Hierarchies and Classifications of Sets ${ }^{1}$

Mariusz Giero
University of Białystok

Abstract

Summary. This article is a continuation of [2] article. Further properties of classification of sets are proved. The notion of hierarchy of a set is introduced. Properties of partitions and hierarchies are shown. The main theorem says that for each hierarchy there exists a classification which the union is equal to the considered hierarchy.

MML Identifier: TAXONOM2.

The terminology and notation used here have been introduced in the following articles: [7], [11], [6], [9], [4], [12], [5], [10], [8], [2], [3], and [1].

1. Tree and Classification of a Set

For simplicity, we follow the rules: A denotes a relational structure, X denotes a non empty set, $P_{1}, P_{2}, P_{3}, Y, a, b, c, x$ denote sets, and S_{1} denotes a subset of Y.

Let us consider A. We say that A has superior elements if and only if:
(Def. 1) There exists an element of A which is superior of the internal relation of A.

Let us consider A. We say that A has comparable down elements if and only if:
(Def. 2) For all elements x, y of A such that there exists an element z of A such that $z \leqslant x$ and $z \leqslant y$ holds $x \leqslant y$ or $y \leqslant x$.
The following proposition is true

[^0](1) For every set a holds $\langle\{\{a\}\}, \subseteq\rangle$ is non empty, reflexive, transitive, and antisymmetric and has superior elements and comparable down elements.

Let us observe that there exists a relational structure which is non empty, reflexive, transitive, antisymmetric, and strict and has superior elements and comparable down elements.

A tree is a poset with superior elements and comparable down elements.
Next we state four propositions:
(2) For every equivalence relation E_{1} of X and for all sets x, y, z such that $z \in[x]_{\left(E_{1}\right)}$ and $z \in[y]_{\left(E_{1}\right)}$ holds $[x]_{\left(E_{1}\right)}=[y]_{\left(E_{1}\right)}$.
(3) For every partition P of X and for all sets x, y, z such that $x \in P$ and $y \in P$ and $z \in x$ and $z \in y$ holds $x=y$.
(4) For all sets C, x such that C is a classification of X and $x \in \bigcup C$ holds $x \subseteq X$.
(5) For every set C such that C is a strong classification of X holds $\langle\bigcup C, \subseteq\rangle$ is a tree.

2. The Hierarchy of a Set

Let us consider Y. We say that Y is hierarchic if and only if:
(Def. 3) For all sets x, y such that $x \in Y$ and $y \in Y$ holds $x \subseteq y$ or $y \subseteq x$ or x misses y.
One can verify that every set which is trivial is also hierarchic.
Let us note that there exists a set which is non trivial and hierarchic.
The following propositions are true:
(6) \emptyset is hierarchic.
(7) $\{\emptyset\}$ is hierarchic.

Let us consider Y. A family of subsets of Y is said to be a hierarchy of Y if:
(Def. 4) It is hierarchic.
Let us consider Y. We say that Y is mutually-disjoint if and only if:
(Def. 5) For all sets x, y such that $x \in Y$ and $y \in Y$ and $x \neq y$ holds x misses y. In the sequel H denotes a hierarchy of Y.
Let us consider Y. Observe that there exists a family of subsets of Y which is mutually-disjoint.

Next we state three propositions:
(8) \emptyset is mutually-disjoint.
(9) $\{\emptyset\}$ is mutually-disjoint.
(10) $\{a\}$ is mutually-disjoint.

Let us consider Y and let F be a family of subsets of Y. We say that F is T_{3} if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let A be a subset of Y. Suppose $A \in F$. Let x be an element of Y. If $x \notin A$, then there exists a subset B of Y such that $x \in B$ and $B \in F$ and A misses B.
We now state the proposition
(11) For every family F of subsets of Y such that $F=\emptyset$ holds F is T_{3}.

Let us consider Y. One can verify that there exists a hierarchy of Y which is covering and T_{3}.

Let us consider Y and let F be a family of subsets of Y. We say that F is lower-bounded if and only if the condition (Def. 7) is satisfied.
(Def. 7) Let B be a set. Suppose $B \neq \emptyset$ and $B \subseteq F$ and for all a, b such that $a \in B$ and $b \in B$ holds $a \subseteq b$ or $b \subseteq a$. Then there exists c such that $c \in F$ and $c \subseteq \bigcap B$.
Next we state the proposition
(12) Let B be a mutually-disjoint family of subsets of Y. Suppose that for every set b such that $b \in B$ holds S_{1} misses b and $Y \neq \emptyset$. Then $B \cup\left\{S_{1}\right\}$ is a mutually-disjoint family of subsets of Y and if $S_{1} \neq \emptyset$, then $\bigcup\left(B \cup\left\{S_{1}\right\}\right) \neq$ $\bigcup B$.
Let us consider Y and let F be a family of subsets of Y. We say that F has maximum elements if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let S be a subset of Y. Suppose $S \in F$. Then there exists a subset T of Y such that $S \subseteq T$ and $T \in F$ and for every subset V of Y such that $T \subseteq V$ and $V \in F$ holds $V=Y$.

3. Some Properties of Partitions, Hierarchies and Classifications of Sets

The following propositions are true:
(13) For every covering hierarchy H of Y such that H has maximum elements there exists a partition P of Y such that $P \subseteq H$.
(14) Let H be a covering hierarchy of Y and B be a mutually-disjoint family of subsets of Y. Suppose $B \subseteq H$ and for every mutually-disjoint family C of subsets of Y such that $C \subseteq H$ and $\bigcup B \subseteq \bigcup C$ holds $B=C$. Then B is a partition of Y.
(15) Let H be a covering T_{3} hierarchy of Y. Suppose H is lower-bounded and $\emptyset \notin H$. Let A be a subset of Y and B be a mutually-disjoint family of subsets of Y. Suppose that
(i) $A \in B$,
(ii) $B \subseteq H$, and
(iii) for every mutually-disjoint family C of subsets of Y such that $A \in C$ and $C \subseteq H$ and $\bigcup B \subseteq \bigcup C$ holds $\bigcup B=\bigcup C$. Then B is a partition of Y.
(16) Let H be a covering T_{3} hierarchy of Y. Suppose H is lower-bounded and $\emptyset \notin H$. Let A be a subset of Y and B be a mutually-disjoint family of subsets of Y. Suppose $A \in B$ and $B \subseteq H$ and for every mutually-disjoint family C of subsets of Y such that $A \in C$ and $C \subseteq H$ and $B \subseteq C$ holds $B=C$. Then B is a partition of Y.
(17) Let H be a covering T_{3} hierarchy of Y. Suppose H is lower-bounded and $\emptyset \notin H$. Let A be a subset of Y. If $A \in H$, then there exists a partition P of Y such that $A \in P$ and $P \subseteq H$.
(18) Let h be a non empty set, P_{4} be a partition of X, and h_{1} be a set. Suppose $h_{1} \in P_{4}$ and $h \subseteq h_{1}$. Let P_{6} be a partition of X. Suppose $h \in P_{6}$ and for every x such that $x \in P_{6}$ holds $x \subseteq h_{1}$ or $h_{1} \subseteq x$ or h_{1} misses x. Let P_{5} be a set. Suppose that for every a holds $a \in P_{5}$ iff $a \in P_{6}$ and $a \subseteq h_{1}$. Then $P_{5} \cup\left(P_{4} \backslash\left\{h_{1}\right\}\right)$ is a partition of X and $P_{5} \cup\left(P_{4} \backslash\left\{h_{1}\right\}\right)$ is finer than P_{4}.
(19) Let h be a non empty set. Suppose $h \subseteq X$. Let P_{8} be a partition of X. Suppose there exists a set h_{2} such that $h_{2} \in P_{8}$ and $h_{2} \subseteq h$ and for every x such that $x \in P_{8}$ holds $x \subseteq h$ or $h \subseteq x$ or h misses x. Let P_{7} be a set. Suppose that for every x holds $x \in P_{7}$ iff $x \in P_{8}$ and x misses h. Then
(i) $P_{7} \cup\{h\}$ is a partition of X,
(ii) $\quad P_{8}$ is finer than $P_{7} \cup\{h\}$, and
(iii) for every partition P_{4} of X such that P_{8} is finer than P_{4} and for every set h_{1} such that $h_{1} \in P_{4}$ and $h \subseteq h_{1}$ holds $P_{7} \cup\{h\}$ is finer than P_{4}.
(20) Let H be a covering T_{3} hierarchy of X. Suppose that
(i) H is lower-bounded,
(ii) $\emptyset \notin H$, and
(iii) for every set C_{1} such that $C_{1} \neq \emptyset$ and $C_{1} \subseteq \operatorname{PARTITIONS}(X)$ and for all sets P_{9}, P_{10} such that $P_{9} \in C_{1}$ and $P_{10} \in C_{1}$ holds P_{9} is finer than P_{10} or P_{10} is finer than P_{9} there exist P_{1}, P_{2} such that $P_{1} \in C_{1}$ and $P_{2} \in C_{1}$ and for every P_{3} such that $P_{3} \in C_{1}$ holds P_{3} is finer than P_{2} and P_{1} is finer than P_{3}.
Then there exists a classification C of X such that $\bigcup C=H$.

Acknowledgments

I would like to thank Prof. Andrzej Trybulec for his help in the preparation of this article.

References

[1] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[2] Mariusz Giero and Roman Matuszewski. Lower tolerance. Preliminaries to Wroclaw taxonomy. Formalized Mathematics, 9(3):597-603, 2001.
[3] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.
[4] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[7] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received December 28, 2001

[^0]: ${ }^{1}$ This work has been partially supported by the European Community TYPES grant IST-1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102.

