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Summary. In the paper we show equivalence of the convergence of filters
on a topological space and the convergence of nets in the space. We also give, five
characterizations of compactness. Namely, for any topological space T we proved
that following condition are equivalent:

• T is compact,
• every ultrafilter on T is convergent,
• every proper filter on T has cluster point,
• every net in T has cluster point,
• every net in T has convergent subnet,
• every Cauchy net in T is convergent.

MML Identifier: YELLOW19.

The articles [18], [13], [4], [11], [6], [16], [12], [19], [10], [17], [14], [8], [5], [1], [2],

[9], [7], [15], and [3] provide the notation and terminology for this paper.

In this paper X is a set.

The following propositions are true:

(1) The carrier of 2X
⊆ = 2X .

(2) For every non empty set X and for every proper filter F of 2X
⊆ and for

every set A such that A ∈ F holds A is not empty.

Let T be a non empty topological space and let x be a point of T . The

neighborhood system of x is a subset of 2ΩT

⊆ and is defined by:

(Def. 1) The neighborhood system of x = {A : A ranges over neighbourhoods of

x}.

The following proposition is true
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(3) Let T be a non empty topological space, x be a point of T , and A

be a set. Then A ∈ the neighborhood system of x if and only if A is a

neighbourhood of x.

Let T be a non empty topological space and let x be a point of T . Observe

that the neighborhood system of x is non empty proper upper and filtered.

One can prove the following propositions:

(4) Let T be a non empty topological space, x be a point of T , and F be an

upper subset of 2ΩT

⊆ . Then x is a convergence point of F , T if and only if

the neighborhood system of x ⊆ F.

(5) For every non empty topological space T holds every point x of T is a

convergence point of the neighborhood system of x, T .

(6) Let T be a non empty topological space and A be a subset of T . Then A

is open if and only if for every point x of T such that x ∈ A and for every

filter F of 2ΩT

⊆ such that x is a convergence point of F , T holds A ∈ F.

Let S be a non empty 1-sorted structure and let N be a non empty net

structure over S. A subset of S is called a subset of S reachable by N if:

(Def. 2) There exists an element i of N such that it = rng (the mapping of N↾i).

The following proposition is true

(7) Let S be a non empty 1-sorted structure,N be a non empty net structure

over S, and i be an element ofN . Then rng (the mapping ofN↾i) is a subset

of S reachable by N .

Let S be a non empty 1-sorted structure and let N be a reflexive non empty

net structure over S. Note that every subset of S reachable by N is non empty.

We now state three propositions:

(8) Let S be a non empty 1-sorted structure,N be a net in S, i be an element

of N , and x be a set. Then x ∈ rng (the mapping of N↾i) if and only if

there exists an element j of N such that i ¬ j and x = N(j).

(9) Let S be a non empty 1-sorted structure, N be a net in S, and A be a

subset of S reachable by N . Then N is eventually in A.

(10) Let S be a non empty 1-sorted structure, N be a net in S, and F be a

finite non empty set. Suppose every element of F is a subset of S reachable

byN . Then there exists a subsetB of S reachable byN such thatB ⊆
⋂

F.

Let T be a non empty 1-sorted structure and let N be a non empty net

structure over T . The filter of N is a subset of 2ΩT

⊆ and is defined by:

(Def. 3) The filter of N = {A; A ranges over subsets of T : N is eventually in A}.

The following proposition is true

(11) Let T be a non empty 1-sorted structure,N be a non empty net structure

over T , and A be a set. Then A ∈ the filter of N if and only if N is

eventually in A and A is a subset of T .
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Let T be a non empty 1-sorted structure and let N be a non empty net

structure over T . Note that the filter of N is non empty and upper.

Let T be a non empty 1-sorted structure and let N be a net in T . One can

verify that the filter of N is proper and filtered.

We now state two propositions:

(12) Let T be a non empty topological space, N be a net in T , and x be a

point of T . Then x is a cluster point of N if and only if x is a cluster point

of the filter of N , T .

(13) Let T be a non empty topological space, N be a net in T , and x be a

point of T . Then x ∈ LimN if and only if x is a convergence point of the

filter of N , T .

Let L be a non empty 1-sorted structure, let O be a non empty subset of

L, and let F be a filter of 2O
⊆. The net of F is a strict non empty net structure

over L and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of the net of F = {〈〈a, f〉〉; a ranges over elements of L, f

ranges over elements of F : a ∈ f},

(ii) for all elements i, j of the net of F holds i ¬ j iff j2 ⊆ i2, and

(iii) for every element i of the net of F holds (the net of F )(i) = i1.

Let L be a non empty 1-sorted structure, let O be a non empty subset of L,

and let F be a filter of 2O
⊆. Note that the net of F is reflexive and transitive.

Let L be a non empty 1-sorted structure, let O be a non empty subset of L,

and let F be a proper filter of 2O
⊆. One can verify that the net of F is directed.

The following propositions are true:

(14) For every non empty 1-sorted structure T and for every filter F of 2ΩT

⊆

holds F \ {∅} = the filter of the net of F .

(15) Let T be a non empty 1-sorted structure and F be a proper filter of 2ΩT

⊆ .

Then F = the filter of the net of F .

(16) Let T be a non empty 1-sorted structure, F be a filter of 2ΩT

⊆ , and A

be a non empty subset of T . Then A ∈ F if and only if the net of F is

eventually in A.

(17) Let T be a non empty topological space, F be a proper filter of 2ΩT

⊆ , and

x be a point of T . Then x is a cluster point of the net of F if and only if

x is a cluster point of F , T .

(18) Let T be a non empty topological space, F be a proper filter of 2ΩT

⊆ ,

and x be a point of T . Then x ∈ Lim (the net of F ) if and only if x is a

convergence point of F , T .

(19) Let T be a non empty topological space, A be a subset of T , and x be

a point of T . Then x ∈ A if and only if for every neighbourhood O of x

holds O meets A.
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(20) Let T be a non empty topological space, x be a point of T , and A be a

subset of T . Suppose x ∈ A. Let F be a proper filter of 2ΩT

⊆ . If F = the

neighborhood system of x, then the net of F is often in A.

(21) Let T be a non empty 1-sorted structure, A be a set, and N be a net in

T . If N is eventually in A, then every subnet of N is eventually in A.

(22) Let T be a non empty topological space and F , G, x be sets. Suppose

F ⊆ G and x is a convergence point of F , T . Then x is a convergence

point of G, T .

(23) Let T be a non empty topological space, A be a subset of T , and x be a

point of T . Then x ∈ A if and only if there exists a net N in T such that

N is eventually in A and x is a cluster point of N .

(24) Let T be a non empty topological space, A be a subset of T , and x be a

point of T . Then x ∈ A if and only if there exists a convergent net N in

T such that N is eventually in A and x ∈ LimN.

(25) Let T be a non empty topological space and A be a subset of T . Then

A is closed if and only if for every net N in T such that N is eventually

in A and for every point x of T such that x is a cluster point of N holds

x ∈ A.

(26) Let T be a non empty topological space and A be a subset of T . Then

A is closed if and only if for every convergent net N in T such that N

is eventually in A and for every point x of T such that x ∈ LimN holds

x ∈ A.

(27) Let T be a non empty topological space, A be a subset of T , and x be a

point of T . Then x ∈ A if and only if there exists a proper filter F of 2ΩT

⊆

such that A ∈ F and x is a cluster point of F , T .

(28) Let T be a non empty topological space, A be a subset of T , and x be a

point of T . Then x ∈ A if and only if there exists an ultra filter F of 2ΩT

⊆

such that A ∈ F and x is a convergence point of F , T .

(29) Let T be a non empty topological space and A be a subset of T . Then

A is closed if and only if for every proper filter F of 2ΩT

⊆ such that A ∈ F

and for every point x of T such that x is a cluster point of F , T holds

x ∈ A.

(30) Let T be a non empty topological space and A be a subset of T . Then A

is closed if and only if for every ultra filter F of 2ΩT

⊆ such that A ∈ F and

for every point x of T such that x is a convergence point of F , T holds

x ∈ A.

(31) Let T be a non empty topological space, N be a net in T , and s be a

point of T . Then s is a cluster point of N if and only if for every subset

A of T reachable by N holds s ∈ A.

(32) Let T be a non empty topological space and F be a family of subsets of
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the carrier of T . If F is closed, then FinMeetCl(F ) is closed.

(33) Let T be a non empty topological space. Then T is compact if and only

if for every ultra filter F of 2ΩT

⊆ holds there exists a point of T which is a

convergence point of F , T .

(34) Let T be a non empty topological space. Then T is compact if and only

if for every proper filter F of 2ΩT

⊆ holds there exists a point of T which is

a cluster point of F , T .

(35) Let T be a non empty topological space. Then T is compact if and only

if for every net N in T holds there exists a point of T which is a cluster

point of N .

(36) Let T be a non empty topological space. Then T is compact if and only

if for every net N in T such that N ∈ NetUniv(T ) holds there exists a

point of T which is a cluster point of N .

Let L be a non empty 1-sorted structure and let N be a transitive net

structure over L. Note that every full structure of a subnet of N is transitive.

Let L be a non empty 1-sorted structure and let N be a non empty directed

net structure over L. Note that there exists a structure of a subnet of N which

is strict, non empty, directed, and full.

The following proposition is true

(37) For every non empty topological space T holds T is compact iff for every

net N in T holds there exists a subnet of N which is convergent.

Let S be a non empty 1-sorted structure and let N be a non empty net

structure over S. We say that N is Cauchy if and only if:

(Def. 5) For every subset A of S holds N is eventually in A or eventually in −A.

Let S be a non empty 1-sorted structure and let F be an ultra filter of 2ΩS

⊆ .

Observe that the net of F is Cauchy.

Next we state the proposition

(38) Let T be a non empty topological space. Then T is compact if and only

if for every net N in T such that N is Cauchy holds N is convergent.
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