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Summary. A Turing machine can be viewed as a simple kind of computer,
whose operations are constrainted to reading and writing symbols on a tape, or

moving along the tape to the left or right. In theory, one has proven that the

computability of Turing machines is equivalent to recursive functions. This ar-

ticle defines and verifies the Turing machines of summation and three primitive

functions which are successor, zero and project functions. It is difficult to com-

pute sophisticated functions by simple Turing machines. Therefore, we define the

combination of two Turing machines.

MML Identifier: TURING 1.

The notation and terminology used in this paper are introduced in the following

articles: [3], [4], [13], [2], [5], [18], [14], [6], [7], [8], [12], [17], [16], [1], [11], [20],

[10], [19], [15], and [9].

1. Preliminaries

In this paper n, i, j, k denote natural numbers.

Let A, B be non empty sets, let f be a function from A into B, and let g be

a partial function from A to B. Then f+·g is a function from A into B.

Let X, Y be non empty sets, let a be an element of X, and let b be an

element of Y . Then a7−→. b is a partial function from X to Y .

Let n be a natural number. The functor SegM n yielding a subset of N is

defined as follows:

(Def. 1) SegM n = {k : k ¬ n}.
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Let n be a natural number. One can verify that SegM n is finite and non

empty.

One can prove the following propositions:

(1) k ∈ SegM n iff k ¬ n.

(2) For every function f and for all sets x, y, z, u, v such that u 6= x holds

(f+·(〈〈x, y〉〉7−→. z))(〈〈u, v〉〉) = f(〈〈u, v〉〉).

(3) For every function f and for all sets x, y, z, u, v such that v 6= y holds

(f+·(〈〈x, y〉〉7−→. z))(〈〈u, v〉〉) = f(〈〈u, v〉〉).

In the sequel i1, i2, i3, i4 denote elements of Z.

We now state three propositions:

(4)
∑

〈i1, i2〉 = i1 + i2.

(5)
∑

〈i1, i2, i3〉 = i1 + i2 + i3.

(6)
∑

〈i1, i2, i3, i4〉 = i1 + i2 + i3 + i4.

Let f be a finite sequence of elements of N and let i be a natural number.

The functor Prefix(f, i) yields a finite sequence of elements of Z and is defined

by:

(Def. 2) Prefix(f, i) = f↾Seg i.

Next we state two propositions:

(7) For all natural numbers x1, x2 holds
∑

Prefix(〈x1, x2〉, 1) = x1 and
∑

Prefix(〈x1, x2〉, 2) = x1 + x2.

(8) For all natural numbers x1, x2, x3 holds
∑

Prefix(〈x1, x2, x3〉, 1) = x1

and
∑

Prefix(〈x1, x2, x3〉, 2) = x1+x2 and
∑

Prefix(〈x1, x2, x3〉, 3) = x1+

x2 + x3.

2. Definitions and Terminology for Turing Machine

We consider Turing machine structures as systems

〈 symbols, control states, a transition, an initial state, an accepting state 〉,

where the symbols and the control states constitute finite non empty sets, the

transition is a function from [: the control states, the symbols :] into [: the control

states, the symbols, {−1, 0, 1} :], and the initial state and the accepting state are

elements of the control states.

Let T be a Turing machine structure. A state of T is an element of the

control states of T . A tape of T is an element of (the symbols of T )Z. A symbol

of T is an element of the symbols of T .

Let T be a Turing machine structure, let t be a tape of T , let h be an integer,

and let s be a symbol of T . The functor Tape-Chg(t, h, s) yields a tape of T and

is defined as follows:
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(Def. 3) Tape-Chg(t, h, s) = t+·(h 7−→. s).

Let T be a Turing machine structure. A State of T is an element of [: the

control states of T , Z, (the symbols of T )Z :]. A transition-source of T is an

element of [: the control states of T , the symbols of T :]. A transition-target of

T is an element of [: the control states of T , the symbols of T , {−1, 0, 1} :].

Let T be a Turing machine structure and let g be a transition-target of T .

The functor offset(g) yields an integer and is defined as follows:

(Def. 4) offset(g) = g3.

Let T be a Turing machine structure and let s be a State of T . The functor

Head(s) yielding an integer is defined by:

(Def. 5) Head(s) = s2.

Let T be a Turing machine structure and let s be a State of T . The functor

s -target yielding a transition-target of T is defined by:

(Def. 6) s -target = (the transition of T )(〈〈s1, (s3 qua tape of T )(Head(s))〉〉).

Let T be a Turing machine structure and let s be a State of T . The functor

Following(s) yields a State of T and is defined as follows:

(Def. 7) Following(s) =















〈〈s -target1, Head(s) + offset(s -target),

Tape-Chg(s3,Head(s), s -target2)〉〉,

if s1 6= the accepting state of T ,

s, otherwise.

Let T be a Turing machine structure and let s be a State of T . The functor

Computation(s) yielding a function from N into [: the control states of T , Z,

(the symbols of T )Z :] is defined as follows:

(Def. 8) (Computation(s))(0) = s and for every i holds (Computation(s))(i+1) =

Following((Computation(s))(i)).

In the sequel T is a Turing machine structure and s is a State of T .

The following propositions are true:

(9) Let T be a Turing machine structure and s be a State of T . If s1 = the

accepting state of T , then s = Following(s).

(10) (Computation(s))(0) = s.

(11) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(12) (Computation(s))(1) = Following(s).

(13) (Computation(s))(i + k) = (Computation((Computation(s))(i)))(k).

(14) If i ¬ j and Following((Computation(s))(i)) = (Computation(s))(i),

then (Computation(s))(j) = (Computation(s))(i).

(15) If i ¬ j and (Computation(s))(i)1 = the accepting state of T , then

(Computation(s))(j) = (Computation(s))(i).

Let T be a Turing machine structure and let s be a State of T . We say that

s is accepting if and only if:
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(Def. 9) There exists k such that (Computation(s))(k)1 = the accepting state of

T .

Let T be a Turing machine structure and let s be a State of T . Let us assume

that s is accepting. The functor Result(s) yielding a State of T is defined by:

(Def. 10) There exists k such that Result(s) = (Computation(s))(k) and

(Computation(s))(k)1 = the accepting state of T .

We now state the proposition

(16) Let T be a Turing machine structure and s be a State of T . Suppose s

is accepting. Then there exists a natural number k such that

(i) (Computation(s))(k)1 = the accepting state of T ,

(ii) Result(s) = (Computation(s))(k), and

(iii) for every natural number i such that i < k holds (Computation(s))(i)1 6=

the accepting state of T .

Let A, B be non empty sets and let y be a set. Let us assume that y ∈ B.

The functor id(A,B, y) yields a function from A into [:A, B :] and is defined as

follows:

(Def. 11) For every element x of A holds (id(A,B, y))(x) = 〈〈x, y〉〉.

The function SumTran from [:SegM 5, {0, 1} :] into [:SegM 5, {0, 1}, {−1, 0, 1} :]

is defined as follows:

(Def. 12) SumTran = id([:SegM 5, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈0, 0, 1〉〉)+·(〈〈0,

1〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 1, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2,

1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈4, 0, −1〉〉)+·(〈〈4, 1〉〉7−→. 〈〈4, 1,

−1〉〉)+·(〈〈4, 0〉〉7−→. 〈〈5, 0, 0〉〉).

Next we state the proposition

(17) SumTran(〈〈0, 0〉〉) = 〈〈0, 0, 1〉〉 and SumTran(〈〈0, 1〉〉) = 〈〈1, 0, 1〉〉 and

SumTran(〈〈1, 1〉〉) = 〈〈1, 1, 1〉〉 and SumTran(〈〈1, 0〉〉) = 〈〈2, 1, 1〉〉 and

SumTran(〈〈2, 1〉〉) = 〈〈2, 1, 1〉〉 and SumTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and

SumTran(〈〈3, 1〉〉) = 〈〈4, 0, −1〉〉 and SumTran(〈〈4, 1〉〉) = 〈〈4, 1, −1〉〉 and

SumTran(〈〈4, 0〉〉) = 〈〈5, 0, 0〉〉.

Let T be a Turing machine structure, let t be a tape of T , and let i, j be

integers. We say that t is 1 between i, j if and only if:

(Def. 13) t(i) = 0 and t(j) = 0 and for every integer k such that i < k and k < j

holds t(k) = 1.

Let f be a finite sequence of elements of N, let T be a Turing machine

structure, and let t be a tape of T . We say that t stores data f if and only if:

(Def. 14) For every natural number i such that 1 ¬ i and i < len f holds t is 1

between
∑

Prefix(f, i) + 2 · (i− 1),
∑

Prefix(f, i + 1) + 2 · i.

We now state several propositions:
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(18) Let T be a Turing machine structure, t be a tape of T , and s, n be

natural numbers. If t stores data 〈s, n〉, then t is 1 between s, s + n + 2.

(19) Let T be a Turing machine structure, t be a tape of T , and s, n be

natural numbers. If t is 1 between s, s + n + 2, then t stores data 〈s, n〉.

(20) Let T be a Turing machine structure, t be a tape of T , and s, n be natural

numbers. Suppose t stores data 〈s, n〉. Then t(s) = 0 and t(s + n + 2) = 0

and for every integer i such that s < i and i < s + n + 2 holds t(i) = 1.

(21) Let T be a Turing machine structure, t be a tape of T , and s, n1, n2 be

natural numbers. Suppose t stores data 〈s, n1, n2〉. Then t is 1 between s,

s + n1 + 2 and 1 between s + n1 + 2, s + n1 + n2 + 4.

(22) Let T be a Turing machine structure, t be a tape of T , and s, n1, n2 be

natural numbers. Suppose t stores data 〈s, n1, n2〉. Then

(i) t(s) = 0,

(ii) t(s + n1 + 2) = 0,

(iii) t(s + n1 + n2 + 4) = 0,

(iv) for every integer i such that s < i and i < s + n1 + 2 holds t(i) = 1,

and

(v) for every integer i such that s + n1 + 2 < i and i < s + n1 + n2 + 4

holds t(i) = 1.

(23) Let f be a finite sequence of elements of N and s be a natural number. If

len f  1, then
∑

Prefix(〈s〉 a f, 1) = s and
∑

Prefix(〈s〉 a f, 2) = s + f1.

(24) Let f be a finite sequence of elements of N and s be a natural number.

Suppose len f  3. Then
∑

Prefix(〈s〉af, 1) = s and
∑

Prefix(〈s〉af, 2) =

s + f1 and
∑

Prefix(〈s〉 a f, 3) = s + f1 + f2 and
∑

Prefix(〈s〉 a f, 4) =

s + f1 + f2 + f3.

(25) Let T be a Turing machine structure, t be a tape of T , s be a natural

number, and f be a finite sequence of elements of N. If len f  1 and t

stores data 〈s〉 a f, then t is 1 between s, s + f1 + 2.

(26) Let T be a Turing machine structure, t be a tape of T , s be a natural

number, and f be a finite sequence of elements of N. Suppose len f  3

and t stores data 〈s〉 a f. Then t is 1 between s, s + f1 + 2, 1 between

s+f1 +2, s+f1 +f2 +4, and 1 between s+f1 +f2 +4, s+f1 +f2 +f3 +6.

3. Summation of Two Natural Numbers

The strict Turing machine structure SumTuring is defined by the conditions

(Def. 15).

(Def. 15)(i) The symbols of SumTuring = {0, 1},

(ii) the control states of SumTuring = SegM 5,
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(iii) the transition of SumTuring = SumTran,

(iv) the initial state of SumTuring = 0, and

(v) the accepting state of SumTuring = 5.

Next we state several propositions:

(27) Let T be a Turing machine structure, s be a State of T , and p, h, t be

sets. If s = 〈〈p, h, t〉〉, then Head(s) = h.

(28) Let T be a Turing machine structure, t be a tape of T , h be an integer,

and s be a symbol of T . If t(h) = s, then Tape-Chg(t, h, s) = t.

(29) Let T be a Turing machine structure, s be a State of T , and

p, h, t be sets. Suppose s = 〈〈p, h, t〉〉 and p 6= the accepting

state of T . Then Following(s) = 〈〈s -target1, Head(s) + offset(s -target),

Tape-Chg(s3,Head(s), s -target2)〉〉.

(30) Let T be a Turing machine structure, t be a tape of T , h be an integer,

s be a symbol of T , and i be a set. Then (Tape-Chg(t, h, s))(h) = s and if

i 6= h, then (Tape-Chg(t, h, s))(i) = t(i).

(31) Let s be a State of SumTuring, t be a tape of SumTuring, and h1, n1,

n2 be natural numbers. Suppose s = 〈〈0, h1, t〉〉 and t stores data 〈h1, n1,

n2〉. Then s is accepting and (Result(s))2 = 1+h1 and (Result(s))3 stores

data 〈1 + h1, n1 + n2〉.

Let T be a Turing machine structure and let F be a function. We say that

T computes F if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let s be a State of T , t be a tape of T , a be a natural number, and x

be a finite sequence of elements of N. Suppose x ∈ domF and s = 〈〈the

initial state of T , a, t〉〉 and t stores data 〈a〉 a x. Then s is accepting and

there exist natural numbers b, y such that (Result(s))2 = b and y = F (x)

and (Result(s))3 stores data 〈b〉
a 〈y〉.

Next we state two propositions:

(32) dom[+] ⊆ N
2.

(33) SumTuring computes [+].

4. Computing Successor Function

The function SuccTran from [:SegM 4, {0, 1} :] into [:SegM 4, {0, 1}, {−1, 0, 1} :]

is defined as follows:

(Def. 17) SuccTran = id([:SegM 4, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1,

1〉〉7−→. 〈〈1, 1, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3,

0, −1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈3, 1, −1〉〉)+·(〈〈3, 0〉〉7−→. 〈〈4, 0, 0〉〉).

We now state the proposition



introduction to turing machines 727

(34) SuccTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and SuccTran(〈〈1, 1〉〉) = 〈〈1, 1, 1〉〉 and

SuccTran(〈〈1, 0〉〉) = 〈〈2, 1, 1〉〉 and SuccTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and

SuccTran(〈〈2, 1〉〉) = 〈〈3, 0, −1〉〉 and SuccTran(〈〈3, 1〉〉) = 〈〈3, 1, −1〉〉 and

SuccTran(〈〈3, 0〉〉) = 〈〈4, 0, 0〉〉.

The strict Turing machine structure SuccTuring is defined by the conditions

(Def. 18).

(Def. 18)(i) The symbols of SuccTuring = {0, 1},

(ii) the control states of SuccTuring = SegM 4,

(iii) the transition of SuccTuring = SuccTran,

(iv) the initial state of SuccTuring = 0, and

(v) the accepting state of SuccTuring = 4.

The following propositions are true:

(36)1 Let s be a State of SuccTuring, t be a tape of SuccTuring, and h1, n be

natural numbers. Suppose s = 〈〈0, h1, t〉〉 and t stores data 〈h1, n〉. Then s

is accepting and (Result(s))2 = h1 and (Result(s))3 stores data 〈h1, n+1〉.

(37) SuccTuring computes succ1(1).

5. Computing Zero Function

The function ZeroTran from [:SegM 4, {0, 1} :] into [:SegM 4, {0, 1}, {−1, 0, 1} :]

is defined as follows:

(Def. 19) ZeroTran = id([:SegM 4, {0, 1} :], {−1, 0, 1}, 1)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1,

1〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3, 0, −1〉〉)+·

(〈〈3, 1〉〉7−→. 〈〈4, 1, −1〉〉).

Next we state the proposition

(38) ZeroTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and ZeroTran(〈〈1, 1〉〉) = 〈〈2, 1, 1〉〉 and

ZeroTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and ZeroTran(〈〈2, 1〉〉) = 〈〈3, 0, −1〉〉 and

ZeroTran(〈〈3, 1〉〉) = 〈〈4, 1, −1〉〉.

The strict Turing machine structure ZeroTuring is defined by the conditions

(Def. 20).

(Def. 20)(i) The symbols of ZeroTuring = {0, 1},

(ii) the control states of ZeroTuring = SegM 4,

(iii) the transition of ZeroTuring = ZeroTran,

(iv) the initial state of ZeroTuring = 0, and

(v) the accepting state of ZeroTuring = 4.

We now state two propositions:

1The proposition (35) has been removed.
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(39) Let s be a State of ZeroTuring, t be a tape of ZeroTuring, h1 be a natural

number, and f be a finite sequence of elements of N. Suppose len f  1

and s = 〈〈0, h1, t〉〉 and t stores data 〈h1〉
a f. Then s is accepting and

(Result(s))2 = h1 and (Result(s))3 stores data 〈h1, 0〉.

(40) If n  1, then ZeroTuring computes constn(0).

6. Computing n-ary Project Function

The function n -proj3Tran from [:SegM 3, {0, 1} :] into

[:SegM 3, {0, 1}, {−1, 0, 1} :] is defined by:

(Def. 21) n -proj3Tran = id([:SegM 3, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0,

1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2,

0〉〉7−→. 〈〈3, 0, 0〉〉).

The following proposition is true

(41) n -proj3Tran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and n -proj3Tran(〈〈1, 1〉〉) = 〈〈1, 0, 1〉〉 and

n -proj3Tran(〈〈1, 0〉〉) = 〈〈2, 0, 1〉〉 and n -proj3Tran(〈〈2, 1〉〉) = 〈〈2, 0, 1〉〉 and

n -proj3Tran(〈〈2, 0〉〉) = 〈〈3, 0, 0〉〉.

The strict Turing machine structure n -proj3Turing is defined by the condi-

tions (Def. 22).

(Def. 22)(i) The symbols of n -proj3Turing = {0, 1},

(ii) the control states of n -proj3Turing = SegM 3,

(iii) the transition of n -proj3Turing = n -proj3Tran,

(iv) the initial state of n -proj3Turing = 0, and

(v) the accepting state of n -proj3Turing = 3.

Next we state two propositions:

(42) Let s be a State of n -proj3Turing, t be a tape of n -proj3Turing, h1 be

a natural number, and f be a finite sequence of elements of N. Suppose

len f  3 and s = 〈〈0, h1, t〉〉 and t stores data 〈h1〉
a f. Then s is accepting

and (Result(s))2 = h1 + f1 + f2 + 4 and (Result(s))3 stores data 〈h1 +

f1 + f2 + 4, f3〉.

(43) If n  3, then n -proj3Turing computes projn(3).

7. Combining Two Turing Machines into One

Let t1, t2 be Turing machine structures. The functor SeqStates(t1, t2) yiel-

ding a finite non empty set is defined by the condition (Def. 23).

(Def. 23) SeqStates(t1, t2) = [: the control states of t1, {the initial state of t2} :] ∪

[: {the accepting state of t1}, the control states of t2 :].
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One can prove the following four propositions:

(44) Let t1, t2 be Turing machine structures. Then

(i) 〈〈the initial state of t1, the initial state of t2〉〉 ∈ SeqStates(t1, t2), and

(ii) 〈〈the accepting state of t1, the accepting state of t2〉〉 ∈ SeqStates(t1, t2).

(45) For all Turing machine structures s, t and for every state x of s holds

〈〈x, the initial state of t〉〉 ∈ SeqStates(s, t).

(46) For all Turing machine structures s, t and for every state x of t holds

〈〈the accepting state of s, x〉〉 ∈ SeqStates(s, t).

(47) Let s, t be Turing machine structures and x be an element of

SeqStates(s, t). Then there exists a state x1 of s and there exists a state

x2 of t such that x = 〈〈x1, x2〉〉.

Let s, t be Turing machine structures and let x be a transition-target of

s. The functor 1stSeqTran(s, t, x) yielding an element of [:SeqStates(s, t), (the

symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined as follows:

(Def. 24) 1stSeqTran(s, t, x) = 〈〈〈〈x1, the initial state of t〉〉, x2, x3〉〉.

Let s, t be Turing machine structures and let x be a transition-target of

t. The functor 2ndSeqTran(s, t, x) yielding an element of [:SeqStates(s, t), (the

symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined as follows:

(Def. 25) 2ndSeqTran(s, t, x) = 〈〈〈〈the accepting state of s, x1〉〉, x2, x3〉〉.

Let s, t be Turing machine structures and let x be an element of SeqStates(s, t).

Then x1 is a state of s. Then x2 is a state of t.

Let s, t be Turing machine structures and let x be an element of [:SeqStates(s, t),

(the symbols of s)∪ (the symbols of t) :]. The functor 1stSeqStatex yields a state

of s and is defined by:

(Def. 26) 1stSeqStatex = (x1)1.

The functor 2ndSeqStatex yielding a state of t is defined as follows:

(Def. 27) 2ndSeqStatex = (x1)2.

Let X, Y , Z be non empty sets and let x be an element of [:X, Y ∪Z :]. Let

us assume that there exist a set u and an element y of Y such that x = 〈〈u, y〉〉.

The functor 1stSeqSymbolx yielding an element of Y is defined as follows:

(Def. 28) 1stSeqSymbolx = x2.

Let X, Y , Z be non empty sets and let x be an element of [:X, Y ∪Z :]. Let

us assume that there exist a set u and an element z of Z such that x = 〈〈u, z〉〉.

The functor 2ndSeqSymbolx yielding an element of Z is defined by:

(Def. 29) 2ndSeqSymbolx = x2.

Let s, t be Turing machine structures and let x be an element of [:SeqStates(s, t),

(the symbols of s)∪(the symbols of t) :]. The functor SeqTran(s, t, x) yielding an

element of [:SeqStates(s, t), (the symbols of s) ∪ (the symbols of t), {−1, 0, 1} :]

is defined by:
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(Def. 30) SeqTran(s, t, x) =



































































1stSeqTran(s, t, (the transition of s)(〈〈 1stSeqStatex,

1stSeqSymbolx〉〉)), if there exists a state p of s

and there exists a symbol y of s such that x =

〈〈〈〈p, the initial state of t〉〉, y〉〉 and p 6= the accepting

state of s,

2ndSeqTran(s, t, (the transition of t)(〈〈 2ndSeqStatex,

2ndSeqSymbolx〉〉)), if there exists a state q of t

and there exists a symbol y of t such that x =

〈〈〈〈the accepting state of s, q〉〉, y〉〉,

〈〈x1, x2, −1〉〉, otherwise.

Let s, t be Turing machine structures. The functor SeqTran(s, t) yielding

a function from [:SeqStates(s, t), (the symbols of s) ∪ (the symbols of t) :] into

[:SeqStates(s, t), (the symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined

by:

(Def. 31) For every element x of [:SeqStates(s, t), (the symbols of s)∪(the symbols

of t) :] holds (SeqTran(s, t))(x) = SeqTran(s, t, x).

Let T1, T2 be Turing machine structures. The functor T1; T2 yielding a strict

Turing machine structure is defined by the conditions (Def. 32).

(Def. 32)(i) The symbols of T1; T2 = (the symbols of T1) ∪ (the symbols of T2),

(ii) the control states of T1; T2 = SeqStates(T1, T2),

(iii) the transition of T1; T2 = SeqTran(T1, T2),

(iv) the initial state of T1; T2 = 〈〈the initial state of T1, the initial state of

T2〉〉, and

(v) the accepting state of T1; T2 = 〈〈the accepting state of T1, the accepting

state of T2〉〉.

We now state several propositions:

(48) Let T1, T2 be Turing machine structures, g be a transition-target of T1,

p be a state of T1, and y be a symbol of T1. Suppose p 6= the accepting

state of T1 and g = (the transition of T1)(〈〈p, y〉〉). Then (the transition of

T1; T2)(〈〈〈〈p, the initial state of T2〉〉, y〉〉) = 〈〈〈〈g1, the initial state of T2〉〉, g2,

g3〉〉.

(49) Let T1, T2 be Turing machine structures, g be a transition-target of T2,

q be a state of T2, and y be a symbol of T2. Suppose g = (the transition

of T2)(〈〈q, y〉〉). Then (the transition of T1; T2)(〈〈〈〈the accepting state of T1,

q〉〉, y〉〉) = 〈〈〈〈the accepting state of T1, g1〉〉, g2, g3〉〉.

(50) Let T1, T2 be Turing machine structures, s1 be a State of T1, h be a

natural number, t be a tape of T1, s2 be a State of T2, and s3 be a State

of T1; T2. Suppose that

(i) s1 is accepting,

(ii) s1 = 〈〈the initial state of T1, h, t〉〉,

(iii) s2 is accepting,
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(iv) s2 = 〈〈the initial state of T2, (Result(s1))2, (Result(s1))3〉〉, and

(v) s3 = 〈〈the initial state of T1; T2, h, t〉〉.

Then s3 is accepting and (Result(s3))2 = (Result(s2))2 and

(Result(s3))3 = (Result(s2))3.

(51) Let t3, t4 be Turing machine structures and t be a tape of t3. If the

symbols of t3 = the symbols of t4, then t is a tape of t3; t4.

(52) Let t3, t4 be Turing machine structures and t be a tape of t3; t4. Suppose

the symbols of t3 = the symbols of t4. Then t is a tape of t3 and a tape of

t4.

(53) Let f be a finite sequence of elements of N, t3, t4 be Turing machine

structures, t1 be a tape of t3, and t2 be a tape of t4. If t1 = t2 and t1 stores

data f , then t2 stores data f .

(54) Let s be a State of ZeroTuring ; SuccTuring, t be a tape of ZeroTuring,

and h1, n be natural numbers. Suppose s = 〈〈〈〈0, 0〉〉, h1, t〉〉 and t stores

data 〈h1, n〉. Then s is accepting and (Result(s))2 = h1 and (Result(s))3
stores data 〈h1, 1〉.
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