On Polynomials with Coefficients in a Ring of Polynomials

Barbara Dzienis University of Białystok

Summary. The main result of the paper is, that the ring of polynomials with o_1 variables and coefficients in the ring of polynomials with o_2 variables and coefficient in a ring L is isomorphic with the ring with $o_1 + o_2$ variables, and coefficients in L.

MML Identifier: POLYNOM6.

The papers [18], [4], [3], [6], [15], [14], [9], [1], [2], [13], [12], [10], [5], [16], [7], [17], [8], and [11] provide the notation and terminology for this paper.

1. Preliminaries

In this paper o_1 , o_2 are ordinal numbers.

Let L_1 , L_2 be non empty double loop structures. Let us note that the predicate L_1 is ring isomorphic to L_2 is reflexive. We introduce L_1 and L_2 are isomorphic as a synonym of L_1 is ring isomorphic to L_2 .

We now state the proposition

(1) Let B be a set. Suppose that for every set x holds $x \in B$ iff there exists an ordinal number o such that $x = o_1 + o$ and $o \in o_2$. Then $o_1 + o_2 = o_1 \cup B$.

Let o_1 be an ordinal number and let o_2 be a non empty ordinal number. Note that $o_1 + o_2$ is non empty and $o_2 + o_1$ is non empty.

One can prove the following proposition

(2) Let n be an ordinal number and a, b be bags of n. Suppose a < b. Then there exists an ordinal number o such that $o \in n$ and a(o) < b(o) and for every ordinal number l such that $l \in o$ holds a(l) = b(l).

> C 2001 University of Białystok ISSN 1426-2630

BARBARA DZIENIS

2. About Bags

Let o_1 , o_2 be ordinal numbers, let a be an element of Bags o_1 , and let b be an element of Bags o_2 . The functor a + b yielding an element of Bags $(o_1 + o_2)$ is defined as follows:

(Def. 1) For every ordinal number o holds if $o \in o_1$, then (a+b)(o) = a(o) and if $o \in (o_1 + o_2) \setminus o_1$, then $(a+b)(o) = b(o-o_1)$.

One can prove the following propositions:

- (3) For every element a of Bags o_1 and for every element b of Bags o_2 such that $o_2 = \emptyset$ holds a + b = a.
- (4) For every element a of Bags o_1 and for every element b of Bags o_2 such that $o_1 = \emptyset$ holds a + b = b.
- (5) For every element b_1 of Bags o_1 and for every element b_2 of Bags o_2 holds $b_1 + b_2 = \text{EmptyBag}(o_1 + o_2)$ iff $b_1 = \text{EmptyBag} o_1$ and $b_2 = \text{EmptyBag} o_2$.
- (6) For every element c of $\text{Bags}(o_1 + o_2)$ there exists an element c_1 of $\text{Bags} o_1$ and there exists an element c_2 of $\text{Bags} o_2$ such that $c = c_1 + c_2$.
- (7) For all elements b_1 , c_1 of Bags o_1 and for all elements b_2 , c_2 of Bags o_2 such that $b_1 + b_2 = c_1 + c_2$ holds $b_1 = c_1$ and $b_2 = c_2$.
- (8) Let n be an ordinal number, L be an Abelian add-associative right zeroed right complementable distributive associative non empty double loop structure, and p, q, r be serieses of n, L. Then (p+q) * r = p * r + q * r.

3. Main Results

Let n be an ordinal number and let L be a right zeroed Abelian addassociative right complementable unital distributive associative non trivial non empty double loop structure. Observe that Polynom-Ring(n, L) is non trivial and distributive.

Let o_1 , o_2 be non empty ordinal numbers, let L be a right zeroed addassociative right complementable unital distributive non trivial non empty double loop structure, and let P be a polynomial of o_1 , Polynom-Ring (o_2, L) . The functor Compress P yields a polynomial of $o_1 + o_2$, L and is defined by the condition (Def. 2).

(Def. 2) Let b be an element of $\text{Bags}(o_1 + o_2)$. Then there exists an element b_1 of $\text{Bags} o_1$ and there exists an element b_2 of $\text{Bags} o_2$ and there exists a polynomial Q_1 of o_2 , L such that $Q_1 = P(b_1)$ and $b = b_1 + b_2$ and (Compress $P(b) = Q_1(b_2)$).

Next we state several propositions:

- (9) For all elements b_1 , c_1 of Bags o_1 and for all elements b_2 , c_2 of Bags o_2 such that $b_1 | c_1$ and $b_2 | c_2$ holds $b_1 + b_2 | c_1 + c_2$.
- (10) Let b be a bag of $o_1 + o_2$, b_1 be an element of Bags o_1 , and b_2 be an element of Bags o_2 . Suppose $b \mid b_1 + b_2$. Then there exists an element c_1 of Bags o_1 and there exists an element c_2 of Bags o_2 such that $c_1 \mid b_1$ and $c_2 \mid b_2$ and $b = c_1 + c_2$.
- (11) For all elements a_1 , b_1 of Bags o_1 and for all elements a_2 , b_2 of Bags o_2 holds $a_1 + a_2 < b_1 + b_2$ iff $a_1 < b_1$ or $a_1 = b_1$ and $a_2 < b_2$.
- (12) Let b_1 be an element of Bags o_1 , b_2 be an element of Bags o_2 , and G be a finite sequence of elements of $(Bags(o_1 + o_2))^*$. Suppose that
 - (i) dom $G = \text{Seg len divisors } b_1$, and
 - (ii) for every natural number i such that $i \in \text{Seg len divisors } b_1$ there exists an element a'_1 of Bags o_1 and there exists a finite sequence F_1 of elements of Bags $(o_1 + o_2)$ such that $F_1 = G_i$ and π_i divisors $b_1 = a'_1$ and len $F_1 =$ len divisors b_2 and for every natural number m such that $m \in \text{dom } F_1$ there exists an element a''_1 of Bags o_2 such that π_m divisors $b_2 = a''_1$ and $\pi_m F_1 = a'_1 + a''_1$.

Then divisors $(b_1 + b_2) = \operatorname{Flat}(G)$.

- (13) For all elements a_1 , b_1 , c_1 of Bags o_1 and for all elements a_2 , b_2 , c_2 of Bags o_2 such that $c_1 = b_1 a_1$ and $c_2 = b_2 a_2$ holds $(b_1 + b_2) (a_1 + a_2) = c_1 + c_2$.
- (14) Let b_1 be an element of Bags o_1 , b_2 be an element of Bags o_2 , and G be a finite sequence of elements of $((Bags(o_1 + o_2))^2)^*$. Suppose that
 - (i) $\operatorname{dom} G = \operatorname{Seg} \operatorname{len} \operatorname{decomp} b_1$, and
 - (ii) for every natural number *i* such that $i \in \text{Seg len decomp } b_1$ there exist elements a'_1, b'_1 of Bags o_1 and there exists a finite sequence F_1 of elements of $(\text{Bags}(o_1 + o_2))^2$ such that $F_1 = G_i$ and $\pi_i \text{ decomp } b_1 = \langle a'_1, b'_1 \rangle$ and len $F_1 = \text{len decomp } b_2$ and for every natural number *m* such that $m \in$ dom F_1 there exist elements a''_1, b''_1 of Bags o_2 such that $\pi_m \text{ decomp } b_2 =$ $\langle a''_1, b''_1 \rangle$ and $\pi_m F_1 = \langle a'_1 + a''_1, b'_1 + b''_1 \rangle$. Then $\text{decomp}(b_1 + b_2) = \text{Flat}(G)$.
- (15) Let o_1 , o_2 be non empty ordinal numbers and L be an Abelian right zeroed add-associative right complementable unital distributive associative well unital non trivial non empty double loop structure. Then Polynom-Ring $(o_1, \text{Polynom-Ring}(o_2, L))$ and Polynom-Ring (o_1+o_2, L) are isomorphic.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281– 290, 1990.

BARBARA DZIENIS

- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- [5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [9] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339– 345, 1996.
- [10] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
 [11] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
- Formalized Mathematics, 2(1):3-11, 1991.
 [12] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
- [13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [14] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [15] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990
- 1990.
 [16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received August 10, 2001