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Summary. In the paper, we develop the notation of lattice-wise categories
as concrete categories (see [8]) of lattices. Namely, the categories based on [17]
with lattices as objects and at least monotone maps between them as morphisms.
As examples, we introduce the categories UPS, CONT, and ALG with complete,
continuous, and algebraic lattices, respectively, as objects and directed suprema
preserving maps as morphisms. Some useful schemes to construct categories of
lattices and functors between them are also presented.

MML Identifier: YELLOW21.

The terminology and notation used in this paper are introduced in the following

papers: [17], [18], [12], [20], [9], [14], [4], [19], [1], [15], [21], [22], [16], [10], [11],

[6], [7], [13], [2], [3], [8], and [5].

1. Lattice-wise Categories

In this paper x, y are sets.

Let a be a set. a as 1-sorted is a 1-sorted structure and is defined as follows:

(Def. 1) a as 1-sorted =

{

a, if a is a 1-sorted structure,

〈a〉, otherwise.

Let W be a set. The functor POSETS(W ) is defined as follows:

(Def. 2) x ∈ POSETS(W ) iff x is a strict poset and the carrier of x as 1-sorted

∈W.

Let W be a non empty set. One can check that POSETS(W ) is non empty.

Let W be a set with non empty elements. Note that POSETS(W ) is poset-

membered.

Let C be a category. We say that C is carrier-underlaid if and only if:
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(Def. 3) For every object a of C there exists a 1-sorted structure S such that

a = S and the carrier of a = the carrier of S.

Let C be a category. We say that C is lattice-wise if and only if the conditions

(Def. 4) are satisfied.

(Def. 4)(i) C is semi-functional and set-id-inheriting,

(ii) every object of C is a lattice, and

(iii) for all objects a, b of C and for all lattices A, B such that A = a and

B = b holds 〈a, b〉 ⊆ BA
¬.

Let C be a category. We say that C has complete lattices if and only if:

(Def. 5) C is lattice-wise and every object of C is a complete lattice.

One can check that every category which has complete lattices is lattice-wise

and every category which is lattice-wise is also concrete and carrier-underlaid.

One can verify that there exists a category which is strict and has complete

lattices.

We now state two propositions:

(1) Let C be a carrier-underlaid category and a be an object of C. Then the

carrier of a = the carrier of a as 1-sorted.

(2) Let C be a set-id-inheriting carrier-underlaid category and a be an object

of C. Then ida = ida as 1-sorted.

Let C be a lattice-wise category and let a be an object of C. Then a as

1-sorted is a lattice and it can be characterized by the condition:

(Def. 6) a as 1-sorted = a.

We introduce La as a synonym of a as 1-sorted.

Let C be a category with complete lattices and let a be an object of C.

Then a as 1-sorted is a complete lattice. We introduce La as a synonym of a as

1-sorted.

Let C be a lattice-wise category and let a, b be objects of C. Let us assume

that 〈a, b〉 6= ∅. Let f be a morphism from a to b. The functor @f yielding a

monotone map from La into Lb is defined as follows:

(Def. 7) @f = f.

The following proposition is true

(3) Let C be a lattice-wise category and a, b, c be objects of C. Suppose

〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b and g be a

morphism from b to c. Then g · f = (@g) · (@f).

In this article we present several logical schemes. The scheme CLCatEx1

deals with a non empty set A and a ternary predicate P, and states that:

There exists a lattice-wise strict category C such that

(i) the carrier of C = A, and

(ii) for all objects a, b of C and for every monotone map f from

La into Lb holds f ∈ 〈a, b〉 iff P[La, Lb, f ]
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provided the following conditions are met:

• Every element of A is a lattice,

• Let a, b, c be lattices. Suppose a ∈ A and b ∈ A and c ∈ A. Let f

be a map from a into b and g be a map from b into c. If P[a, b, f ]

and P[b, c, g], then P[a, c, g · f ], and

• For every lattice a such that a ∈ A holds P[a, a, ida].

The scheme CLCatEx2 deals with a non empty set A, a unary predicate P,

and a ternary predicate Q, and states that:

There exists a lattice-wise strict category C such that

(i) for every lattice x holds x is an object of C iff x is strict

and P[x] and the carrier of x ∈ A, and

(ii) for all objects a, b of C and for every monotone map f from

La into Lb holds f ∈ 〈a, b〉 iff Q[La, Lb, f ]

provided the parameters satisfy the following conditions:

• There exists a strict lattice x such that P[x] and the carrier of

x ∈ A,

• Let a, b, c be lattices. Suppose P[a] and P[b] and P[c]. Let f be a

map from a into b and g be a map from b into c. If Q[a, b, f ] and

Q[b, c, g], then Q[a, c, g · f ], and

• For every lattice a such that P[a] holds Q[a, a, ida].

The scheme CLCatUniq1 deals with a non empty set A and a ternary pre-

dicate P, and states that:

Let C1, C2 be lattice-wise categories. Suppose that

(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff P[a, b, f ],

(iii) the carrier of C2 = A, and

(iv) for all objects a, b of C2 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff P[a, b, f ].

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

The scheme CLCatUniq2 deals with a non empty set A, a unary predicate

P, and a ternary predicate Q, and states that:

Let C1, C2 be lattice-wise categories. Suppose that

(i) for every lattice x holds x is an object of C1 iff x is strict

and P[x] and the carrier of x ∈ A,

(ii) for all objects a, b of C1 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff Q[a, b, f ],

(iii) for every lattice x holds x is an object of C2 iff x is strict

and P[x] and the carrier of x ∈ A, and
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(iv) for all objects a, b of C2 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff Q[a, b, f ].

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

The scheme CLCovariantFunctorEx deals with lattice-wise categories A, B,

a unary functor F yielding a lattice, a ternary functor G yielding a function,

and two ternary predicates P, Q, and states that:

There exists a covariant strict functor F from A to B such that

(i) for every object a of A holds F (a) = F(La), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(La, Lb,
@f)

provided the parameters meet the following conditions:

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the

carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the

carrier of B and Q[a, b, f ],

• For every lattice a such that a ∈ the carrier of A holds F(a) ∈ the

carrier of B,

• Let a, b be lattices and f be a map from a into b. If

P[a, b, f ], then G(a, b, f) is a map from F(a) into F(b) and

Q[F(a),F(b),G(a, b, f)],

• For every lattice a such that a ∈ the carrier of A holds

G(a, a, ida) = idF(a), and

• Let a, b, c be lattices, f be a map from a into b, and g be a

map from b into c. If P[a, b, f ] and P[b, c, g], then G(a, c, g · f) =

G(b, c, g) · G(a, b, f).

The scheme CLContravariantFunctorEx deals with lattice-wise categories A,

B, a unary functor F yielding a lattice, a ternary functor G yielding a function,

and two ternary predicates P, Q, and states that:

There exists a contravariant strict functor F from A to B such

that

(i) for every object a of A holds F (a) = F(La), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(La, Lb,
@f)

provided the parameters satisfy the following conditions:

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the

carrier of A and P[a, b, f ],
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• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the

carrier of B and Q[a, b, f ],

• For every lattice a such that a ∈ the carrier of A holds F(a) ∈ the

carrier of B,

• Let a, b be lattices and f be a map from a into b. If

P[a, b, f ], then G(a, b, f) is a map from F(b) into F(a) and

Q[F(b),F(a),G(a, b, f)],

• For every lattice a such that a ∈ the carrier of A holds

G(a, a, ida) = idF(a), and

• Let a, b, c be lattices, f be a map from a into b, and g be a

map from b into c. If P[a, b, f ] and P[b, c, g], then G(a, c, g · f) =

G(a, b, f) · G(b, c, g).

The scheme CLCatIsomorphism deals with lattice-wise categories A, B, a

unary functor F yielding a lattice, a ternary functor G yielding a function, and

two ternary predicates P, Q, and states that:

A and B are isomorphic

provided the parameters meet the following conditions:

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the

carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the

carrier of B and Q[a, b, f ],

• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f),

• For all lattices a, b such that a ∈ the carrier of A and b ∈ the

carrier of A holds if F(a) = F(b), then a = b,

• For all lattices a, b and for all maps f , g from a into b such that

P[a, b, f ] and P[a, b, g] holds if G(a, b, f) = G(a, b, g), then f = g,

and

• Let a, b be lattices and f be a map from a into b. Suppose

Q[a, b, f ]. Then there exist lattices c, d and there exists a map

g from c into d such that c ∈ the carrier of A and d ∈ the carrier

of A and P[c, d, g] and a = F(c) and b = F(d) and f = G(c, d, g).

The scheme CLCatAntiIsomorphism deals with lattice-wise categories A, B,

a unary functor F yielding a lattice, a ternary functor G yielding a function,

and two ternary predicates P, Q, and states that:

A, B are anti-isomorphic

provided the following conditions are met:
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• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the

carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the

carrier of B and Q[a, b, f ],

• There exists a contravariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f),

• For all lattices a, b such that a ∈ the carrier of A and b ∈ the

carrier of A holds if F(a) = F(b), then a = b,

• For all lattices a, b and for all maps f , g from a into b such that

G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be lattices and f be a map from a into b. Suppose

Q[a, b, f ]. Then there exist lattices c, d and there exists a map

g from c into d such that c ∈ the carrier of A and d ∈ the carrier

of A and P[c, d, g] and b = F(c) and a = F(d) and f = G(c, d, g).

2. Equivalence of Lattice-wise Categories

Let C be a lattice-wise category. We say that C has all isomorphisms if and

only if:

(Def. 8) For all objects a, b of C and for every map f from La into Lb such that

f is isomorphic holds f ∈ 〈a, b〉.

One can verify that there exists a strict lattice-wise category which has all

isomorphisms.

The following propositions are true:

(4) Let C be a lattice-wise category with all isomorphisms, a, b be objects

of C, and f be a morphism from a to b. If @f is isomorphic, then f is iso.

(5) Let C be a lattice-wise category and a, b be objects of C. Suppose

〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then
@f is isomorphic.

The scheme CLCatEquivalence deals with lattice-wise categories A, B, two

unary functors F and G yielding lattices, two ternary functors H and I yiel-

ding functions, two unary functors A and B yielding functions, and two ternary

predicates P, Q, and states that:

A and B are equivalent

provided the parameters satisfy the following conditions:
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• For all objects a, b of A and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff P[La, Lb, f ],

• For all objects a, b of B and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff Q[La, Lb, f ],

• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = H(a, b, f),

• There exists a covariant functor G from B to A such that

(i) for every object a of B holds G(a) = G(a), and

(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds G(f) = I(a, b, f),

• Let a be a lattice. Suppose a ∈ the carrier of A. Then there exists

a monotone map f from G(F(a)) into a such that f = A(a) and

f is isomorphic and P[G(F(a)), a, f ] and P[a,G(F(a)), f−1],

• Let a be a lattice. Suppose a ∈ the carrier of B. Then there exists

a monotone map f from a into F(G(a)) such that f = B(a) and

f is isomorphic and Q[a,F(G(a)), f ] and Q[F(G(a)), a, f−1],

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds A(b) · I(F(a),F(b),H(a, b, f)) =

(@f) · A(a), and

• For all objects a, b of B such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds H(G(a),G(b), I(a, b, f)) · B(a) =

B(b) · (@f).

3. UPS Category

Let R be a binary relation. We say that R is upper-bounded if and only if:

(Def. 9) There exists x such that for every y such that y ∈ fieldR holds 〈〈y,

x〉〉 ∈ R.

Let us note that every binary relation which is well-ordering is also reflexive,

transitive, antisymmetric, connected, and well founded.

Let us mention that there exists a binary relation which is well-ordering.

Next we state the proposition

(6) Let f be an one-to-one function and R be a binary relation. Then 〈〈x,

y〉〉 ∈ f · R · f−1 if and only if x ∈ dom f and y ∈ dom f and 〈〈f(x),

f(y)〉〉 ∈ R.

Let f be an one-to-one function and let R be a reflexive binary relation.

Note that f ·R · f−1 is reflexive.
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Let f be an one-to-one function and let R be an antisymmetric binary rela-

tion. Note that f ·R · f−1 is antisymmetric.

Let f be an one-to-one function and let R be a transitive binary relation.

Note that f ·R · f−1 is transitive.

Next we state the proposition

(7) Let X be a set and A be an ordinal number. If X ≈ A, then there exists

an order R in X such that R well orders X and R = A.

Let X be a non empty set. Observe that there exists an order in X which is

upper-bounded and well-ordering.

Next we state four propositions:

(8) Let P be a reflexive non empty relational structure. Then P is upper-

bounded if and only if the internal relation of P is upper-bounded.

(9) Let P be an upper-bounded non empty poset. Suppose the internal rela-

tion of P is well-ordering. Then P is connected, complete, and continuous.

(10) Let P be an upper-bounded non empty poset. Suppose the internal re-

lation of P is well-ordering. Let x, y be elements of P . If y < x, then there

exists an element z of P such that z is compact and y ¬ z and z ¬ x.

(11) Let P be an upper-bounded non empty poset. If the internal relation of

P is well-ordering, then P is algebraic.

LetX be a non empty set and let R be an upper-bounded well-ordering order

in X. Observe that 〈X,R〉 is complete connected continuous and algebraic.

Let us observe that every set which is non trivial has a non-empty element.

Let W be a non empty set. Let us assume that there exists an element w of

W such that w is non empty. The functor UPSW yielding a lattice-wise strict

category is defined by the conditions (Def. 10).

(Def. 10)(i) For every lattice x holds x is an object of UPSW iff x is strict and

complete and the carrier of x ∈W, and

(ii) for all objects a, b of UPSW and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is directed-sups-preserving.

LetW be a set with a non-empty element. Observe that UPSW has complete

lattices and all isomorphisms.

One can prove the following four propositions:

(12) For every setW with a non-empty element holds the carrier of UPSW ⊆

POSETS(W ).

(13) Let W be a set with a non-empty element and given x. Then x is an

object of UPSW if and only if x is a complete lattice and x ∈ POSETS(W ).

(14) Let W be a set with a non-empty element and L be a lattice. Suppose

the carrier of L ∈ W. Then L is an object of UPSW if and only if L is

strict and complete.
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(15) LetW be a set with a non-empty element, a, b be objects of UPSW , and

f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving

map from La into Lb.

Let W be a set with a non-empty element and let a, b be objects of UPSW .

Observe that 〈a, b〉 is non empty.

4. Lattice-wise Subcategories

Next we state the proposition

(16) Let A be a category, B be a non empty subcategory of A, a be an object

of A, and b be an object of B. If b = a, then the carrier of b = the carrier

of a.

Let A be a set-id-inheriting category. Observe that every non empty subca-

tegory of A is set-id-inheriting.

Let A be a para-functional category. One can verify that every non empty

subcategory of A is para-functional.

Let A be a semi-functional category. Note that every non empty transitive

substructure of A is semi-functional.

Let A be a carrier-underlaid category. Note that every non empty subcate-

gory of A is carrier-underlaid.

Let A be a lattice-wise category. Observe that every non empty subcategory

of A is lattice-wise.

Let A be a lattice-wise category with all isomorphisms. Observe that every

non empty subcategory of A which is full has all isomorphisms.

Let A be a category with complete lattices. One can check that every non

empty subcategory of A has complete lattices.

Let W be a set with a non-empty element. The functor CONTW yielding a

strict full non empty subcategory of UPSW is defined by:

(Def. 11) For every object a of UPSW holds a is an object of CONTW iff La is

continuous.

Let W be a set with a non-empty element. The functor ALGW yielding a

strict full non empty subcategory of CONTW is defined by:

(Def. 12) For every object a of CONTW holds a is an object of ALGW iff La is

algebraic.

The following four propositions are true:

(17) Let W be a set with a non-empty element and L be a lattice. Suppose

the carrier of L ∈ W. Then L is an object of CONTW if and only if L is

strict, complete, and continuous.
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(18) Let W be a set with a non-empty element and L be a lattice. Suppose

the carrier of L ∈ W. Then L is an object of ALGW if and only if L is

strict, complete, and algebraic.

(19) Let W be a set with a non-empty element, a, b be objects of CONTW ,

and f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving

map from La into Lb.

(20) LetW be a set with a non-empty element, a, b be objects of ALGW , and

f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving

map from La into Lb.

LetW be a set with a non-empty element and let a, b be objects of CONTW .

One can check that 〈a, b〉 is non empty.

Let W be a set with a non-empty element and let a, b be objects of ALGW .

One can check that 〈a, b〉 is non empty.
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