On Polynomials with Coefficients in a Ring of Polynomials

Barbara Dzienis
University of Białystok

Abstract

Summary. The main result of the paper is, that the ring of polynomials with o_{1} variables and coefficients in the ring of polynomials with o_{2} variables and coefficient in a ring L is isomorphic with the ring with $o_{1}+o_{2}$ variables, and coefficients in L.

MML Identifier: POLYNOM6.

The papers [18], [4], [3], [6], [15], [14], [9], [1], [2], [13], [12], [10], [5], [16], [7], [17], [8], and [11] provide the notation and terminology for this paper.

1. Preliminaries

In this paper o_{1}, o_{2} are ordinal numbers.
Let L_{1}, L_{2} be non empty double loop structures. Let us note that the predicate L_{1} is ring isomorphic to L_{2} is reflexive. We introduce L_{1} and L_{2} are isomorphic as a synonym of L_{1} is ring isomorphic to L_{2}.

We now state the proposition
(1) Let B be a set. Suppose that for every set x holds $x \in B$ iff there exists an ordinal number o such that $x=o_{1}+o$ and $o \in o_{2}$. Then $o_{1}+o_{2}=o_{1} \cup B$.
Let o_{1} be an ordinal number and let o_{2} be a non empty ordinal number. Note that $o_{1}+o_{2}$ is non empty and $o_{2}+o_{1}$ is non empty.

One can prove the following proposition
(2) Let n be an ordinal number and a, b be bags of n. Suppose $a<b$. Then there exists an ordinal number o such that $o \in n$ and $a(o)<b(o)$ and for every ordinal number l such that $l \in o$ holds $a(l)=b(l)$.

2. About Bags

Let o_{1}, o_{2} be ordinal numbers, let a be an element of Bags o_{1}, and let b be an element of Bags o_{2}. The functor $a+b$ yielding an element of $\operatorname{Bags}\left(o_{1}+o_{2}\right)$ is defined as follows:
(Def. 1) For every ordinal number o holds if $o \in o_{1}$, then $(a+b)(o)=a(o)$ and if $o \in\left(o_{1}+o_{2}\right) \backslash o_{1}$, then $(a+b)(o)=b\left(o-o_{1}\right)$.
One can prove the following propositions:
(3) For every element a of Bags o_{1} and for every element b of Bags o_{2} such that $o_{2}=\emptyset$ holds $a+b=a$.
(4) For every element a of Bags o_{1} and for every element b of Bags o_{2} such that $o_{1}=\emptyset$ holds $a+b=b$.
(5) For every element b_{1} of Bags o_{1} and for every element b_{2} of Bags o_{2} holds $b_{1}+b_{2}=\operatorname{EmptyBag}\left(o_{1}+o_{2}\right)$ iff $b_{1}=\operatorname{EmptyBag} o_{1}$ and $b_{2}=\operatorname{EmptyBag} o_{2}$.
(6) For every element c of $\operatorname{Bags}\left(o_{1}+o_{2}\right)$ there exists an element c_{1} of Bags o_{1} and there exists an element c_{2} of Bags o_{2} such that $c=c_{1}+c_{2}$.
(7) For all elements b_{1}, c_{1} of Bags o_{1} and for all elements b_{2}, c_{2} of Bags o_{2} such that $b_{1}+b_{2}=c_{1}+c_{2}$ holds $b_{1}=c_{1}$ and $b_{2}=c_{2}$.
(8) Let n be an ordinal number, L be an Abelian add-associative right zeroed right complementable distributive associative non empty double loop structure, and p, q, r be serieses of n, L. Then $(p+q) * r=p * r+q * r$.

3. Main Results

Let n be an ordinal number and let L be a right zeroed Abelian addassociative right complementable unital distributive associative non trivial non empty double loop structure. Observe that $\operatorname{Polynom} \operatorname{Ring}(n, L)$ is non trivial and distributive.

Let o_{1}, o_{2} be non empty ordinal numbers, let L be a right zeroed addassociative right complementable unital distributive non trivial non empty double loop structure, and let P be a polynomial of o_{1}, Polynom-Ring $\left(o_{2}, L\right)$. The functor Compress P yields a polynomial of $o_{1}+o_{2}, L$ and is defined by the condition (Def. 2).
(Def. 2) Let b be an element of $\operatorname{Bags}\left(o_{1}+o_{2}\right)$. Then there exists an element b_{1} of Bags o_{1} and there exists an element b_{2} of Bags o_{2} and there exists a polynomial Q_{1} of o_{2}, L such that $Q_{1}=P\left(b_{1}\right)$ and $b=b_{1}+b_{2}$ and $($ Compress $P)(b)=Q_{1}\left(b_{2}\right)$.
Next we state several propositions:
(9) For all elements b_{1}, c_{1} of Bags o_{1} and for all elements b_{2}, c_{2} of Bags o_{2} such that $b_{1} \mid c_{1}$ and $b_{2} \mid c_{2}$ holds $b_{1}+b_{2} \mid c_{1}+c_{2}$.
(10) Let b be a bag of $o_{1}+o_{2}, b_{1}$ be an element of Bags o_{1}, and b_{2} be an element of Bags o_{2}. Suppose $b \mid b_{1}+b_{2}$. Then there exists an element c_{1} of Bags o_{1} and there exists an element c_{2} of Bags o_{2} such that $c_{1} \mid b_{1}$ and $c_{2} \mid b_{2}$ and $b=c_{1}+c_{2}$.
(11) For all elements a_{1}, b_{1} of Bags o_{1} and for all elements a_{2}, b_{2} of Bags o_{2} holds $a_{1}+a_{2}<b_{1}+b_{2}$ iff $a_{1}<b_{1}$ or $a_{1}=b_{1}$ and $a_{2}<b_{2}$.
(12) Let b_{1} be an element of Bags o_{1}, b_{2} be an element of Bags o_{2}, and G be a finite sequence of elements of $\left(\operatorname{Bags}\left(o_{1}+o_{2}\right)\right)^{*}$. Suppose that
(i) $\operatorname{dom} G=\operatorname{Seg}$ len divisors b_{1}, and
(ii) for every natural number i such that $i \in \operatorname{Seg}$ len divisors b_{1} there exists an element a_{1}^{\prime} of Bags o_{1} and there exists a finite sequence F_{1} of elements of $\operatorname{Bags}\left(o_{1}+o_{2}\right)$ such that $F_{1}=G_{i}$ and π_{i} divisors $b_{1}=a_{1}^{\prime}$ and len $F_{1}=$ len divisors b_{2} and for every natural number m such that $m \in \operatorname{dom} F_{1}$ there exists an element $a_{1}^{\prime \prime}$ of Bags o_{2} such that π_{m} divisors $b_{2}=a_{1}^{\prime \prime}$ and $\pi_{m} F_{1}=a_{1}^{\prime}+a_{1}^{\prime \prime}$.
Then divisors $\left(b_{1}+b_{2}\right)=\operatorname{Flat}(G)$.
(13) For all elements a_{1}, b_{1}, c_{1} of Bags o_{1} and for all elements a_{2}, b_{2}, c_{2} of Bags o_{2} such that $c_{1}=b_{1}-^{\prime} a_{1}$ and $c_{2}=b_{2}-^{\prime} a_{2}$ holds $\left(b_{1}+b_{2}\right)-^{\prime}\left(a_{1}+a_{2}\right)=$ $c_{1}+c_{2}$.
(14) Let b_{1} be an element of Bags o_{1}, b_{2} be an element of Bags o_{2}, and G be a finite sequence of elements of $\left(\left(\operatorname{Bags}\left(o_{1}+o_{2}\right)\right)^{2}\right)^{*}$. Suppose that
(i) $\operatorname{dom} G=\operatorname{Seg}$ len decomp b_{1}, and
(ii) for every natural number i such that $i \in \operatorname{Seg}$ len decomp b_{1} there exist elements $a_{1}^{\prime}, b_{1}^{\prime}$ of Bags o_{1} and there exists a finite sequence F_{1} of elements of $\left(\operatorname{Bags}\left(o_{1}+o_{2}\right)\right)^{2}$ such that $F_{1}=G_{i}$ and π_{i} decomp $b_{1}=\left\langle a_{1}^{\prime}, b_{1}^{\prime}\right\rangle$ and len $F_{1}=$ len decomp b_{2} and for every natural number m such that $m \in$ dom F_{1} there exist elements $a_{1}^{\prime \prime}, b_{1}^{\prime \prime}$ of Bags o_{2} such that π_{m} decomp $b_{2}=$ $\left\langle a_{1}^{\prime \prime}, b_{1}^{\prime \prime}\right\rangle$ and $\pi_{m} F_{1}=\left\langle a_{1}^{\prime}+a_{1}^{\prime \prime}, b_{1}^{\prime}+b_{1}^{\prime \prime}\right\rangle$.
Then $\operatorname{decomp}\left(b_{1}+b_{2}\right)=\operatorname{Flat}(G)$.
(15) Let o_{1}, o_{2} be non empty ordinal numbers and L be an Abelian right zeroed add-associative right complementable unital distributive associative well unital non trivial non empty double loop structure. Then Polynom-Ring $\left(o_{1}, \operatorname{Polynom}-\operatorname{Ring}\left(o_{2}, L\right)\right)$ and Polynom-Ring $\left(o_{1}+o_{2}, L\right)$ are isomorphic.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[10] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[11] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[12] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[14] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[15] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

