Pythagorean Triples

Freek Wiedijk
University of Nijmegen

Summary. A Pythagorean triple is a set of positive integers $\{a, b, c\}$ with $a^{2}+b^{2}=c^{2}$. We prove that every Pythagorean triple is of the form

$$
a=n^{2}-m^{2} \quad b=2 m n \quad c=n^{2}+m^{2}
$$

or is a multiple of such a triple. Using this characterization we show that for every $n>2$ there exists a Pythagorean triple X with $n \in X$. Also we show that even the set of simplified Pythagorean triples is infinite.

MML Identifier: PYTHTRIP.

The articles [6], [7], [2], [8], [5], [1], [3], [4], and [9] provide the terminology and notation for this paper.

1. Relative Primeness

We follow the rules: a, b, c, k, m, n are natural numbers and i is an integer.
Let us consider m, n. Let us observe that m and n are relative prime if and only if:
(Def. 1) For every k such that $k \mid m$ and $k \mid n$ holds $k=1$.
Let us consider m, n. Let us observe that m and n are relative prime if and only if:
(Def. 2) For every prime natural number p holds $p \nmid m$ or $p \nmid n$.

2. SQUARES

Let n be a number. We say that n is square if and only if:
(Def. 3) There exists m such that $n=m^{2}$.
Let us observe that every number which is square is also natural.
Let n be a natural number. Observe that n^{2} is square.
Let us observe that there exists a natural number which is even and square.
One can check that there exists a natural number which is odd and square.
One can check that there exists a number which is even and square.
One can check that there exists a number which is odd and square.
Let m, n be square numbers. Observe that $m \cdot n$ is square.
We now state the proposition
(1) If $m \cdot n$ is square and m and n are relative prime, then m is square and n is square.
Let i be an even integer. Observe that i^{2} is even.
Let i be an odd integer. Observe that i^{2} is odd.
Next we state three propositions:
(2) i is even iff $i^{\mathbf{2}}$ is even.
(3) If i is even, then $i^{2} \bmod 4=0$.
(4) If i is odd, then $i^{2} \bmod 4=1$.

Let m, n be odd square numbers. Note that $m+n$ is non square.
One can prove the following two propositions:
(5) If $m^{2}=n^{2}$, then $m=n$.
(6) $m \mid n$ iff $m^{2} \mid n^{2}$.

3. Distributive Law for HCF

We now state two propositions:
(7) $m \mid n$ or $k=0$ iff $k \cdot m \mid k \cdot n$.
(8) $\operatorname{gcd}(k \cdot m, k \cdot n)=k \cdot \operatorname{gcd}(m, n)$.

4. Unbounded Sets are Infinite

We now state the proposition
(9) For every set X such that for every m there exists n such that $n \geqslant m$ and $n \in X$ holds X is infinite.

5. Pythagorean Triples

We now state three propositions:
(10) If a and b are relative prime, then a is odd or b is odd.
(11) Suppose $a^{2}+b^{2}=c^{2}$ and a and b are relative prime and a is odd. Then there exist m, n such that $m \leqslant n$ and $a=n^{2}-m^{2}$ and $b=2 \cdot m \cdot n$ and $c=n^{2}+m^{2}$.
(12) If $a=n^{2}-m^{2}$ and $b=2 \cdot m \cdot n$ and $c=n^{2}+m^{2}$, then $a^{2}+b^{2}=c^{2}$.

A subset of \mathbb{N} is called a Pythagorean triple if:
(Def. 4) There exist a, b, c such that $a^{2}+b^{2}=c^{2}$ and it $=\{a, b, c\}$.
In the sequel X is a Pythagorean triple.
Let us note that every Pythagorean triple is finite.
Let us note that the Pythagorean triple can be characterized by the following (equivalent) condition:
(Def. 5) There exist k, m, n such that $m \leqslant n$ and it $=\left\{k \cdot\left(n^{2}-m^{2}\right), k \cdot(2 \cdot m\right.$. $\left.n), k \cdot\left(n^{2}+m^{2}\right)\right\}$.
Let us consider X. We say that X is degenerate if and only if:
(Def. 6) $0 \in X$.
We now state the proposition
(13) If $n>2$, then there exists X such that X is non degenerate and $n \in X$.

Let us consider X. We say that X is simplified if and only if:
(Def. 7) For every k such that for every n such that $n \in X$ holds $k \mid n$ holds $k=1$.
Let us consider X. Let us observe that X is simplified if and only if:
(Def. 8) There exist m, n such that $m \in X$ and $n \in X$ and m and n are relative prime.
One can prove the following proposition
(14) If $n>0$, then there exists X such that X is non degenerate and simplified and $4 \cdot n \in X$.
Let us note that there exists a Pythagorean triple which is non degenerate and simplified.

The following propositions are true:
(15) $\{3,4,5\}$ is a non degenerate simplified Pythagorean triple.
(16) $\{X: X$ is non degenerate $\wedge X$ is simplified $\}$ is infinite.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[3] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[6] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received August 26, 2001

