If s is descending, then SeqShift(s, j) is descending.

(42) For every connected non empty poset R such that R is well founded
holds FinPoset R is well founded.
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1. One Gate Circuits

Let n be a natural number, let f be a function from Booleann into Boolean,
and let p be a finite sequence with length n. One can verify that 1GateCircuit(p, f)
is Boolean.

The following four propositions are true:

(1) Let X be a finite non empty set, n be a natural number, p be a finite
sequence with length n, f be a function from Xn into X, o be an operation
symbol of 1GateCircStr(p, f), and s be a state of 1GateCircuit(p, f). Then
o depends-on-in s = s · p.

(2) Let X be a finite non empty set, n be a natural number, p be a finite
sequence with length n, f be a function from Xn into X, and s be a state
of 1GateCircuit(p, f). Then Following(s) is stable.

(3) Let S be a non void circuit-like non empty many sorted signature, A be
a non-empty circuit of S, and s be a state of A. If s is stable, then for
every natural number n holds Following(s, n) = s.

(4) Let S be a non void circuit-like non empty many sorted signature, A

be a non-empty circuit of S, s be a state of A, and n1, n2 be natural
numbers. If Following(s, n1) is stable and n1 ¬ n2, then Following(s, n2) =
Following(s, n1).

2. Defining Multi Cell Circuit Structures

In this article we present several logical schemes. The scheme CIRCCMB2’sch
1 deals with a non empty many sorted signature A, a set B, a ternary functor
F yielding a non empty many sorted signature, and a binary functor G yielding
a set, and states that:

There exist many sorted sets f , h indexed by N such that
(i) f(0) = A,

(ii) h(0) = B, and
(iii) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and h(n + 1) = G(x, n)

for all values of the parameters.
The scheme CIRCCMB2’sch 2 deals with a ternary functor F yielding a non

empty many sorted signature, a binary functor G yielding a set, many sorted
sets A, B indexed by N, and a ternary predicate P, and states that:

For every natural number n there exists a non empty many sorted
signature S such that S = A(n) and P[S,B(n), n]

provided the parameters meet the following requirements:
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• There exists a non empty many sorted signature S and there
exists a set x such that S = A(0) and x = B(0) and P[S, x, 0],

• Let n be a natural number, S be a non empty many sorted
signature, and x be a set. If S = A(n) and x = B(n), then
A(n + 1) = F(S, x, n) and B(n + 1) = G(x, n), and

• Let n be a natural number, S be a non empty many sorted signa-
ture, and x be a set. If S = A(n) and x = B(n) and P[S, x, n],
then P[F(S, x, n),G(x, n), n + 1].

The scheme CIRCCMB2’sch 3 deals with a non empty many sorted signature
A, a ternary functor F yielding a non empty many sorted signature, a binary
functor G yielding a set, and many sorted sets B, C indexed by N, and states
that:

For every natural number n and for every set x such that x = C(n)
holds C(n + 1) = G(x, n)

provided the following requirements are met:
• B(0) = A, and
• Let n be a natural number, S be a non empty many sorted

signature, and x be a set. If S = B(n) and x = C(n), then
B(n + 1) = F(S, x, n) and C(n + 1) = G(x, n).

The scheme CIRCCMB2’sch 4 deals with a non empty many sorted signature
A, a set B, a ternary functor F yielding a non empty many sorted signature, a
binary functor G yielding a set, and a natural number C, and states that:

There exists a non empty many sorted signature S and there exist
many sorted sets f , h indexed by N such that
(i) S = f(C),
(ii) f(0) = A,

(iii) h(0) = B, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and h(n + 1) = G(x, n)

for all values of the parameters.
The scheme CIRCCMB2’sch 5 deals with a non empty many sorted signature

A, a set B, a ternary functor F yielding a non empty many sorted signature, a
binary functor G yielding a set, and a natural number C, and states that:

Let S1, S2 be non empty many sorted signatures. Suppose that
(i) there exist many sorted sets f , h indexed by N such that

S1 = f(C) and f(0) = A and h(0) = B and for every natural
number n and for every non empty many sorted signature S and
for every set x such that S = f(n) and x = h(n) holds f(n+1) =
F(S, x, n) and h(n + 1) = G(x, n), and
(ii) there exist many sorted sets f , h indexed by N such that
S2 = f(C) and f(0) = A and h(0) = B and for every natural
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number n and for every non empty many sorted signature S and
for every set x such that S = f(n) and x = h(n) holds f(n+1) =
F(S, x, n) and h(n + 1) = G(x, n).

Then S1 = S2

for all values of the parameters.
The scheme CIRCCMB2’sch 6 deals with a non empty many sorted signature

A, a set B, a ternary functor F yielding a non empty many sorted signature, a
binary functor G yielding a set, and a natural number C, and states that:

(i) There exists a non empty many sorted signature S and
there exist many sorted sets f , h indexed by N such that S = f(C)
and f(0) = A and h(0) = B and for every natural number n and
for every non empty many sorted signature S and for every set x

such that S = f(n) and x = h(n) holds f(n+1) = F(S, x, n) and
h(n + 1) = G(x, n), and
(ii) for all non empty many sorted signatures S1, S2 such that
there exist many sorted sets f , h indexed by N such that S1 = f(C)
and f(0) = A and h(0) = B and for every natural number n and
for every non empty many sorted signature S and for every set x

such that S = f(n) and x = h(n) holds f(n+1) = F(S, x, n) and
h(n + 1) = G(x, n) and there exist many sorted sets f , h indexed
by N such that S2 = f(C) and f(0) = A and h(0) = B and for
every natural number n and for every non empty many sorted
signature S and for every set x such that S = f(n) and x = h(n)
holds f(n + 1) = F(S, x, n) and h(n + 1) = G(x, n) holds S1 = S2

for all values of the parameters.
The scheme CIRCCMB2’sch 7 deals with a non empty many sorted signature

A, a ternary functor F yielding a non empty many sorted signature, a set B, a
binary functor G yielding a set, and a natural number C, and states that:

There exists an unsplit non void non empty non empty strict
many sorted signature S with arity held in gates and Boolean
denotation held in gates and there exist many sorted sets f , h

indexed by N such that
(i) S = f(C),
(ii) f(0) = A,

(iii) h(0) = B, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and h(n + 1) = G(x, n)

provided the parameters meet the following requirements:
• A is unsplit, non void, non empty, and strict and has arity held

in gates and Boolean denotation held in gates, and
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• Let S be an unsplit non void strict non empty many sorted si-
gnature with arity held in gates and Boolean denotation held in
gates, x be a set, and n be a natural number. Then F(S, x, n)
is unsplit, non void, non empty, and strict and has arity held in
gates and Boolean denotation held in gates.

The scheme CIRCCMB2’sch 8 deals with a non empty many sorted signature
A, a binary functor F yielding an unsplit non void non empty many sorted
signature with arity held in gates and Boolean denotation held in gates, a set
B, a binary functor G yielding a set, and a natural number C, and states that:

There exists an unsplit non void non empty non empty strict
many sorted signature S with arity held in gates and Boolean
denotation held in gates and there exist many sorted sets f , h

indexed by N such that
(i) S = f(C),
(ii) f(0) = A,

(iii) h(0) = B, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = S+·F(x, n) and h(n + 1) = G(x, n)

provided the parameters meet the following requirement:
• A is unsplit, non void, non empty, and strict and has arity held

in gates and Boolean denotation held in gates.
The scheme CIRCCMB2’sch 9 deals with a non empty many sorted signature

A, a set B, a ternary functor F yielding a non empty many sorted signature, a
binary functor G yielding a set, and a natural number C, and states that:

Let S1, S2 be unsplit non void non empty strict non empty many
sorted signatures with arity held in gates and Boolean denotation
held in gates. Suppose that
(i) there exist many sorted sets f , h indexed by N such that

S1 = f(C) and f(0) = A and h(0) = B and for every natural
number n and for every non empty many sorted signature S and
for every set x such that S = f(n) and x = h(n) holds f(n+1) =
F(S, x, n) and h(n + 1) = G(x, n), and
(ii) there exist many sorted sets f , h indexed by N such that
S2 = f(C) and f(0) = A and h(0) = B and for every natural
number n and for every non empty many sorted signature S and
for every set x such that S = f(n) and x = h(n) holds f(n+1) =
F(S, x, n) and h(n + 1) = G(x, n).

Then S1 = S2

for all values of the parameters.
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3. Input of Multi Cell Circuit

We now state several propositions:

(5) For all functions f , g such that f ≈ g holds rng(f+·g) = rng f ∪ rng g.

(6) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

holds InputVertices(S1+·S2) = (InputVertices(S1) \ InnerVertices(S2)) ∪
(InputVertices(S2) \ InnerVertices(S1)).

(7) For every set X with no pairs and for every binary relation Y holds
X \ Y = X.

(8) For every binary relation X and for all sets Y , Z such that Z ⊆ Y and
Y \ Z has no pairs holds X \ Y = X \ Z.

(9) For all sets X, Z and for every binary relation Y such that Z ⊆ Y and
X \ Z has no pairs holds X \ Y = X \ Z.

Now we present two schemes. The scheme CIRCCMB2’sch 10 deals with an
unsplit non void non empty many sorted signature A with arity held in gates
and Boolean denotation held in gates, a unary functor F yielding a set, a many
sorted set B indexed by N, a binary functor G yielding an unsplit non void non
empty many sorted signature with arity held in gates and Boolean denotation
held in gates, and a binary functor H yielding a set, and states that:

Let n be a natural number. Then there exist unsplit non void
non empty many sorted signatures S1, S2 with arity held in ga-
tes and Boolean denotation held in gates such that S1 = F(n)
and S2 = F(n + 1) and InputVertices(S2) = InputVertices(S1) ∪
(InputVertices(G(B(n), n)) \ {B(n)}) and InnerVertices(S1) is a
binary relation and InputVertices(S1) has no pairs

provided the following requirements are met:
• InnerVertices(A) is a binary relation,
• InputVertices(A) has no pairs,
• F(0) = A and B(0) ∈ InnerVertices(A),
• For every natural number n and for every set x holds InnerVertices(G(x, n))

is a binary relation,
• For every natural number n and for every set x such that x = B(n)

holds InputVertices(G(x, n)) \ {x} has no pairs, and
• Let n be a natural number, S be a non empty many sorted si-

gnature, and x be a set. Suppose S = F(n) and x = B(n).
Then F(n + 1) = S+·G(x, n) and B(n + 1) = H(x, n) and x ∈
InputVertices(G(x, n)) and H(x, n) ∈ InnerVertices(G(x, n)).

The scheme CIRCCMB2’sch 11 deals with a unary functor F yielding an
unsplit non void non empty many sorted signature with arity held in gates and
Boolean denotation held in gates, a many sorted set A indexed by N, a binary
functor G yielding an unsplit non void non empty many sorted signature with
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arity held in gates and Boolean denotation held in gates, and a binary functor
H yielding a set, and states that:

For every natural number n holds InputVertices(F(n + 1)) =
InputVertices(F(n)) ∪ (InputVertices(G(A(n), n)) \ {A(n)}) and
InnerVertices(F(n)) is a binary relation and InputVertices(F(n))
has no pairs

provided the parameters meet the following requirements:
• InnerVertices(F(0)) is a binary relation,
• InputVertices(F(0)) has no pairs,
• A(0) ∈ InnerVertices(F(0)),
• For every natural number n and for every set x holds InnerVertices(G(x, n))

is a binary relation,
• For every natural number n and for every set x such that x = A(n)

holds InputVertices(G(x, n)) \ {x} has no pairs, and
• Let n be a natural number, S be a non empty many sorted si-

gnature, and x be a set. Suppose S = F(n) and x = A(n).
Then F(n + 1) = S+·G(x, n) and A(n + 1) = H(x, n) and x ∈
InputVertices(G(x, n)) and H(x, n) ∈ InnerVertices(G(x, n)).

4. Defining Multi Cell Circuits

Now we present several schemes. The scheme CIRCCMB2’sch 12 deals with
a non empty many sorted signature A, a non-empty algebra B over A, a set C, a
ternary functor F yielding a non empty many sorted signature, a 4-ary functor
G yielding a set, and a binary functor H yielding a set, and states that:

There exist many sorted sets f , g, h indexed by N such that
(i) f(0) = A,

(ii) g(0) = B,

(iii) h(0) = C, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A over S and
for every set x such that S = f(n) and A = g(n) and x = h(n)
holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S, A, x, n) and
h(n + 1) = H(x, n)

for all values of the parameters.
The scheme CIRCCMB2’sch 13 deals with a ternary functor F yielding a

non empty many sorted signature, a 4-ary functor G yielding a set, a binary
functor H yielding a set, many sorted sets A, B, C indexed by N, and a 4-ary
predicate P, and states that:

Let n be a natural number. Then there exists a non empty many
sorted signature S and there exists a non-empty algebra A over
S such that S = A(n) and A = B(n) and P[S,A, C(n), n]
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provided the following conditions are satisfied:
• There exists a non empty many sorted signature S and there

exists a non-empty algebra A over S and there exists a set x such
that S = A(0) and A = B(0) and x = C(0) and P[S, A, x, 0],

• Let n be a natural number, S be a non empty many sorted si-
gnature, A be a non-empty algebra over S, and x be a set. Sup-
pose S = A(n) and A = B(n) and x = C(n). Then A(n + 1) =
F(S, x, n) and B(n + 1) = G(S,A, x, n) and C(n + 1) = H(x, n),

• Let n be a natural number, S be a non empty many sorted si-
gnature, A be a non-empty algebra over S, and x be a set. If
S = A(n) and A = B(n) and x = C(n) and P[S, A, x, n], then
P[F(S, x, n),G(S,A, x, n),H(x, n), n + 1], and

• Let S be a non empty many sorted signature, A be a non-empty
algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 14 deals with a ternary functor F yielding a
non empty many sorted signature, a 4-ary functor G yielding a set, a binary
functor H yielding a set, and many sorted sets A, B, C, D, E , F indexed by N,
and states that:

A = B and C = D and E = F
provided the parameters meet the following conditions:
• There exists a non empty many sorted signature S and there exists

a non-empty algebra A over S such that S = A(0) and A = C(0),
• A(0) = B(0) and C(0) = D(0) and E(0) = F(0),
• Let n be a natural number, S be a non empty many sorted signa-

ture, A be a non-empty algebra over S, and x be a set. Suppose
S = A(n) and A = C(n) and x = E(n). ThenA(n+1) = F(S, x, n)
and C(n + 1) = G(S,A, x, n) and E(n + 1) = H(x, n),

• Let n be a natural number, S be a non empty many sorted si-
gnature, A be a non-empty algebra over S, and x be a set. Sup-
pose S = B(n) and A = D(n) and x = F(n). Then B(n + 1) =
F(S, x, n) and D(n + 1) = G(S,A, x, n) and F(n + 1) = H(x, n),
and

• Let S be a non empty many sorted signature, A be a non-empty
algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 15 deals with a non empty many sorted si-
gnature A, a non-empty algebra B over A, a ternary functor F yielding a non
empty many sorted signature, a 4-ary functor G yielding a set, a binary functor
H yielding a set, and many sorted sets C, D, E indexed by N, and states that:

Let n be a natural number, S be a non empty many sorted
signature, and x be a set. If S = C(n) and x = E(n), then
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C(n + 1) = F(S, x, n) and E(n + 1) = H(x, n)
provided the parameters meet the following conditions:
• C(0) = A and D(0) = B,

• Let n be a natural number, S be a non empty many sorted signa-
ture, A be a non-empty algebra over S, and x be a set. Suppose
S = C(n) and A = D(n) and x = E(n). Then C(n+1) = F(S, x, n)
and D(n + 1) = G(S, A, x, n) and E(n + 1) = H(x, n), and

• Let S be a non empty many sorted signature, A be a non-empty
algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 16 deals with a non empty many sorted signa-
ture A, a non-empty algebra B over A, a set C, a ternary functor F yielding
a non empty many sorted signature, a 4-ary functor G yielding a set, a binary
functor H yielding a set, and a natural number D, and states that:

There exists a non empty many sorted signature S and there
exists a non-empty algebra A over S and there exist many sorted
sets f , g, h indexed by N such that
(i) S = f(D),
(ii) A = g(D),
(iii) f(0) = A,

(iv) g(0) = B,

(v) h(0) = C, and
(vi) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A over S and
for every set x such that S = f(n) and A = g(n) and x = h(n)
holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S, A, x, n) and
h(n + 1) = H(x, n)

provided the following condition is satisfied:
• Let S be a non empty many sorted signature, A be a non-empty

algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 17 deals with non empty many sorted signatu-
res A, B, a non-empty algebra C over A, a set D, a ternary functor F yielding
a non empty many sorted signature, a 4-ary functor G yielding a set, a binary
functor H yielding a set, and a natural number E , and states that:

There exists a non-empty algebra A over B and there exist many
sorted sets f , g, h indexed by N such that
(i) B = f(E),
(ii) A = g(E),
(iii) f(0) = A,

(iv) g(0) = C,
(v) h(0) = D, and
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(vi) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A over S and
for every set x such that S = f(n) and A = g(n) and x = h(n)
holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S, A, x, n) and
h(n + 1) = H(x, n)

provided the parameters meet the following requirements:
• There exist many sorted sets f , h indexed by N such that

(i) B = f(E),
(ii) f(0) = A,

(iii) h(0) = D, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and h(n + 1) = H(x, n),

and
• Let S be a non empty many sorted signature, A be a non-empty

algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 18 deals with non empty many sorted signatu-
res A, B, a non-empty algebra C over A, a set D, a ternary functor F yielding
a non empty many sorted signature, a 4-ary functor G yielding a set, a binary
functor H yielding a set, and a natural number E , and states that:

Let A1, A2 be non-empty algebras over B. Suppose that
(i) there exist many sorted sets f , g, h indexed by N such

that B = f(E) and A1 = g(E) and f(0) = A and g(0) = C and
h(0) = D and for every natural number n and for every non empty
many sorted signature S and for every non-empty algebra A over
S and for every set x such that S = f(n) and A = g(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S,A, x, n)
and h(n + 1) = H(x, n), and
(ii) there exist many sorted sets f , g, h indexed by N such
that B = f(E) and A2 = g(E) and f(0) = A and g(0) = C and
h(0) = D and for every natural number n and for every non empty
many sorted signature S and for every non-empty algebra A over
S and for every set x such that S = f(n) and A = g(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S,A, x, n)
and h(n + 1) = H(x, n).

Then A1 = A2

provided the parameters meet the following condition:
• Let S be a non empty many sorted signature, A be a non-empty

algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

The scheme CIRCCMB2’sch 19 deals with unsplit non void strict non empty
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many sorted signatures A, B with arity held in gates and Boolean denotation
held in gates, a Boolean strict circuit C of A with denotation held in gates, a
ternary functor F yielding a non empty many sorted signature, a 4-ary functor
G yielding a set, a set D, a binary functorH yielding a set, and a natural number
E , and states that:

There exists a Boolean strict circuit A of B with denotation held
in gates and there exist many sorted sets f , g, h indexed by N
such that
(i) B = f(E),
(ii) A = g(E),
(iii) f(0) = A,

(iv) g(0) = C,
(v) h(0) = D, and
(vi) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A over S and
for every set x such that S = f(n) and A = g(n) and x = h(n)
holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S, A, x, n) and
h(n + 1) = H(x, n)

provided the following conditions are satisfied:
• Let S be an unsplit non void strict non empty many sorted si-

gnature with arity held in gates and Boolean denotation held in
gates, x be a set, and n be a natural number. Then F(S, x, n)
is unsplit, non void, and strict and has arity held in gates and
Boolean denotation held in gates,

• There exist many sorted sets f , h indexed by N such that
(i) B = f(E),
(ii) f(0) = A,

(iii) h(0) = D, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and h(n + 1) = H(x, n),

• Let S be a non empty many sorted signature, A be a non-empty
algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n), and

• Let S, S1 be unsplit non void strict non empty many sorted si-
gnatures with arity held in gates and Boolean denotation held
in gates, A be a Boolean strict circuit of S with denotation held
in gates, x be a set, and n be a natural number. Suppose S1 =
F(S, x, n). Then G(S,A, x, n) is a Boolean strict circuit of S1 with
denotation held in gates.

Let S be a non empty many sorted signature and let A be a set. Let us
assume that A is a non-empty algebra over S. The functor MSAlg(A,S) yielding
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a non-empty algebra over S is defined as follows:

(Def. 1) MSAlg(A,S) = A.

Now we present two schemes. The scheme CIRCCMB2’sch 20 deals with
unsplit non void strict non empty many sorted signatures A, B with arity held
in gates and Boolean denotation held in gates, a Boolean strict circuit C of
A with denotation held in gates, a binary functor F yielding an unsplit non
void non empty many sorted signature with arity held in gates and Boolean
denotation held in gates, a binary functor G yielding a set, a set D, a binary
functor H yielding a set, and a natural number E , and states that:

There exists a Boolean strict circuit A of B with denotation held
in gates and there exist many sorted sets f , g, h indexed by N
such that
(i) B = f(E),
(ii) A = g(E),
(iii) f(0) = A,

(iv) g(0) = C,
(v) h(0) = D, and
(vi) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A1 over S

and for every set x and for every non-empty algebra A2 over
F(x, n) such that S = f(n) and A1 = g(n) and x = h(n) and
A2 = G(x, n) holds f(n+1) = S+·F(x, n) and g(n+1) = A1+·A2

and h(n + 1) = H(x, n)
provided the parameters meet the following requirements:
• There exist many sorted sets f , h indexed by N such that

(i) B = f(E),
(ii) f(0) = A,

(iii) h(0) = D, and
(iv) for every natural number n and for every non empty many
sorted signature S and for every set x such that S = f(n) and
x = h(n) holds f(n + 1) = S+·F(x, n) and h(n + 1) = H(x, n),

and
• Let x be a set and n be a natural number. Then G(x, n) is a

Boolean strict circuit of F(x, n) with denotation held in gates.
The scheme CIRCCMB2’sch 21 deals with a non empty many sorted signa-

ture A, an unsplit non void strict non empty many sorted signature B with arity
held in gates and Boolean denotation held in gates, a non-empty algebra C over
A, a set D, a ternary functor F yielding a non empty many sorted signature, a
4-ary functor G yielding a set, a binary functor H yielding a set, and a natural
number E , and states that:
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Let A1, A2 be Boolean strict circuits of B with denotation held
in gates. Suppose that
(i) there exist many sorted sets f , g, h indexed by N such

that B = f(E) and A1 = g(E) and f(0) = A and g(0) = C and
h(0) = D and for every natural number n and for every non empty
many sorted signature S and for every non-empty algebra A over
S and for every set x such that S = f(n) and A = g(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S,A, x, n)
and h(n + 1) = H(x, n), and
(ii) there exist many sorted sets f , g, h indexed by N such
that B = f(E) and A2 = g(E) and f(0) = A and g(0) = C and
h(0) = D and for every natural number n and for every non empty
many sorted signature S and for every non-empty algebra A over
S and for every set x such that S = f(n) and A = g(n) and
x = h(n) holds f(n + 1) = F(S, x, n) and g(n + 1) = G(S,A, x, n)
and h(n + 1) = H(x, n).

Then A1 = A2

provided the parameters have the following property:
• Let S be a non empty many sorted signature, A be a non-empty

algebra over S, x be a set, and n be a natural number. Then
G(S,A, x, n) is a non-empty algebra over F(S, x, n).

5. Stability of Multi Cell Circuit

One can prove the following propositions:

(10) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InnerVertices(S1) misses InputVertices(S2) and S = S1+·S2. Let
C1 be a non-empty circuit of S1, C2 be a non-empty circuit of S2, and C

be a non-empty circuit of S. Suppose C1 ≈ C2 and C = C1+·C2. Let s2

be a state of C2 and s be a state of C. If s2 = s¹the carrier of S2, then
Following(s2) = Following(s)¹the carrier of S2.

(11) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
C1 be a non-empty circuit of S1, C2 be a non-empty circuit of S2, and C

be a non-empty circuit of S. Suppose C1 ≈ C2 and C = C1+·C2. Let s1

be a state of C1 and s be a state of C. If s1 = s¹the carrier of S1, then
Following(s1) = Following(s)¹the carrier of S1.

(12) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S1 ≈ S2 and InnerVertices(S1) misses InputVertices(S2) and S =
S1+·S2. Let C1 be a non-empty circuit of S1, C2 be a non-empty circuit of
S2, and C be a non-empty circuit of S. Suppose C1 ≈ C2 and C = C1+·C2.
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Let s1 be a state of C1, s2 be a state of C2, and s be a state of C. Suppose
s1 = s¹the carrier of S1 and s2 = s¹the carrier of S2 and s1 is stable and
s2 is stable. Then s is stable.

(13) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S1 ≈ S2 and InputVertices(S1) misses InnerVertices(S2) and S =
S1+·S2. Let C1 be a non-empty circuit of S1, C2 be a non-empty circuit of
S2, and C be a non-empty circuit of S. Suppose C1 ≈ C2 and C = C1+·C2.

Let s1 be a state of C1, s2 be a state of C2, and s be a state of C. Suppose
s1 = s¹the carrier of S1 and s2 = s¹the carrier of S2 and s1 is stable and
s2 is stable. Then s is stable.

(14) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and
A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let
s be a state of A and s1 be a state of A1. Suppose s1 = s¹the carrier
of S1. Let n be a natural number. Then Following(s, n)¹the carrier of
S1 = Following(s1, n).

(15) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S2) misses InnerVertices(S1) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and
A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let
s be a state of A and s2 be a state of A2. Suppose s2 = s¹the carrier
of S2. Let n be a natural number. Then Following(s, n)¹the carrier of
S2 = Following(s2, n).

(16) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A

be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1

and s1 is stable. Let s2 be a state of A2. If s2 = s¹the carrier of S2, then
Following(s)¹the carrier of S2 = Following(s2).

(17) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1+·S2. Let A1 be a non-empty circuit of S1, A2 be a non-
empty circuit of S2, and A be a non-empty circuit of S. Suppose A1 ≈ A2

and A = A1+·A2. Let s be a state of A and s1 be a state of A1. Suppose
s1 = s¹the carrier of S1 and s1 is stable. Let s2 be a state of A2. If
s2 = s¹the carrier of S2 and s2 is stable, then s is stable.

(18) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1+·S2. Let A1 be a non-empty circuit of S1, A2 be a non-
empty circuit of S2, and A be a non-empty circuit of S. Suppose A1 ≈ A2

and A = A1+·A2. Let s be a state of A. Suppose s is stable. Then
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(i) for every state s1 of A1 such that s1 = s¹the carrier of S1 holds s1 is
stable, and

(ii) for every state s2 of A2 such that s2 = s¹the carrier of S2 holds s2 is
stable.

(19) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be
a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s1 be a
state of A1, s2 be a state of A2, and s be a state of A. Suppose s1 = s¹the
carrier of S1 and s2 = s¹the carrier of S2 and s1 is stable. Let n be a natural
number. Then Following(s, n)¹the carrier of S2 = Following(s2, n).

(20) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A

be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let n1,
n2 be natural numbers, s be a state of A, s1 be a state of A1, and s2 be
a state of A2. Suppose s1 = s¹the carrier of S1 and Following(s1, n1) is
stable and s2 = Following(s, n1)¹the carrier of S2 and Following(s2, n2) is
stable. Then Following(s, n1 + n2) is stable.

(21) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be
a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let n1, n2

be natural numbers. Suppose for every state s of A1 holds Following(s, n1)
is stable and for every state s of A2 holds Following(s, n2) is stable. Let s

be a state of A. Then Following(s, n1 + n2) is stable.

(22) Let S1, S2, S be non void circuit-like non empty many sor-
ted signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1) and S = S1+·S2. Let A1 be
a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be a
non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s be a
state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1. Let
s2 be a state of A2. Suppose s2 = s¹the carrier of S2. Let n be a natural
number. Then Following(s, n) = Following(s1, n)+·Following(s2, n).

(23) Let S1, S2, S be non void circuit-like non empty many sor-
ted signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1) and S = S1+·S2. Let A1 be
a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be a
non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let n1, n2

be natural numbers, s be a state of A, and s1 be a state of A1. Suppose
s1 = s¹the carrier of S1. Let s2 be a state of A2. Suppose s2 = s¹the carrier
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of S2 and Following(s1, n1) is stable and Following(s2, n2) is stable. Then
Following(s, max(n1, n2)) is stable.

(24) Let S1, S2, S be non void circuit-like non empty many sor-
ted signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1) and S = S1+·S2. Let A1 be a
non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be a non-
empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let n be a natural
number, s be a state of A, and s1 be a state of A1. Suppose s1 = s¹the
carrier of S1. Let s2 be a state of A2. Suppose s2 = s¹the carrier of S2

but Following(s1, n) is not stable or Following(s2, n) is not stable. Then
Following(s, n) is not stable.

(25) Let S1, S2, S be non void circuit-like non empty many sor-
ted signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1) and S = S1+·S2. Let A1 be
a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be a
non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let n1, n2 be
natural numbers. Suppose for every state s of A1 holds Following(s, n1) is
stable and for every state s of A2 holds Following(s, n2) is stable. Let s be
a state of A. Then Following(s, max(n1, n2)) is stable.

The scheme CIRCCMB2’sch 22 deals with unsplit non void strict non empty
many sorted signatures A, B with arity held in gates and Boolean denotation
held in gates, a Boolean strict circuit C of A with denotation held in gates, a
Boolean strict circuit D of B with denotation held in gates, a binary functor F
yielding an unsplit non void strict non empty many sorted signature with arity
held in gates and Boolean denotation held in gates, a binary functor G yielding
a set, a many sorted set E indexed by N, a set F , a binary functor H yielding
a set, and a unary functor I yielding a natural number, and states that:

For every state s of D holds Following(s, I(0) + I(2) · I(1)) is
stable

provided the following conditions are satisfied:
• Let x be a set and n be a natural number. Then G(x, n) is a

Boolean strict circuit of F(x, n) with denotation held in gates,
• For every state s of C holds Following(s, I(0)) is stable,
• Let n be a natural number, x be a set, and A be a non-empty

circuit of F(x, n). If x = E(n) and A = G(x, n), then for every
state s of A holds Following(s, I(1)) is stable,

• There exist many sorted sets f , g indexed by N such that
(i) B = f(I(2)),
(ii) D = g(I(2)),
(iii) f(0) = A,

(iv) g(0) = C,
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(v) E(0) = F , and
(vi) for every natural number n and for every non empty many
sorted signature S and for every non-empty algebra A1 over S

and for every set x and for every non-empty algebra A2 over
F(x, n) such that S = f(n) and A1 = g(n) and x = E(n) and
A2 = G(x, n) holds f(n+1) = S+·F(x, n) and g(n+1) = A1+·A2

and E(n + 1) = H(x, n),
• InnerVertices(A) is a binary relation and InputVertices(A) has no

pairs,
• E(0) = F and F ∈ InnerVertices(A),
• For every natural number n and for every set x holds InnerVertices(F(x, n))

is a binary relation,
• For every natural number n and for every set x such that x = E(n)

holds InputVertices(F(x, n)) \ {x} has no pairs, and
• For every natural number n and for every set x such that x = E(n)

holds E(n + 1) = H(x, n) and x ∈ InputVertices(F(x, n)) and
H(x, n) ∈ InnerVertices(F(x, n)).
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The following three propositions are true:

(1) For all sets x, y, z such that x 6= z and y 6= z holds {x, y}\{z} = {x, y}.
(2) For all non empty sets X, Y and for all natural numbers n, m such that

n 6= m holds Xn 6= Y m.

(3) For all sets x, y, z holds x 6= 〈〈〈x, y〉, z〉〉 and y 6= 〈〈〈x, y〉, z〉〉.
Let us note that every many sorted signature which is void is also unsplit

and has arity held in gates and Boolean denotation held in gates.
One can check that there exists a many sorted signature which is strict and

void.
Let x be a set. The functor SingleMSS x yielding a strict void many sorted

signature is defined as follows:

(Def. 1) The carrier of SingleMSS x = {x}.
Let x be a set. Note that SingleMSS x is non empty.
Let x be a set.

(Def. 2) SingleMSA x is a Boolean strict algebra over SingleMSS x.

We now state three propositions:

(4) For every set x and for every many sorted signature S holds
SingleMSS x ≈ S.

(5) Let x be a set and S be a non empty many sorted signature. Suppose
x ∈ the carrier of S. Then SingleMSS x+·S = the many sorted signature
of S.

(6) Let x be a set, S be a non empty strict many sorted signature, and A be
a Boolean algebra over S. If x ∈ the carrier of S, then SingleMSA x+·A =
the algebra of A.

∅ is a finite sequence with length 0. We introduce ε as a synonym of ∅.
Let n be a natural number and let x, y be finite sequences. The functor

n-BitAdderStr(x, y) yields an unsplit non void strict non empty many sorted
signature with arity held in gates and Boolean denotation held in gates and is
defined by the condition (Def. 3).

(Def. 3) There exist many sorted sets f , g indexed by N such that
(i) n-BitAdderStr(x, y) = f(n),
(ii) f(0) = 1GateCircStr(ε, Boolean0 7−→ false),
(iii) g(0) = 〈〈ε, Boolean0 7−→ false〉〉, and
(iv) for every natural number n and for every non empty many sorted

signature S and for every set z such that S = f(n) and z = g(n) holds
f(n+1) = S+·BitAdderWithOverflowStr(x(n+1), y(n+1), z) and g(n+
1) = MajorityOutput(x(n + 1), y(n + 1), z).

Let n be a natural number and let x, y be finite sequences. The functor
n-BitAdderCirc(x, y) yields a Boolean strict circuit of n-BitAdderStr(x, y) with
denotation held in gates and is defined by the condition (Def. 4).
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(Def. 4) There exist many sorted sets f , g, h indexed by N such that
(i) n-BitAdderStr(x, y) = f(n),
(ii) n-BitAdderCirc(x, y) = g(n),
(iii) f(0) = 1GateCircStr(ε, Boolean0 7−→ false),
(iv) g(0) = 1GateCircuit(ε, Boolean0 7−→ false),
(v) h(0) = 〈〈ε, Boolean0 7−→ false〉〉, and
(vi) for every natural number n and for every non empty many sor-

ted signature S and for every non-empty algebra A over S and for
every set z such that S = f(n) and A = g(n) and z = h(n) holds
f(n + 1) = S+·BitAdderWithOverflowStr(x(n + 1), y(n + 1), z) and
g(n + 1) = A+·BitAdderWithOverflowCirc(x(n + 1), y(n + 1), z) and
h(n + 1) = MajorityOutput(x(n + 1), y(n + 1), z).

Let n be a natural number and let x, y be finite sequences. The functor
n-BitMajorityOutput(x, y) yielding an element of InnerVertices(n-BitAdderStr

(x, y)) is defined by the condition (Def. 5).

(Def. 5) There exists a many sorted set h indexed by N such that
(i) n-BitMajorityOutput(x, y) = h(n),
(ii) h(0) = 〈〈ε, Boolean0 7−→ false〉〉, and
(iii) for every natural number n and for every set z such that z = h(n) holds

h(n + 1) = MajorityOutput(x(n + 1), y(n + 1), z).
We now state several propositions:

(7) Let x, y be finite sequences and f , g, h be many sorted sets indexed by
N. Suppose that

(i) f(0) = 1GateCircStr(ε, Boolean0 7−→ false),
(ii) g(0) = 1GateCircuit(ε, Boolean0 7−→ false),
(iii) h(0) = 〈〈ε, Boolean0 7−→ false〉〉, and
(iv) for every natural number n and for every non empty many sor-

ted signature S and for every non-empty algebra A over S and for
every set z such that S = f(n) and A = g(n) and z = h(n) holds
f(n + 1) = S+·BitAdderWithOverflowStr(x(n + 1), y(n + 1), z) and
g(n + 1) = A+·BitAdderWithOverflowCirc(x(n + 1), y(n + 1), z) and
h(n + 1) = MajorityOutput(x(n + 1), y(n + 1), z).
Let n be a natural number. Then n-BitAdderStr(x, y) = f(n) and
n-BitAdderCirc(x, y) = g(n) and n-BitMajorityOutput(x, y) = h(n).

(8) For all finite sequences a, b holds 0-BitAdderStr(a, b) = 1GateCircStr(ε,
Boolean0 7−→ false) and 0-BitAdderCirc(a, b) = 1GateCircuit(ε, Boolean0

7−→ false) and 0-BitMajorityOutput(a, b) = 〈〈ε, Boolean0 7−→ false〉〉.
(9) Let a, b be finite sequences and c be a set. Suppose c = 〈〈ε, Boolean0 7−→

false〉〉. Then 1-BitAdderStr(a, b) = 1GateCircStr(ε, Boolean0 7−→
false)+·BitAdderWithOverflowStr(a(1), b(1), c) and 1-BitAdderCirc(a, b) =
1GateCircuit(ε, Boolean0 7−→ false)+·BitAdderWithOverflowCirc(a(1),
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b(1), c) and 1-BitMajorityOutput(a, b) = MajorityOutput(a(1), b(1), c).
(10) For all sets a, b, c such that c = 〈〈ε, Boolean0 7−→ false〉〉 holds

1-BitAdderStr(〈a〉, 〈b〉) = 1GateCircStr(ε, Boolean0 7−→ false)
+·BitAdderWithOverflowStr(a, b, c) and 1-BitAdderCirc(〈a〉, 〈b〉) =
1GateCircuit(ε, Boolean0 7−→ false)+·BitAdderWithOverflowCirc(a, b, c)
and 1-BitMajorityOutput(〈a〉, 〈b〉) = MajorityOutput(a, b, c).

(11) Let n be a natural number, p, q be finite sequences with length n,
and p1, p2, q1, q2 be finite sequences. Then n-BitAdderStr(p a p1, q

a

q1) = n-BitAdderStr(p a p2, q
a q2) and n-BitAdderCirc(p a p1, q

a q1) =
n-BitAdderCirc(p a p2, q

a q2) and n-BitMajorityOutput(p a p1, q
a q1) =

n-BitMajorityOutput(p a p2, q
a q2).

(12) Let n be a natural number, x, y be finite sequences with length
n, and a, b be sets. Then (n + 1)-BitAdderStr(x a 〈a〉, y a 〈b〉) =
(n-BitAdderStr(x, y))+·BitAdderWithOverflowStr(a, b,

n-BitMajorityOutput(x, y)) and (n + 1)-BitAdderCirc(x a 〈a〉, y a 〈b〉) =
(n-BitAdderCirc(x, y))+·BitAdderWithOverflowCirc
(a, b, n-BitMajorityOutput(x, y)) and (n + 1)-BitMajorityOutput(x a

〈a〉, y a 〈b〉) = MajorityOutput(a, b, n-BitMajorityOutput(x, y)).
(13) Let n be a natural number and x, y be finite sequences. Then (n +

1)-BitAdderStr(x, y) = (n-BitAdderStr(x, y))+·BitAdderWithOverflowStr
(x(n+1), y(n+1), n-BitMajorityOutput(x, y)) and (n+1)-BitAdderCirc(x, y)
= (n-BitAdderCirc(x, y))+·BitAdderWithOverflowCirc(x(n+1), y(n+1),
n-BitMajorityOutput(x, y)) and (n + 1)-BitMajorityOutput(x, y) =
MajorityOutput(x(n + 1), y(n + 1), n-BitMajorityOutput(x, y)).

(14) For all natural numbers n, m such that n ¬ m and for
all finite sequences x, y holds InnerVertices(n-BitAdderStr(x, y)) ⊆
InnerVertices(m-BitAdderStr(x, y)).

(15) For every natural number n and for all finite sequences x, y holds
InnerVertices((n+1)-BitAdderStr(x, y)) = InnerVertices(n-BitAdderStr(x,

y)) ∪ InnerVertices(BitAdderWithOverflowStr(x(n + 1), y(n + 1),
n-BitMajorityOutput(x, y))).

Let k, n be natural numbers. Let us assume that k ­ 1 and k ¬ n. Let
x, y be finite sequences. The functor (k, n)-BitAdderOutput(x, y) yielding an
element of InnerVertices(n-BitAdderStr(x, y)) is defined by:

(Def. 6) There exists a natural number i such that k = i + 1 and
(k, n)-BitAdderOutput(x, y) = BitAdderOutput(x(k), y(k),
i-BitMajorityOutput(x, y)).

Next we state several propositions:

(16) For all natural numbers n, k such that k < n and for all finite sequen-
ces x, y holds (k + 1, n)-BitAdderOutput(x, y) = BitAdderOutput(x(k +
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1), y(k + 1), k-BitMajorityOutput(x, y)).
(17) For every natural number n and for all finite sequences x, y holds

InnerVertices(n-BitAdderStr(x, y)) is a binary relation.

(18) For all sets x, y, c holds InnerVertices(MajorityIStr(x, y, c)) = {〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉}.

(19) For all sets x, y, c such that x 6= 〈〈〈y, c〉, &〉〉 and y 6= 〈〈〈c, x〉, &〉〉 and
c 6= 〈〈〈x, y〉, &〉〉 holds InputVertices(MajorityIStr(x, y, c)) = {x, y, c}.

(20) For all sets x, y, c holds InnerVertices(MajorityStr(x, y, c)) = {〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

(21) For all sets x, y, c such that x 6= 〈〈〈y, c〉, &〉〉 and y 6= 〈〈〈c, x〉, &〉〉 and
c 6= 〈〈〈x, y〉, &〉〉 holds InputVertices(MajorityStr(x, y, c)) = {x, y, c}.

(22) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2 and
InputVertices(S1) = InputVertices(S2) holds InputVertices(S1+·S2) =
InputVertices(S1).

(23) For all sets x, y, c such that x 6= 〈〈〈y, c〉, &〉〉 and y 6=
〈〈〈c, x〉, &〉〉 and c 6= 〈〈〈x, y〉, &〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉 holds
InputVertices(BitAdderWithOverflowStr(x, y, c)) = {x, y, c}.

(24) For all sets x, y, c holds InnerVertices(BitAdderWithOverflowStr(x, y, c)) =
{〈〈〈x, y〉, xor 〉〉, 2GatesCircOutput(x, y, c, xor)}∪{〈〈〈x, y〉, &〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c,
x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

Let us mention that every set which is empty is also non pair.
Observe that ∅ is nonpair yielding. Let f be a nonpair yielding function and

let x be a set. Observe that f(x) is non pair.
Let n be a natural number and let x, y be finite sequences. Note that

n-BitMajorityOutput(x, y) is pair.
The following propositions are true:

(25) Let x, y be finite sequences and n be a natural number. Then
(n-BitMajorityOutput(x, y))1 = ε and (n-BitMajorityOutput(x, y))2 =
Boolean0 7−→ false and π1((n-BitMajorityOutput(x, y))2) = Boolean0 or

(n-BitMajorityOutput(x, y))1 = 3 and (n-BitMajorityOutput(x, y))2 =
or3 and π1((n-BitMajorityOutput(x, y))2) = Boolean3 .

(26) For every natural number n and for all finite sequences x, y

and for every set p holds n-BitMajorityOutput(x, y) 6= 〈〈p, &〉〉 and
n-BitMajorityOutput(x, y) 6= 〈〈p, xor 〉〉.

(27) Let f , g be nonpair yielding finite sequences and n be a
natural number. Then InputVertices((n + 1)-BitAdderStr(f, g)) =
InputVertices(n-BitAdderStr(f, g)) ∪ (InputVertices
(BitAdderWithOverflowStr(f(n+1), g(n+1), n-BitMajorityOutput(f, g)))\
{n-BitMajorityOutput(f, g)}) and InnerVertices(n-BitAdderStr(f, g)) is a
binary relation and InputVertices(n-BitAdderStr(f, g)) has no pairs.
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(28) For every natural number n and for all nonpair yielding finite sequences
x, y with length n holds InputVertices(n-BitAdderStr(x, y)) = rng x ∪
rng y.

(29) Let x, y, c be sets, s be a state of MajorityCirc(x, y, c), and a1, a2,
a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉, &〉〉) and a2 = s(〈〈〈y, c〉, &〉〉)
and a3 = s(〈〈〈c, x〉, &〉〉), then (Following(s))(MajorityOutput(x, y, c)) =
a1 ∨ a2 ∨ a3.

(30) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, &〉〉 and y 6= 〈〈〈c, x〉, &〉〉 and c 6=
〈〈〈x, y〉, &〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of MajorityCirc(x, y, c).
Then Following(s, 2) is stable.

(31) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, &〉〉 and y 6= 〈〈〈c, x〉,
&〉〉 and c 6= 〈〈〈x, y〉, &〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state
of BitAdderWithOverflowCirc(x, y, c) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(c).
Then (Following(s, 2))(BitAdderOutput(x, y, c)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(MajorityOutput(x, y, c)) = a1 ∧ a2 ∨ a2 ∧ a3 ∨ a3 ∧ a1.

(32) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, &〉〉 and y 6= 〈〈〈c, x〉,
&〉〉 and c 6= 〈〈〈x, y〉, &〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of
BitAdderWithOverflowCirc(x, y, c). Then Following(s, 2) is stable.

(33) Let n be a natural number, x, y be nonpair yielding finite sequences with
length n, and s be a state of n-BitAdderCirc(x, y). Then Following(s, 1 +
2 · n) is stable.
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