Pythagorean Triples

Freek Wiedijk University of Nijmegen

Summary. A Pythagorean triple is a set of positive integers $\{a, b, c\}$ with $a^2 + b^2 = c^2$. We prove that every Pythagorean triple is of the form

 $a = n^2 - m^2 \qquad b = 2mn \qquad c = n^2 + m^2$

or is a multiple of such a triple. Using this characterization we show that for every n > 2 there exists a Pythagorean triple X with $n \in X$. Also we show that even the set of *simplified* Pythagorean triples is infinite.

MML Identifier: PYTHTRIP.

The articles [6], [7], [2], [8], [5], [1], [3], [4], and [9] provide the terminology and notation for this paper.

1. Relative Primeness

We follow the rules: a, b, c, k, m, n are natural numbers and i is an integer. Let us consider m, n. Let us observe that m and n are relative prime if and only if:

(Def. 1) For every k such that $k \mid m$ and $k \mid n$ holds k = 1.

Let us consider m, n. Let us observe that m and n are relative prime if and only if:

(Def. 2) For every prime natural number p holds $p \nmid m$ or $p \nmid n$.

C 2001 University of Białystok ISSN 1426-2630

FREEK WIEDIJK

2. Squares

Let n be a number. We say that n is square if and only if:

(Def. 3) There exists m such that $n = m^2$.

Let us observe that every number which is square is also natural. Let n be a natural number. Observe that n^2 is square. Let us observe that there exists a natural number which is even and square. One can check that there exists a natural number which is odd and square. One can check that there exists a number which is even and square. One can check that there exists a number which is odd and square. One can check that there exists a number which is odd and square. Let m, n be square numbers. Observe that $m \cdot n$ is square. We now state the proposition

(1) If $m \cdot n$ is square and m and n are relative prime, then m is square and n is square.

Let *i* be an even integer. Observe that i^2 is even.

Let i be an odd integer. Observe that i^2 is odd.

Next we state three propositions:

- (2) i is even iff i^2 is even.
- (3) If *i* is even, then $i^2 \mod 4 = 0$.
- (4) If i is odd, then $i^2 \mod 4 = 1$.

Let m, n be odd square numbers. Note that m + n is non square. One can prove the following two propositions:

- (5) If $m^2 = n^2$, then m = n.
- (6) $m \mid n \text{ iff } m^2 \mid n^2$.

3. DISTRIBUTIVE LAW FOR HCF

We now state two propositions:

- (7) $m \mid n \text{ or } k = 0 \text{ iff } k \cdot m \mid k \cdot n.$
- (8) $gcd(k \cdot m, k \cdot n) = k \cdot gcd(m, n).$

4. UNBOUNDED SETS ARE INFINITE

We now state the proposition

(9) For every set X such that for every m there exists n such that $n \ge m$ and $n \in X$ holds X is infinite.

5. Pythagorean Triples

We now state three propositions:

- (10) If a and b are relative prime, then a is odd or b is odd.
- (11) Suppose $a^2 + b^2 = c^2$ and a and b are relative prime and a is odd. Then there exist m, n such that $m \leq n$ and $a = n^2 m^2$ and $b = 2 \cdot m \cdot n$ and $c = n^2 + m^2$.
- (12) If $a = n^2 m^2$ and $b = 2 \cdot m \cdot n$ and $c = n^2 + m^2$, then $a^2 + b^2 = c^2$.

A subset of $\mathbb N$ is called a Pythagorean triple if:

(Def. 4) There exist a, b, c such that $a^2 + b^2 = c^2$ and it = $\{a, b, c\}$.

In the sequel X is a Pythagorean triple.

Let us note that every Pythagorean triple is finite.

Let us note that the Pythagorean triple can be characterized by the following (equivalent) condition:

(Def. 5) There exist k, m, n such that $m \leq n$ and it = $\{k \cdot (n^2 - m^2), k \cdot (2 \cdot m \cdot n), k \cdot (n^2 + m^2)\}$.

Let us consider X. We say that X is degenerate if and only if:

(Def. 6) $0 \in X$.

We now state the proposition

- (13) If n > 2, then there exists X such that X is non degenerate and $n \in X$. Let us consider X. We say that X is simplified if and only if:
- (Def. 7) For every k such that for every n such that $n \in X$ holds $k \mid n$ holds k = 1.

Let us consider X. Let us observe that X is simplified if and only if:

(Def. 8) There exist m, n such that $m \in X$ and $n \in X$ and m and n are relative prime.

One can prove the following proposition

(14) If n > 0, then there exists X such that X is non degenerate and simplified and $4 \cdot n \in X$.

Let us note that there exists a Pythagorean triple which is non degenerate and simplified.

The following propositions are true:

- (15) $\{3, 4, 5\}$ is a non degenerate simplified Pythagorean triple.
- (16) $\{X : X \text{ is non degenerate } \land X \text{ is simplified}\}$ is infinite.

FREEK WIEDIJK

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [3] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. *Formalized Mathematics*, 7(2):317–321, 1998.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [6] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [7] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 26, 2001