Miscellaneous Facts about Functors

Grzegorz Bancerek
University of Białystok
Shinshu University, Nagano

Abstract

Summary. In the paper we show useful facts concerning reverse and inclusion functors and the restriction of functors. We also introduce a new notation for the intersection of categories and the isomorphism under arbitrary functors.

MML Identifier: YELLOW2O.

The notation and terminology used in this paper have been introduced in the following articles: [11], [12], [15], [13], [7], [2], [3], [4], [9], [14], [5], [10], [16], [17], [8], [1], and [6].

1. Reverse Functors

The following propositions are true:
(1) Let A, B be transitive non empty category structures with units and F be a feasible reflexive functor structure from A to B. Suppose F is coreflexive and bijective. Let a be an object of A and b be an object of B. Then $F(a)=b$ if and only if $F^{-1}(b)=a$.
(2) Let A, B be transitive non empty category structures with units, F be a precovariant feasible functor structure from A to B, and G be a precovariant feasible functor structure from B to A. Suppose F is bijective and $G=F^{-1}$. Let a_{1}, a_{2} be objects of A. Suppose $\left\langle a_{1}, a_{2}\right\rangle \neq \emptyset$. Let f be a morphism from a_{1} to a_{2} and g be a morphism from $F\left(a_{1}\right)$ to $F\left(a_{2}\right)$. Then $F(f)=g$ if and only if $G(g)=f$.
(3) Let A, B be transitive non empty category structures with units, F be a precontravariant feasible functor structure from A to B, and G be
a precontravariant feasible functor structure from B to A. Suppose F is bijective and $G=F^{-1}$. Let a_{1}, a_{2} be objects of A. Suppose $\left\langle a_{1}, a_{2}\right\rangle \neq \emptyset$. Let f be a morphism from a_{1} to a_{2} and g be a morphism from $F\left(a_{2}\right)$ to $F\left(a_{1}\right)$. Then $F(f)=g$ if and only if $G(g)=f$.
(4) Let A, B be categories and F be a functor from A to B. Suppose F is bijective. Let G be a functor from B to A. If $F \cdot G=\operatorname{id}_{B}$, then the functor structure of $G=F^{-1}$.
(5) Let A, B be categories and F be a functor from A to B. Suppose F is bijective. Let G be a functor from B to A. If $G \cdot F=\mathrm{id}_{A}$, then the functor structure of $G=F^{-1}$.
(6) Let A, B be categories and F be a covariant functor from A to B. Suppose F is bijective. Let G be a covariant functor from B to A. Suppose that
(i) for every object b of B holds $F(G(b))=b$, and
(ii) for all objects a, b of B such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds $F(G(f))=f$.
Then the functor structure of $G=F^{-1}$.
(7) Let A, B be categories and F be a contravariant functor from A to B. Suppose F is bijective. Let G be a contravariant functor from B to A. Suppose that
(i) for every object b of B holds $F(G(b))=b$, and
(ii) for all objects a, b of B such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds $F(G(f))=f$.
Then the functor structure of $G=F^{-1}$.
(8) Let A, B be categories and F be a covariant functor from A to B. Suppose F is bijective. Let G be a covariant functor from B to A. Suppose that
(i) for every object a of A holds $G(F(a))=a$, and
(ii) for all objects a, b of A such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds $G(F(f))=f$.
Then the functor structure of $G=F^{-1}$.
(9) Let A, B be categories and F be a contravariant functor from A to B. Suppose F is bijective. Let G be a contravariant functor from B to A. Suppose that
(i) for every object a of A holds $G(F(a))=a$, and
(ii) for all objects a, b of A such that $\langle a, b\rangle \neq \emptyset$ and for every morphism f from a to b holds $G(F(f))=f$.
Then the functor structure of $G=F^{-1}$.

2. Intersection of Categories

Let A, B be category structures. We say that A and B have the same composition if and only if:
(Def. 1) For all sets a_{1}, a_{2}, a_{3} holds (the composition of $\left.A\right)\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right) \approx($ the composition of $B)\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)$.
Let us note that the predicate A and B have the same composition is symmetric.
Next we state three propositions:
(10) Let A, B be category structures. Then A and B have the same composition if and only if for all sets a_{1}, a_{2}, a_{3}, x such that $x \in$ dom (the composition of $A)\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)$ and $x \in \operatorname{dom}($ the composition of $B)\left(\left\langle a_{1}\right.\right.$, $\left.\left.a_{2}, a_{3}\right\rangle\right)$ holds (the composition of $\left.A\right)\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)(x)=$ (the composition of $B)\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)(x)$.
(11) Let A, B be transitive non empty category structures. Then A and B have the same composition if and only if for all objects a_{1}, a_{2}, a_{3} of A such that $\left\langle a_{1}, a_{2}\right\rangle \neq \emptyset$ and $\left\langle a_{2}, a_{3}\right\rangle \neq \emptyset$ and for all objects b_{1}, b_{2}, b_{3} of B such that $\left\langle b_{1}, b_{2}\right\rangle \neq \emptyset$ and $\left\langle b_{2}, b_{3}\right\rangle \neq \emptyset$ and $b_{1}=a_{1}$ and $b_{2}=a_{2}$ and $b_{3}=a_{3}$ and for every morphism f_{1} from a_{1} to a_{2} and for every morphism g_{1} from b_{1} to b_{2} such that $g_{1}=f_{1}$ and for every morphism f_{2} from a_{2} to a_{3} and for every morphism g_{2} from b_{2} to b_{3} such that $g_{2}=f_{2}$ holds $f_{2} \cdot f_{1}=g_{2} \cdot g_{1}$.
(12) For all para-functional semi-functional categories A, B holds A and B have the same composition.
Let f, g be functions. The functor $\operatorname{Intersect}(f, g)$ yielding a function is defined as follows:
(Def. 2) $\quad \operatorname{dom} \operatorname{Intersect}(f, g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in$ $\operatorname{dom} f \cap \operatorname{dom} g$ holds $(\operatorname{Intersect}(f, g))(x)=f(x) \cap g(x)$.
Let us notice that the functor $\operatorname{Intersect}(f, g)$ is commutative.
One can prove the following propositions:
(13) For every set I and for all many sorted sets A, B indexed by I holds $\operatorname{Intersect}(A, B)=A \cap B$.
(14) Let I, J be sets, A be a many sorted set indexed by I, and B be a many sorted set indexed by J. Then $\operatorname{Intersect}(A, B)$ is a many sorted set indexed by $I \cap J$.
(15) Let I, J be sets, A be a many sorted set indexed by I, B be a function, and C be a many sorted set indexed by J. If $C=\operatorname{Intersect}(A, B)$, then $C \subseteq A$.
(16) Let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets, f be a function from A_{1} into A_{2}, and g be a function from B_{1} into B_{2}. If $f \approx g$, then $f \cap g$ is a function from $A_{1} \cap B_{1}$ into $A_{2} \cap B_{2}$.
(17) Let I_{1}, I_{2} be sets, A_{1}, B_{1} be many sorted sets indexed by I_{1}, A_{2}, B_{2} be many sorted sets indexed by I_{2}, and A, B be many sorted sets indexed by $I_{1} \cap I_{2}$. Suppose $A=\operatorname{Intersect}\left(A_{1}, A_{2}\right)$ and $B=\operatorname{Intersect}\left(B_{1}, B_{2}\right)$. Let F be a many sorted function from A_{1} into B_{1} and G be a many sorted function from A_{2} into B_{2}. Suppose that for every set x such that $x \in \operatorname{dom} F$ and $x \in \operatorname{dom} G$ holds $F(x) \approx G(x)$. Then $\operatorname{Intersect}(F, G)$ is a many sorted function from A into B.
(18) Let I, J be sets, F be a many sorted set indexed by $[I, I:$, and G be a many sorted set indexed by $: J, J:$. Then there exists a many sorted set H indexed by $: I \cap J, I \cap J:$ such that $H=\operatorname{Intersect}(F, G)$ and Intersect $(\{|F|\},\{|G|\})=\{|H|\}$.
(19) Let I, J be sets, F_{1}, F_{2} be many sorted sets indexed by : I, I : , and G_{1}, G_{2} be many sorted sets indexed by : $J, J:$. Then there exist many sorted sets H_{1}, H_{2} indexed by $: I \cap J, I \cap J$: such that $H_{1}=\operatorname{Intersect}\left(F_{1}, G_{1}\right)$ and $H_{2}=\operatorname{Intersect}\left(F_{2}, G_{2}\right)$ and $\operatorname{Intersect}\left(\left\{\left|F_{1}, F_{2}\right|\right\},\left\{\left|G_{1}, G_{2}\right|\right\}\right)=\left\{\left|H_{1}, H_{2}\right|\right\}$.
Let A, B be category structures. Let us assume that A and B have the same composition. The functor $\operatorname{Intersect}(A, B)$ yields a strict category structure and is defined by the conditions (Def. 3).
(Def. 3)(i) The carrier of $\operatorname{Intersect}(A, B)=($ the carrier of $A) \cap($ the carrier of B),
(ii) the arrows of $\operatorname{Intersect}(A, B)=\operatorname{Intersect}($ the arrows of A, the arrows of B), and
(iii) the composition of $\operatorname{Intersect}(A, B)=\operatorname{Intersect}($ the composition of A, the composition of B).
The following propositions are true:
(20) For all category structures A, B such that A and B have the same composition holds $\operatorname{Intersect}(A, B)=\operatorname{Intersect}(B, A)$.
(21) Let A, B be category structures. Suppose A and B have the same composition. Then $\operatorname{Intersect}(A, B)$ is a substructure of A.
(22) Let A, B be category structures. Suppose A and B have the same composition. Let a_{1}, a_{2} be objects of A, b_{1}, b_{2} be objects of B, and o_{1}, o_{2} be objects of $\operatorname{Intersect}(A, B)$. If $o_{1}=a_{1}$ and $o_{1}=b_{1}$ and $o_{2}=a_{2}$ and $o_{2}=b_{2}$, then $\left\langle o_{1}, o_{2}\right\rangle=\left(\left\langle a_{1}, a_{2}\right\rangle\right) \cap\left(\left\langle b_{1}, b_{2}\right\rangle\right)$.
(23) Let A, B be transitive category structures. If A and B have the same composition, then $\operatorname{Intersect}(A, B)$ is transitive.
(24) Let A, B be category structures. Suppose A and B have the same composition. Let a_{1}, a_{2} be objects of A, b_{1}, b_{2} be objects of B, and o_{1}, o_{2} be objects of $\operatorname{Intersect}(A, B)$. Suppose $o_{1}=a_{1}$ and $o_{1}=b_{1}$ and $o_{2}=a_{2}$ and $o_{2}=b_{2}$ and $\left\langle a_{1}, a_{2}\right\rangle \neq \emptyset$ and $\left\langle b_{1}, b_{2}\right\rangle \neq \emptyset$. Let f be a morphism from a_{1} to a_{2} and g be a morphism from b_{1} to b_{2}. If $f=g$, then $f \in\left\langle o_{1}, o_{2}\right\rangle$.
(25) Let A, B be non empty category structures with units. Suppose A and B have the same composition. Let a be an object of A, b be an object of B, and o be an object of $\operatorname{Intersect}(A, B)$. If $o=a$ and $o=b$ and $\operatorname{id}_{a}=\mathrm{id}_{b}$, then $\operatorname{id}_{a} \in\langle o, o\rangle$.
(26) Let A, B be categories. Suppose that
(i) A and B have the same composition,
(ii) $\operatorname{Intersect}(A, B)$ is non empty, and
(iii) for every object a of A and for every object b of B such that $a=b$ holds $\mathrm{id}_{a}=\mathrm{id}_{b}$.
Then $\operatorname{Intersect}(A, B)$ is a subcategory of A.

3. Subcategories

The scheme SubcategoryUniq deals with a category \mathcal{A}, non empty subcategories \mathcal{B}, \mathcal{C} of \mathcal{A}, a unary predicate \mathcal{P}, and a ternary predicate \mathcal{Q}, and states that:

The category structure of $\mathcal{B}=$ the category structure of \mathcal{C} provided the following requirements are met:

- For every object a of \mathcal{A} holds a is an object of \mathcal{B} iff $\mathcal{P}[a]$,
- Let a, b be objects of \mathcal{A} and a^{\prime}, b^{\prime} be objects of \mathcal{B}. Suppose $a^{\prime}=a$ and $b^{\prime}=b$ and $\langle a, b\rangle \neq \emptyset$. Let f be a morphism from a to b. Then $f \in\left\langle a^{\prime}, b^{\prime}\right\rangle$ if and only if $\mathcal{Q}[a, b, f]$,
- For every object a of \mathcal{A} holds a is an object of \mathcal{C} iff $\mathcal{P}[a]$, and
- Let a, b be objects of \mathcal{A} and a^{\prime}, b^{\prime} be objects of \mathcal{C}. Suppose $a^{\prime}=a$ and $b^{\prime}=b$ and $\langle a, b\rangle \neq \emptyset$. Let f be a morphism from a to b. Then $f \in\left\langle a^{\prime}, b^{\prime}\right\rangle$ if and only if $\mathcal{Q}[a, b, f]$.
The following proposition is true
(27) Let A be a non empty category structure and B be a non empty substructure of A. Then B is full if and only if for all objects a_{1}, a_{2} of A and for all objects b_{1}, b_{2} of B such that $b_{1}=a_{1}$ and $b_{2}=a_{2}$ holds $\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1}, a_{2}\right\rangle$.
Now we present two schemes. The scheme FullSubcategoryEx deals with a category \mathcal{A} and a unary predicate \mathcal{P}, and states that:

There exists a strict full non empty subcategory B of \mathcal{A} such that for every object a of \mathcal{A} holds a is an object of B if and only if $\mathcal{P}[a]$
provided the parameters satisfy the following condition:

- There exists an object a of \mathcal{A} such that $\mathcal{P}[a]$.

The scheme FullSubcategoryUniq deals with a category \mathcal{A}, full non empty subcategories \mathcal{B}, \mathcal{C} of \mathcal{A}, and a unary predicate \mathcal{P}, and states that:

The category structure of $\mathcal{B}=$ the category structure of \mathcal{C}
provided the parameters meet the following conditions:

- For every object a of \mathcal{A} holds a is an object of \mathcal{B} iff $\mathcal{P}[a]$, and
- For every object a of \mathcal{A} holds a is an object of \mathcal{C} iff $\mathcal{P}[a]$.

4. Inclusion Functors and Functor Restrictions

Let f be a function yielding function and let x, y be sets. Observe that $f(x$, $y)$ is relation-like and function-like.

One can prove the following proposition
(28) Let A be a category, C be a non empty subcategory of A, and a, b be objects of C. If $\langle a, b\rangle \neq \emptyset$, then for every morphism f from a to b holds $\binom{C}{\hookrightarrow}(f)=f$.
Let A be a category and let C be a non empty subcategory of A. Note that \xrightarrow{C} is id-preserving and comp-preserving.

Let A be a category and let C be a non empty subcategory of A. One can verify that ${ }^{C}$ is precovariant.

Let A be a category and let C be a non empty subcategory of A. Then ${ }^{C}$ is a strict covariant functor from C to A.

Let A, B be categories, let C be a non empty subcategory of A, and let F be a covariant functor from A to B. Then $F \upharpoonright C$ is a strict covariant functor from C to B.

Let A, B be categories, let C be a non empty subcategory of A, and let F be a contravariant functor from A to B. Then $F \upharpoonright C$ is a strict contravariant functor from C to B.

Next we state several propositions:
(29) Let A, B be categories, C be a non empty subcategory of A, F be a functor structure from A to B, a be an object of A, and c be an object of C. If $c=a$, then $(F \upharpoonright C)(c)=F(a)$.
(30) Let A, B be categories, C be a non empty subcategory of A, F be a covariant functor from A to B, a, b be objects of A, and c, d be objects of C. Suppose $c=a$ and $d=b$ and $\langle c, d\rangle \neq \emptyset$. Let f be a morphism from a to b and g be a morphism from c to d. If $g=f$, then $(F \upharpoonright C)(g)=F(f)$.
(31) Let A, B be categories, C be a non empty subcategory of A, F be a contravariant functor from A to B, a, b be objects of A, and c, d be objects of C. Suppose $c=a$ and $d=b$ and $\langle c, d\rangle \neq \emptyset$. Let f be a morphism from a to b and g be a morphism from c to d. If $g=f$, then $(F \upharpoonright C)(g)=F(f)$.
(32) Let A, B be non empty graphs and F be a bimap structure from A into B. Suppose F is precovariant and one-to-one. Let a, b be objects of A. If $F(a)=F(b)$, then $a=b$.
(33) Let A, B be non empty reflexive graphs and F be a feasible precovariant functor structure from A to B. Suppose F is faithful. Let a, b be objects of A. Suppose $\langle a, b\rangle \neq \emptyset$. Let f, g be morphisms from a to b. If $F(f)=F(g)$, then $f=g$.
(34) Let A, B be non empty graphs and F be a precovariant functor structure from A to B. Suppose F is surjective. Let a, b be objects of B. Suppose $\langle a, b\rangle \neq \emptyset$. Let f be a morphism from a to b. Then there exist objects c, d of A and there exists a morphism g from c to d such that $a=F(c)$ and $b=F(d)$ and $\langle c, d\rangle \neq \emptyset$ and $f=F(g)$.
(35) Let A, B be non empty graphs and F be a bimap structure from A into B. Suppose F is precontravariant and one-to-one. Let a, b be objects of A. If $F(a)=F(b)$, then $a=b$.
(36) Let A, B be non empty reflexive graphs and F be a feasible precontravariant functor structure from A to B. Suppose F is faithful. Let a, b be objects of A. Suppose $\langle a, b\rangle \neq \emptyset$. Let f, g be morphisms from a to b. If $F(f)=F(g)$, then $f=g$.
(37) Let A, B be non empty graphs and F be a precontravariant functor structure from A to B. Suppose F is surjective. Let a, b be objects of B. Suppose $\langle a, b\rangle \neq \emptyset$. Let f be a morphism from a to b. Then there exist objects c, d of A and there exists a morphism g from c to d such that $b=F(c)$ and $a=F(d)$ and $\langle c, d\rangle \neq \emptyset$ and $f=F(g)$.

5. Isomorphisms under Arbitrary Functor

Let A, B be categories, let F be a functor structure from A to B, and let A^{\prime}, B^{\prime} be categories. We say that A^{\prime} and B^{\prime} are isomorphic under F if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) $\quad A^{\prime}$ is a subcategory of A,
(ii) B^{\prime} is a subcategory of B, and
(iii) there exists a covariant functor G from A^{\prime} to B^{\prime} such that G is bijective and for every object a^{\prime} of A^{\prime} and for every object a of A such that $a^{\prime}=a$ holds $G\left(a^{\prime}\right)=F(a)$ and for all objects b^{\prime}, c^{\prime} of A^{\prime} and for all objects b, c of A such that $\left\langle b^{\prime}, c^{\prime}\right\rangle \neq \emptyset$ and $b^{\prime}=b$ and $c^{\prime}=c$ and for every morphism f^{\prime} from b^{\prime} to c^{\prime} and for every morphism f from b to c such that $f^{\prime}=f$ holds $G\left(f^{\prime}\right)=\left(\right.$ Morph-Map $\left.F_{F}(b, c)\right)(f)$.
We say that A^{\prime} and B^{\prime} are anti-isomorphic under F if and only if the conditions (Def. 5) are satisfied.
(Def. 5)(i) $\quad A^{\prime}$ is a subcategory of A,
(ii) $\quad B^{\prime}$ is a subcategory of B, and
(iii) there exists a contravariant functor G from A^{\prime} to B^{\prime} such that G is bijective and for every object a^{\prime} of A^{\prime} and for every object a of A such that $a^{\prime}=a$ holds $G\left(a^{\prime}\right)=F(a)$ and for all objects b^{\prime}, c^{\prime} of A^{\prime} and for all objects b, c of A such that $\left\langle b^{\prime}, c^{\prime}\right\rangle \neq \emptyset$ and $b^{\prime}=b$ and $c^{\prime}=c$ and for every morphism f^{\prime} from b^{\prime} to c^{\prime} and for every morphism f from b to c such that $f^{\prime}=f$ holds $G\left(f^{\prime}\right)=\left(\operatorname{Morph}-\operatorname{Map}_{F}(b, c)\right)(f)$.
We now state several propositions:
(38) Let A, B, A_{1}, B_{1} be categories and F be a functor structure from A to B. If A_{1} and B_{1} are isomorphic under F, then A_{1} and B_{1} are isomorphic.
(39) Let A, B, A_{1}, B_{1} be categories and F be a functor structure from A to B. Suppose A_{1} and B_{1} are anti-isomorphic under F. Then A_{1}, B_{1} are anti-isomorphic.
(40) Let A, B be categories and F be a covariant functor from A to B. If A and B are isomorphic under F, then F is bijective.
(41) Let A, B be categories and F be a contravariant functor from A to B. If A and B are anti-isomorphic under F, then F is bijective.
(42) Let A, B be categories and F be a covariant functor from A to B. If F is bijective, then A and B are isomorphic under F.
(43) Let A, B be categories and F be a contravariant functor from A to B. If F is bijective, then A and B are anti-isomorphic under F.
Now we present two schemes. The scheme CoBijectRestriction deals with non empty categories \mathcal{A}, \mathcal{B}, a covariant functor \mathcal{C} from \mathcal{A} to \mathcal{B}, a non empty subcategory \mathcal{D} of \mathcal{A}, and a non empty subcategory \mathcal{E} of \mathcal{B}, and states that:
\mathcal{D} and \mathcal{E} are isomorphic under \mathcal{C}
provided the parameters satisfy the following conditions:

- \mathcal{C} is bijective,
- For every object a of \mathcal{A} holds a is an object of \mathcal{D} iff $\mathcal{C}(a)$ is an object of \mathcal{E}, and
- Let a, b be objects of \mathcal{A}. Suppose $\langle a, b\rangle \neq \emptyset$. Let a_{1}, b_{1} be objects of \mathcal{D}. Suppose $a_{1}=a$ and $b_{1}=b$. Let a_{2}, b_{2} be objects of \mathcal{E}. Suppose $a_{2}=\mathcal{C}(a)$ and $b_{2}=\mathcal{C}(b)$. Let f be a morphism from a to b. Then $f \in\left\langle a_{1}, b_{1}\right\rangle$ if and only if $\mathcal{C}(f) \in\left\langle a_{2}, b_{2}\right\rangle$.
The scheme ContraBijectRestriction deals with non empty categories \mathcal{A}, \mathcal{B}, a contravariant functor \mathcal{C} from \mathcal{A} to \mathcal{B}, a non empty subcategory \mathcal{D} of \mathcal{A}, and a non empty subcategory \mathcal{E} of \mathcal{B}, and states that:
\mathcal{D} and \mathcal{E} are anti-isomorphic under \mathcal{C}
provided the parameters meet the following conditions:
- \mathcal{C} is bijective,
- For every object a of \mathcal{A} holds a is an object of \mathcal{D} iff $\mathcal{C}(a)$ is an object of \mathcal{E}, and
- Let a, b be objects of \mathcal{A}. Suppose $\langle a, b\rangle \neq \emptyset$. Let a_{1}, b_{1} be objects of \mathcal{D}. Suppose $a_{1}=a$ and $b_{1}=b$. Let a_{2}, b_{2} be objects of \mathcal{E}. Suppose $a_{2}=\mathcal{C}(a)$ and $b_{2}=\mathcal{C}(b)$. Let f be a morphism from a to b. Then $f \in\left\langle a_{1}, b_{1}\right\rangle$ if and only if $\mathcal{C}(f) \in\left\langle b_{2}, a_{2}\right\rangle$.
The following propositions are true:
(44) For every category A and for every non empty subcategory B of A holds B and B are isomorphic under id_{A}.
(45) For all functions f, g such that $f \subseteq g$ holds $\curvearrowleft f \subseteq \curvearrowleft g$.
(46) For all functions f, g such that $\operatorname{dom} f$ is a binary relation and $\curvearrowleft f \subseteq \curvearrowleft g$ holds $f \subseteq g$.
(47) Let I, J be sets, A be a many sorted set indexed by $: I, I:]$, and B be a many sorted set indexed by $\{J, J \ddagger$. If $A \subseteq B$, then $\curvearrowleft A \subseteq \curvearrowleft B$.
(48) Let A be a transitive non empty category structure and B be a transitive non empty substructure of A. Then B^{op} is a substructure of A^{op}.
(49) For every category A and for every non empty subcategory B of A holds B^{op} is a subcategory of A^{op}.
(50) Let A be a category and B be a non empty subcategory of A. Then B and B^{op} are anti-isomorphic under the dualizing functor from A into A^{op}.
(51) Let A_{1}, A_{2} be categories and F be a covariant functor from A_{1} to A_{2}. Suppose F is bijective. Let B_{1} be a non empty subcategory of A_{1} and B_{2} be a non empty subcategory of A_{2}. Suppose B_{1} and B_{2} are isomorphic under F. Then B_{2} and B_{1} are isomorphic under F^{-1}.
(52) Let A_{1}, A_{2} be categories and F be a contravariant functor from A_{1} to A_{2}. Suppose F is bijective. Let B_{1} be a non empty subcategory of A_{1} and B_{2} be a non empty subcategory of A_{2}. Suppose B_{1} and B_{2} are anti-isomorphic under F. Then B_{2} and B_{1} are anti-isomorphic under F^{-1}.
(53) Let A_{1}, A_{2}, A_{3} be categories, F be a covariant functor from A_{1} to A_{2}, G be a covariant functor from A_{2} to A_{3}, B_{1} be a non empty subcategory of A_{1}, B_{2} be a non empty subcategory of A_{2}, and B_{3} be a non empty subcategory of A_{3}. Suppose B_{1} and B_{2} are isomorphic under F and B_{2} and B_{3} are isomorphic under G. Then B_{1} and B_{3} are isomorphic under $G \cdot F$.
(54) Let A_{1}, A_{2}, A_{3} be categories, F be a contravariant functor from A_{1} to A_{2}, G be a covariant functor from A_{2} to A_{3}, B_{1} be a non empty subcategory of A_{1}, B_{2} be a non empty subcategory of A_{2}, and B_{3} be a non empty subcategory of A_{3}. Suppose B_{1} and B_{2} are anti-isomorphic under F and B_{2} and B_{3} are isomorphic under G. Then B_{1} and B_{3} are anti-isomorphic under $G \cdot F$.
(55) Let A_{1}, A_{2}, A_{3} be categories, F be a covariant functor from A_{1} to A_{2}, G be a contravariant functor from A_{2} to A_{3}, B_{1} be a non empty subcategory
of A_{1}, B_{2} be a non empty subcategory of A_{2}, and B_{3} be a non empty subcategory of A_{3}. Suppose B_{1} and B_{2} are isomorphic under F and B_{2} and B_{3} are anti-isomorphic under G. Then B_{1} and B_{3} are anti-isomorphic under $G \cdot F$.
(56) Let A_{1}, A_{2}, A_{3} be categories, F be a contravariant functor from A_{1} to A_{2}, G be a contravariant functor from A_{2} to A_{3}, B_{1} be a non empty subcategory of A_{1}, B_{2} be a non empty subcategory of A_{2}, and B_{3} be a non empty subcategory of A_{3}. Suppose B_{1} and B_{2} are anti-isomorphic under F and B_{2} and B_{3} are anti-isomorphic under G. Then B_{1} and B_{3} are isomorphic under $G \cdot F$.

References

[1] Grzegorz Bancerek. Concrete categories. Formalized Mathematics, 9(3):605-621, 2001.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Artur Korniłowicz. The composition of functors and transformations in alternative categories. Formalized Mathematics, 7(1):1-7, 1998.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[10] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[11] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
[12] Andrzej Trybulec. Examples of category structures. Formalized Mathematics, 5(4):493500, 1996.
[13] Andrzej Trybulec. Functors for alternative categories. Formalized Mathematics, 5(4):595608, 1996.
[14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

