Compactness of Lim-inf Topology

Grzegorz Bancerek
University of Białystok

Noboru Endou
Shinshu University
Nagano

Summary. Formalization of [10], chapter III, section 3 (3.4-3.6).

MML Identifier: WAYBEL33.

The papers [15], [9], [1], [18], [21], [14], [22], [17], [12], [8], [20], [6], [16], [3], [4], [13], [7], [2], [11], [23], [19], and [5] provide the notation and terminology for this paper.

Let L be a non empty poset, let X be a non empty subset of L, and let F be a filter of $2 \underset{\subseteq}{X}$. The functor $\lim \inf F$ yielding an element of L is defined by: (Def. 1) $\lim \inf F=\bigsqcup_{L}\{\inf B ; B$ ranges over subsets of $L: B \in F\}$.

One can prove the following proposition
(1) Let L_{1}, L_{2} be complete lattices. Suppose the relational structure of $L_{1}=$ the relational structure of L_{2}. Let X_{1} be a non empty subset of L_{1}, X_{2} be a non empty subset of L_{2}, F_{1} be a filter of $2_{\subseteq}^{X_{1}}$, and F_{2} be a filter of $2_{\subseteq}^{X_{2}}$. If $F_{1}=F_{2}$, then $\liminf F_{1}=\liminf F_{2}$.
Let L be a non empty FR-structure. We say that L is lim-inf if and only if: (Def. 2) The topology of $L=\xi(L)$.

Let us note that every non empty FR-structure which is lim-inf is also topological space-like.

One can check that every top-lattice which is trivial is also lim-inf.
One can check that there exists a top-lattice which is lim-inf, continuous, and complete.

We now state several propositions:
(2) Let L_{1}, L_{2} be non empty 1-sorted structures. Suppose the carrier of $L_{1}=$ the carrier of L_{2}. Let N_{1} be a net structure over L_{1}. Then there exists a strict net structure N_{2} over L_{2} such that
(i) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(ii) the mapping of $N_{1}=$ the mapping of N_{2}.
(3) Let L_{1}, L_{2} be non empty 1-sorted structures. Suppose the carrier of $L_{1}=$ the carrier of L_{2}. Let N_{1} be a net structure over L_{1}. Suppose $N_{1} \in$ $\operatorname{Net} \operatorname{Univ}\left(L_{1}\right)$. Then there exists a strict net N_{2} in L_{2} such that
(i) $\quad N_{2} \in \operatorname{NetUniv}\left(L_{2}\right)$,
(ii) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(iii) the mapping of $N_{1}=$ the mapping of N_{2}.
(4) Let L_{1}, L_{2} be inf-complete up-complete semilattices. Suppose the relational structure of $L_{1}=$ the relational structure of L_{2}. Let N_{1} be a net in L_{1} and N_{2} be a net in L_{2}. Suppose that
(i) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(ii) the mapping of $N_{1}=$ the mapping of N_{2}.

Then $\lim \inf N_{1}=\liminf N_{2}$.
(5) Let L_{1}, L_{2} be non empty 1-sorted structures. Suppose the carrier of $L_{1}=$ the carrier of L_{2}. Let N_{1} be a net in L_{1} and N_{2} be a net in L_{2}. Suppose that
(i) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(ii) the mapping of $N_{1}=$ the mapping of N_{2}.

Let S_{1} be a subnet of N_{1}. Then there exists a strict subnet S_{2} of N_{2} such that
(iii) the relational structure of $S_{1}=$ the relational structure of S_{2}, and
(iv) the mapping of $S_{1}=$ the mapping of S_{2}.
(6) Let L_{1}, L_{2} be inf-complete up-complete semilattices. Suppose the relational structure of $L_{1}=$ the relational structure of L_{2}. Let N_{1} be a net structure over L_{1} and a be a set. Suppose $\left\langle N_{1}, a\right\rangle \in$ the lim inf convergence of L_{1}. Then there exists a strict net N_{2} in L_{2} such that
(i) $\left\langle N_{2}, a\right\rangle \in$ the lim inf convergence of L_{2},
(ii) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(iii) the mapping of $N_{1}=$ the mapping of N_{2}.
(7) Let L_{1}, L_{2} be non empty 1 -sorted structures, N_{1} be a non empty net structure over L_{1}, and N_{2} be a non empty net structure over L_{2}. Suppose that
(i) the relational structure of $N_{1}=$ the relational structure of N_{2}, and
(ii) the mapping of $N_{1}=$ the mapping of N_{2}.

Let X be a set. If N_{1} is eventually in X, then N_{2} is eventually in X.
(8) Let L_{1}, L_{2} be inf-complete up-complete semilattices. Suppose the relational structure of $L_{1}=$ the relational structure of L_{2}. Then ConvergenceSpace(the lim inf convergence of L_{1}) $=$ ConvergenceSpace(the lim inf convergence of L_{2}).
(9) Let L_{1}, L_{2} be inf-complete up-complete semilattices. Suppose the relational structure of $L_{1}=$ the relational structure of L_{2}. Then $\xi\left(L_{1}\right)=\xi\left(L_{2}\right)$.

Let R be an inf-complete non empty reflexive relational structure. Note that every topological augmentation of R is inf-complete.

Let R be a semilattice. One can verify that every topological augmentation of R has g.l.b.'s.

Let L be an inf-complete up-complete semilattice. One can check that there exists a topological augmentation of L which is strict and lim-inf.

The following proposition is true
(10) Let L be an inf-complete up-complete semilattice and X be a lim-inf topological augmentation of L. Then $\xi(L)=$ the topology of X.
Let L be an inf-complete up-complete semilattice. The functor $\Xi(L)$ yielding a strict topological augmentation of L is defined by:
(Def. 3) $\Xi(L)$ is lim-inf.
Let L be an inf-complete up-complete semilattice. One can check that $\Xi(L)$ is lim-inf.

Next we state a number of propositions:
(11) For every complete lattice L and for every net N in L holds $\lim \inf N=$ $\bigsqcup_{L}\{\inf (N\lceil i): i$ ranges over elements of $N\}$.
(12) Let L be a complete lattice, F be a proper filter of $2 \Omega_{\subseteq}^{\Omega_{L}}$, and f be a subset of L. Suppose $f \in F$. Let i be an element of the net of F. If $i_{\mathbf{2}}=f$, then $\inf f=\inf (($ the net of $F) \upharpoonright i)$.
(13) For every complete lattice L and for every proper filter F of $2_{\subseteq}^{\Omega_{L}}$ holds $\lim \inf F=\liminf ($ the net of $F)$.
(14) For every complete lattice L and for every proper filter F of $2_{\subseteq}^{\Omega_{L}}$ holds the net of $F \in \operatorname{NetUniv}(L)$.
(15) Let L be a complete lattice, F be an ultra filter of $2_{\subseteq}^{\Omega_{L}}$, and p be a greater or equal to id map from the net of F into the net of F. Then $\lim \inf F \geqslant \inf (($ the net of $F) \cdot p)$.
(16) Let L be a complete lattice, F be an ultra filter of $2_{\subseteq}^{\Omega_{L}}$, and M be a subnet of the net of F. Then $\lim \inf F=\lim \inf M$.
(17) Let L be a non empty 1 -sorted structure, N be a net in L, and A be a set. Suppose N is often in A. Then there exists a strict subnet N^{\prime} of N such that $\mathrm{rng}\left(\right.$ the mapping of $\left.N^{\prime}\right) \subseteq A$ and N^{\prime} is a structure of a subnet of N.
(18) Let L be a complete lim-inf top-lattice and A be a non empty subset of L. Then A is closed if and only if for every ultra filter F of $2_{\subseteq}^{\Omega_{L}}$ such that $A \in F$ holds $\lim \inf F \in A$.
(19) For every non empty reflexive relational structure L holds $\sigma(L) \subseteq \xi(L)$.
(20) Let T_{1}, T_{2} be non empty topological spaces and B be a prebasis of T_{1}. Suppose $B \subseteq$ the topology of T_{2} and the carrier of $T_{1} \in$ the topology of T_{2}. Then the topology of $T_{1} \subseteq$ the topology of T_{2}.
(21) For every complete lattice L holds $\omega(L) \subseteq \xi(L)$.
(22) Let T_{1}, T_{2} be topological spaces and T be a non empty topological space. Suppose T is a topological extension of T_{1} and a topological extension of T_{2}. Let R be a refinement of T_{1} and T_{2}. Then T is a topological extension of R.
(23) Let T_{1} be a topological space, T_{2} be a topological extension of T_{1}, and A be a subset of T_{1}. Then
(i) if A is open, then A is an open subset of T_{2}, and
(ii) if A is closed, then A is a closed subset of T_{2}.
(24) For every complete lattice L holds $\lambda(L) \subseteq \xi(L)$.
(25) Let L be a complete lattice, T be a lim-inf topological augmentation of L, and S be a Lawson correct topological augmentation of L. Then T is a topological extension of S.
(26) For every complete lim-inf top-lattice L and for every ultra filter F of $2_{\subseteq}^{\Omega_{L}}$ holds $\lim \inf F$ is a convergence point of F, L.
(27) Every complete lim-inf top-lattice is compact and T_{1}.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
[4] Grzegorz Bancerek. Prime ideals and filters. Formalized Mathematics, 6(2):241-247, 1997.
[5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35-43, 1998.
[6] Grzegorz Bancerek. The Lawson topology. Formalized Mathematics, 7(2):163-168, 1998.
[7] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733-738, 2001.
[8] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.
[12] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[13] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized Mathematics, 6(2):269-277, 1997.
[14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[16] Bartłomiej Skorulski. Lim-inf convergence. Formalized Mathematics, 9(2):237-240, 2001.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[19] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, 1997.
[20] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311-319, 1997.
[21] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319,
1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.

Received July 29, 2001

