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Summary.We continue proving lemmas needed for the proof of the Jordan
curve theorem. The main goal was to prove the last theorem being a mutation

of the first theorem in [13].

MML Identifier: TOPREAL8.

The articles [16], [7], [2], [4], [19], [6], [18], [5], [12], [15], [14], [9], [1], [3], [21],

[22], [11], [10], [20], [17], and [8] provide the terminology and notation for this

paper.

1. Preliminaries

The following proposition is true

(1) For all sets A, x, y such that A ⊆ {x, y} and x ∈ A and y /∈ A holds

A = {x}.

Let us note that there exists a function which is trivial.

2. Finite Sequences

We adopt the following convention: G denotes a Go-board and i, j, k, m, n

denote natural numbers.

Let us note that there exists a finite sequence which is non constant.

Next we state a number of propositions:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(2) For every non trivial finite sequence f holds 1 < len f.

(3) For every non trivial set D and for every non constant circular finite

sequence f of elements of D holds len f > 2.

(4) For every finite sequence f and for every set x holds x ∈ rng f or x "

f = 0.

(5) Let p be a set, D be a non empty set, f be a non empty finite sequence of

elements ofD, and g be a finite sequence of elements ofD. If p " f = len f,

then f a g → p = g.

(6) For every non empty set D and for every non empty one-to-one finite

sequence f of elements of D holds flen f " f = len f.

(7) For all finite sequences f , g holds len f ¬ len(f aa g).

(8) For all finite sequences f , g and for every set x such that x ∈ rng f holds

x " f = x " (f aa g).

(9) For every non empty finite sequence f and for every finite sequence g

holds len g ¬ len(f aa g).

(10) For all finite sequences f , g holds rng f ⊆ rng(f aa g).

(11) Let D be a non empty set, f be a non empty finite sequence of elements

of D, and g be a non trivial finite sequence of elements of D. If glen g = f1,

then f aa g is circular.

(12) Let D be a non empty set,M be a matrix over D, f be a finite sequence

of elements of D, and g be a non empty finite sequence of elements of D.

Suppose flen f = g1 and f is a sequence which elements belong to M and

g is a sequence which elements belong to M . Then f aa g is a sequence

which elements belong to M .

(13) For every set D and for every finite sequence f of elements of D such

that 1 ¬ k holds 〈f(k + 1), . . . , f(len f)〉 = f⇂k.

(14) For every set D and for every finite sequence f of elements of D such

that k ¬ len f holds 〈f(1), . . . , f(k)〉 = f↾k.

(15) Let p be a set, D be a non empty set, f be a non empty finite sequence of

elements ofD, and g be a finite sequence of elements ofD. If p " f = len f,

then f a g ← p = 〈f(1), . . . , f(len f −′ 1)〉.

(16) Let D be a non empty set and f , g be non empty finite sequences of

elements of D. If g1 " f = len f, then (f aa g) :− g1 = g.

(17) Let D be a non empty set and f , g be non empty finite sequences of

elements of D. If g1 " f = len f, then (f aa g)−: g1 = f.

(18) Let D be a non trivial set, f be a non empty finite sequence of elements

of D, and g be a non trivial finite sequence of elements of D. Suppose

g1 = flen f and for every i such that 1 ¬ i and i < len f holds fi 6= g1.

Then (f aa g)g1

ª = g aa f.
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3. On the Plane

We now state several propositions:

(19) For every non trivial finite sequence f of elements of E2
T
holds L(f, 1) =

L̃(f↾2).

(20) For every s.c.c. finite sequence f of elements of E2
T
and for every n such

that n < len f holds f↾n is s.n.c..

(21) For every s.c.c. finite sequence f of elements of E2
T
and for every n such

that 1 ¬ n holds f⇂n is s.n.c..

(22) Let f be a circular s.c.c. finite sequence of elements of E2
T
and given n.

If n < len f and len f > 4, then f↾n is one-to-one.

(23) Let f be a circular s.c.c. finite sequence of elements of E2
T
. Suppose

len f > 4. Let i, j be natural numbers. If 1 < i and i < j and j ¬ len f,

then fi 6= fj .

(24) Let f be a circular s.c.c. finite sequence of elements of E2
T
and given n.

If 1 ¬ n and len f > 4, then f⇂n is one-to-one.

(25) For every special non empty finite sequence f of elements of E2
T
holds

〈f(m), . . . , f(n)〉 is special.

(26) Let f be a special non empty finite sequence of elements of E2
T
and g be

a special non trivial finite sequence of elements of E2
T
. If flen f = g1, then

f aa g is special.

(27) For every circular unfolded s.c.c. finite sequence f of elements of E2
T
such

that len f > 4 holds L(f, 1) ∩ L̃(f⇂1) = {f1, f2}.

Let us note that there exists a finite sequence of elements of E2
T
which is

one-to-one, special, unfolded, s.n.c., and non empty.

We now state several propositions:

(28) For all finite sequences f , g of elements of E2
T
such that j < len f holds

L(f aa g, j) = L(f, j).

(29) For all non empty finite sequences f , g of elements of E2
T
such that 1 ¬ j

and j + 1 < len g holds L(f aa g, len f + j) = L(g, j + 1).

(30) Let f be a non empty finite sequence of elements of E2
T
and g be a

non trivial finite sequence of elements of E2
T
. If flen f = g1, then L(f aa

g, len f) = L(g, 1).

(31) Let f be a non empty finite sequence of elements of E2
T
and g be a non

trivial finite sequence of elements of E2
T
. If j + 1 < len g and flen f = g1,

then L(f aa g, len f + j) = L(g, j + 1).

(32) Let f be a non empty s.n.c. unfolded finite sequence of elements of E2
T

and given i. If 1 ¬ i and i < len f, then L(f, i) ∩ rng f = {fi, fi+1}.
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(33) Let f , g be non trivial s.n.c. one-to-one unfolded finite sequences of

elements of E2
T
. If L̃(f) ∩ L̃(g) = {f1, g1} and f1 = glen g and g1 = flen f ,

then f aa g is s.c.c..

In the sequel f , g are finite sequences of elements of E2
T
.

The following propositions are true:

(34) If f is unfolded and g is unfolded and flen f = g1 and L(f, len f −′ 1) ∩

L(g, 1) = {flen f}, then f aa g is unfolded.

(35) If f is non empty and g is non trivial and flen f = g1, then L̃(f aa g) =

L̃(f) ∪ L̃(g).

(36) Suppose that

(i) for every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and fn = G ◦ (i, j),

(ii) f is non constant, circular, unfolded, s.c.c., and special, and

(iii) len f > 4.

Then there exists g such that

(iv) g is a sequence which elements belong to G, unfolded, s.c.c., and special,

(v) L̃(f) = L̃(g),

(vi) f1 = g1,

(vii) flen f = glen g, and

(viii) len f ¬ len g.
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