More on the Finite Sequences on the Plane ${ }^{1}$

Andrzej Trybulec
University of Białystok

Abstract

Summary. We continue proving lemmas needed for the proof of the Jordan curve theorem. The main goal was to prove the last theorem being a mutation of the first theorem in [13].

MML Identifier: TOPREAL8.

The articles [16], [7], [2], [4], [19], [6], [18], [5], [12], [15], [14], [9], [1], [3], [21], [22], [11], [10], [20], [17], and [8] provide the terminology and notation for this paper.

1. Preliminaries

The following proposition is true
(1) For all sets A, x, y such that $A \subseteq\{x, y\}$ and $x \in A$ and $y \notin A$ holds $A=\{x\}$.
Let us note that there exists a function which is trivial.

2. Finite Sequences

We adopt the following convention: G denotes a Go-board and i, j, k, m, n denote natural numbers.

Let us note that there exists a finite sequence which is non constant.
Next we state a number of propositions:

[^0](2) For every non trivial finite sequence f holds $1<\operatorname{len} f$.
(3) For every non trivial set D and for every non constant circular finite sequence f of elements of D holds len $f>2$.
(4) For every finite sequence f and for every set x holds $x \in \operatorname{rng} f$ or $x \leftarrow$ $f=0$.
(5) Let p be a set, D be a non empty set, f be a non empty finite sequence of elements of D, and g be a finite sequence of elements of D. If $p \leftrightarrow f=\operatorname{len} f$, then $f \frown g \rightarrow p=g$.
(6) For every non empty set D and for every non empty one-to-one finite sequence f of elements of D holds $f_{\operatorname{len} f} \leftrightarrow f=\operatorname{len} f$.
(7) For all finite sequences f, g holds len $f \leqslant \operatorname{len}(f \sim g)$.
(8) For all finite sequences f, g and for every set x such that $x \in \operatorname{rng} f$ holds $x \leftrightarrow f=x \leftarrow(f \sim g)$.
(9) For every non empty finite sequence f and for every finite sequence g holds len $g \leqslant \operatorname{len}(f \backsim g)$.
(10) For all finite sequences f, g holds $\operatorname{rng} f \subseteq \operatorname{rng}(f \sim g)$.
(11) Let D be a non empty set, f be a non empty finite sequence of elements of D, and g be a non trivial finite sequence of elements of D. If $g_{\operatorname{len} g}=f_{1}$, then $f m g$ is circular.
(12) Let D be a non empty set, M be a matrix over D, f be a finite sequence of elements of D, and g be a non empty finite sequence of elements of D. Suppose $f_{\operatorname{len} f}=g_{1}$ and f is a sequence which elements belong to M and g is a sequence which elements belong to M. Then $f \sim g$ is a sequence which elements belong to M.
(13) For every set D and for every finite sequence f of elements of D such that $1 \leqslant k$ holds $\langle f(k+1), \ldots, f(\operatorname{len} f)\rangle=f_{l k}$.
(14) For every set D and for every finite sequence f of elements of D such that $k \leqslant \operatorname{len} f$ holds $\langle f(1), \ldots, f(k)\rangle=f \upharpoonright k$.
(15) Let p be a set, D be a non empty set, f be a non empty finite sequence of elements of D, and g be a finite sequence of elements of D. If $p \leftrightarrow f=\operatorname{len} f$, then $f^{\wedge} g \leftarrow p=\left\langle f(1), \ldots, f\left(\operatorname{len} f-^{\prime} 1\right)\right\rangle$.
(16) Let D be a non empty set and f, g be non empty finite sequences of elements of D. If $g_{1} \leftrightarrows f=\operatorname{len} f$, then $(f \backsim g):-g_{1}=g$.
(17) Let D be a non empty set and f, g be non empty finite sequences of elements of D. If $g_{1} \leftrightarrows f=\operatorname{len} f$, then $(f \backsim g)-: g_{1}=f$.
(18) Let D be a non trivial set, f be a non empty finite sequence of elements of D, and g be a non trivial finite sequence of elements of D. Suppose $g_{1}=f_{\operatorname{len} f}$ and for every i such that $1 \leqslant i$ and $i<\operatorname{len} f$ holds $f_{i} \neq g_{1}$. Then $(f \sim g)_{\circlearrowleft}^{g_{1}}=g \rightsquigarrow f$.

3. On the Plane

We now state several propositions:
(19) For every non trivial finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathcal{L}(f, 1)=$ $\widetilde{\mathcal{L}}(f \upharpoonright 2)$.
(20) For every s.c.c. finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every n such that $n<\operatorname{len} f$ holds $f \upharpoonright n$ is s.n.c.
(21) For every s.c.c. finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every n such that $1 \leqslant n$ holds $f_{l n}$ is s.n.c..
(22) Let f be a circular s.c.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given n. If $n<\operatorname{len} f$ and len $f>4$, then $f \upharpoonright n$ is one-to-one.
(23) Let f be a circular s.c.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $\operatorname{len} f>4$. Let i, j be natural numbers. If $1<i$ and $i<j$ and $j \leqslant \operatorname{len} f$, then $f_{i} \neq f_{j}$.
(24) Let f be a circular s.c.c. finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given n. If $1 \leqslant n$ and len $f>4$, then $f_{\llcorner n}$ is one-to-one.
(25) For every special non empty finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\langle f(m), \ldots, f(n)\rangle$ is special.
(26) Let f be a special non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and g be a special non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If $f_{\operatorname{len} f}=g_{1}$, then $f \sim g$ is special.
(27) For every circular unfolded s.c.c. finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that len $f>4$ holds $\mathcal{L}(f, 1) \cap \widetilde{\mathcal{L}}\left(f_{11}\right)=\left\{f_{1}, f_{2}\right\}$.
Let us note that there exists a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ which is one-to-one, special, unfolded, s.n.c., and non empty.

We now state several propositions:
(28) For all finite sequences f, g of elements of $\mathcal{E}_{\text {T }}^{2}$ such that $j<\operatorname{len} f$ holds $\mathcal{L}(f \backsim g, j)=\mathcal{L}(f, j)$.
(29) For all non empty finite sequences f, g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $1 \leqslant j$ and $j+1<\operatorname{len} g$ holds $\mathcal{L}(f \backsim g$, len $f+j)=\mathcal{L}(g, j+1)$.
(30) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and g be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If $f_{\operatorname{len} f}=g_{1}$, then $\mathcal{L}(f \mathrm{~m}$ g, len $f)=\mathcal{L}(g, 1)$.
(31) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\text {T }}^{2}$ and g be a non trivial finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If $j+1<\operatorname{len} g$ and $f_{\operatorname{len} f}=g_{1}$, then $\mathcal{L}(f \backsim g$, len $f+j)=\mathcal{L}(g, j+1)$.
(32) Let f be a non empty s.n.c. unfolded finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i. If $1 \leqslant i$ and $i<\operatorname{len} f$, then $\mathcal{L}(f, i) \cap \operatorname{rng} f=\left\{f_{i}, f_{i+1}\right\}$.
(33) Let f, g be non trivial s.n.c. one-to-one unfolded finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g)=\left\{f_{1}, g_{1}\right\}$ and $f_{1}=g_{\operatorname{len} g}$ and $g_{1}=f_{\operatorname{len} f}$, then $f \leadsto g$ is s.c.c..
In the sequel f, g are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$.
The following propositions are true:
(34) If f is unfolded and g is unfolded and $f_{\operatorname{len} f}=g_{1}$ and $\mathcal{L}\left(f\right.$, len $\left.f-^{\prime} 1\right) \cap$ $\mathcal{L}(g, 1)=\left\{f_{\operatorname{len} f}\right\}$, then $f \curvearrowright g$ is unfolded.
(35) If f is non empty and g is non trivial and $f_{\operatorname{len} f}=g_{1}$, then $\widetilde{\mathcal{L}}(f \curvearrowright g)=$ $\widetilde{\mathcal{L}}(f) \cup \widetilde{\mathcal{L}}(g)$.
(36) Suppose that
(i) for every n such that $n \in \operatorname{dom} f$ there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $f_{n}=G \circ(i, j)$,
(ii) $\quad f$ is non constant, circular, unfolded, s.c.c., and special, and
(iii) $\operatorname{len} f>4$.

Then there exists g such that
(iv) $\quad g$ is a sequence which elements belong to G, unfolded, s.c.c., and special,
(v) $\widetilde{\mathcal{L}}(f)=\widetilde{\mathcal{L}}(g)$,
(vi) $f_{1}=g_{1}$,
(vii) $\quad f_{\operatorname{len} f}=g_{\operatorname{len} g}$, and
(viii) len $f \leqslant \operatorname{len} g$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Jarosław Kotowicz and Yatsuka Nakamura. Properties of Go-board - part III. Formalized Mathematics, 3(1):123-124, 1992.
[14] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, $5(\mathbf{3}): 317-322,1996$.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

