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Summary. The main goal was to prove two facts:

• the gauge is the Go-board of a corresponding cage,
• the left components of the complement of the curve determined by a cage
are monotonic w.r.t. the index of the approximation.

Some auxiliary facts are proved, too. At the end new notions needed for internal
approximation are defined and some useful lemmas are proved.

MML Identifier: JORDAN1H.

The terminology and notation used in this paper have been introduced in the

following articles: [28], [40], [1], [3], [12], [29], [14], [4], [5], [37], [33], [13], [6],

[20], [21], [26], [32], [9], [35], [24], [18], [27], [25], [8], [11], [17], [2], [36], [38], [30],

[10], [16], [41], [43], [42], [19], [23], [34], [39], [31], [15], [44], [22], and [7].

1. Preliminaries

For simplicity, we follow the rules: m, k, j, j1, i, i1, i2, n are natural numbers,

r, s, r1, t are real numbers, C, D are compact non vertical non horizontal non

empty subsets of E2

T
, f is a finite sequence of elements of the carrier of E2

T
, G is

a Go-board, and p is a point of E2

T
.

We now state three propositions:

(1) For all sets A, x, y such that A meets {x, y} holds x ∈ A or y ∈ A.

(2) If r < 0 and r1 ¬ r and 0 ¬ t, then t
r
¬ t

r1
.

(3) For every set X and for every binary relation R such that R is reflexive

in X holds X ⊆ fieldR.
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Let us observe that there exists a set which has a non-empty element.

Let D be a non empty set with a non-empty element. Observe that there

exists a finite sequence of elements of D∗ which is non empty and non-empty.

LetD be a non empty set with non empty elements. One can check that there

exists a finite sequence of elements of D∗ which is non empty and non-empty.

Let F be a non-empty function yielding function. Note that rngκ F (κ) is

non-empty.

Let us note that every finite sequence of elements of R which is increasing

is also one-to-one.

One can prove the following propositions:

(4) For all points p, q of E2

T
holds L(p, q) \ {p, q} is convex.

(5) For all points p, q of E2

T
holds L(p, q) \ {p, q} is connected.

(6) For all points p, q of E2

T
such that p 6= q holds p ∈ L(p, q) \ {p, q}.

(7) For all points p, q of E2

T
such that p 6= q holds L(p, q) \ {p, q} = L(p, q).

(8) Let S be a subset of the carrier of E2

T
and p, q be points of E2

T
. If p 6= q

and L(p, q) \ {p, q} ⊆ S, then L(p, q) ⊆ S.

2. Transforming Finite Sets to Finite Sequences

The binary relation RealOrd on R is defined by:

(Def. 1) RealOrd = {〈〈r, s〉〉 : r ¬ s}.

Next we state two propositions:

(9) If 〈〈r, s〉〉 ∈ RealOrd, then r ¬ s.

(10) fieldRealOrd = R.

Let us note that RealOrd is ordering and linear-order.

The following propositions are true:

(11) RealOrd linearly orders R.

(12) For every finite subset A of R holds SgmX(RealOrd, A) is increasing.

(13) For every finite sequence f of elements of R and for every finite subset

A of R such that A = rng f holds SgmX(RealOrd, A) = Inc(f).

Let A be a finite subset of R. One can verify that SgmX(RealOrd, A) is

increasing.

Next we state two propositions:

(14) Let X be a non empty set, A be a finite subset of X, and R be an order

in X. If R linearly orders A, then len SgmX(R,A) = cardA.

(15) For every non empty set X and for every finite subset A of X and for

every linear-order order R in X holds len SgmX(R, A) = cardA.
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3. On the Construction of Go-boards

Next we state two propositions:

(16) For every finite sequence f of elements of E2

T
holds X-coordinate(f) =

proj1 ·f.

(17) For every finite sequence f of elements of E2

T
holds Y-coordinate(f) =

proj2 ·f.

Let D be a non empty set and let M be a finite sequence of elements of D∗.

Then ValuesM is a subset of D.

LetD be a non empty set with non empty elements and letM be a non empty

non-empty finite sequence of elements of D∗. One can verify that ValuesM is

non empty.

The following propositions are true:

(18) For every non empty set D and for every matrixM over D and for every

i such that i ∈ SegwidthM holds rng(M¤,i) ⊆ ValuesM.

(19) For every non empty set D and for every matrixM over D and for every

i such that i ∈ domM holds rng Line(M, i) ⊆ ValuesM.

(20) For every column X-increasing non empty yielding matrix G over E2

T

holds lenG ¬ card(proj1◦ValuesG).

(21) For every lineX-constant matrixG over E2

T
holds card(proj1◦ValuesG) ¬

lenG.

(22) For every line X-constant column X-increasing non empty yielding ma-

trix G over E2

T
holds lenG = card(proj1◦ValuesG).

(23) For every line Y-increasing non empty yielding matrix G over E2

T
holds

widthG ¬ card(proj2◦ValuesG).

(24) For every columnY-constant non empty yielding matrix G over E2

T
holds

card(proj2◦ValuesG) ¬ widthG.

(25) For every column Y-constant line Y-increasing non empty yielding ma-

trix G over E2

T
holds widthG = card(proj2◦ValuesG).

4. More about Go-boards

Next we state several propositions:

(26) For every standard special circular sequence f such that 1 ¬ k and

k + 1 ¬ len f holds L(f, k) ⊆ leftcell(f, k).

(27) For every standard special circular sequence f such that 1 ¬ k and

k + 1 ¬ len f holds left cell(f, k, the Go-board of f) = leftcell(f, k).

(28) For every standard special circular sequence f such that 1 ¬ k and

k + 1 ¬ len f holds L(f, k) ⊆ rightcell(f, k).
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(29) For every standard special circular sequence f such that 1 ¬ k and

k + 1 ¬ len f holds right cell(f, k, the Go-board of f) = rightcell(f, k).

(30) Let P be a subset of E2

T
and f be a non constant standard special circular

sequence. If P is a component of (L̃(f))c, then P = RightComp(f) or

P = LeftComp(f).

(31) Let f be a non constant standard special circular sequence. Suppose

f is a sequence which elements belong to G. Let given k. If 1 ¬ k

and k + 1 ¬ len f, then Int right cell(f, k, G) ⊆ RightComp(f) and

Int left cell(f, k, G) ⊆ LeftComp(f).

(32) Let i1, j1, i2, j2 be natural numbers and G be a Go-board. Suppose 〈〈i1,

j1〉〉 ∈ the indices of G and 〈〈i2, j2〉〉 ∈ the indices of G and G ◦ (i1, j1) =

G ◦ (i2, j2). Then i1 = i2 and j1 = j2.

(33) Let f be a finite sequence of elements of E2

T
and M be a Go-board.

Suppose f is a sequence which elements belong to M . Then mid(f, i1, i2)

is a sequence which elements belong to M .

Let us mention that every Go-board is non empty and non-empty.

The following propositions are true:

(34) For every Go-board G such that 1 ¬ i and i ¬ lenG holds

(SgmX(RealOrd,proj1◦ValuesG))(i) = (G ◦ (i, 1))1.

(35) For every Go-board G such that 1 ¬ j and j ¬ widthG holds

(SgmX(RealOrd,proj2◦ValuesG))(j) = (G ◦ (1, j))2.

(36) Let f be a non empty finite sequence of elements of E2

T
and G be a

Go-board. Suppose that

(i) f is a sequence which elements belong to G,

(ii) there exists i such that 〈〈1, i〉〉 ∈ the indices of G and G ◦ (1, i) ∈ rng f,

and

(iii) there exists i such that 〈〈 lenG, i〉〉 ∈ the indices of G and G◦(lenG, i) ∈

rng f.

Then proj1◦ rng f = proj1◦ValuesG.

(37) Let f be a non empty finite sequence of elements of E2

T
and G be a

Go-board. Suppose that

(i) f is a sequence which elements belong to G,

(ii) there exists i such that 〈〈i, 1〉〉 ∈ the indices of G and G ◦ (i, 1) ∈ rng f,

and

(iii) there exists i such that 〈〈i, widthG〉〉 ∈ the indices of G and G ◦

(i,widthG) ∈ rng f.

Then proj2◦ rng f = proj2◦ValuesG.

Let G be a Go-board. Observe that ValuesG is non empty.

One can prove the following three propositions:

(38) For every Go-board G holds G = the Go-board of SgmX(RealOrd,
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proj1◦ValuesG), SgmX(RealOrd,proj2◦ValuesG).

(39) Let f be a non empty finite sequence of elements of E2

T
and G

be a Go-board. If proj1◦ rng f = proj1◦ValuesG and proj2◦ rng f =

proj2◦ValuesG, then G = the Go-board of f .

(40) Let f be a non empty finite sequence of elements of E2

T
and G be a

Go-board. Suppose that

(i) f is a sequence which elements belong to G,

(ii) there exists i such that 〈〈1, i〉〉 ∈ the indices of G and G ◦ (1, i) ∈ rng f,

(iii) there exists i such that 〈〈i, 1〉〉 ∈ the indices of G and G ◦ (i, 1) ∈ rng f,

(iv) there exists i such that 〈〈 lenG, i〉〉 ∈ the indices of G and G◦(lenG, i) ∈

rng f, and

(v) there exists i such that 〈〈i, widthG〉〉 ∈ the indices of G and G ◦

(i,widthG) ∈ rng f.

Then G = the Go-board of f .

5. More about Gauges

The following propositions are true:

(41) If m ¬ n and 1 ¬ i and i + 1 ¬ lenGauge(C, n), then ⌊ i−2

2n−
′
m

+ 2⌋ is a

natural number.

(42) If m ¬ n and 1 ¬ i and i + 1 ¬ lenGauge(C, n), then 1 ¬ ⌊ i−2

2n−
′
m

+ 2⌋

and ⌊ i−2

2n−
′
m

+ 2⌋+ 1 ¬ lenGauge(C, m).

(43) Suppose m ¬ n and 1 ¬ i and i+1 ¬ lenGauge(C, n) and 1 ¬ j and j +

1 ¬ widthGauge(C, n). Then there exist i1, j1 such that i1 = ⌊ i−2

2n−
′
m

+ 2⌋

and j1 = ⌊ j−2

2n−
′
m

+2⌋ and cell(Gauge(C, n), i, j) ⊆ cell(Gauge(C, m), i1, j1).

(44) Suppose m ¬ n and 1 ¬ i and i + 1 ¬ lenGauge(C, n) and 1 ¬ j and

j + 1 ¬ widthGauge(C, n). Then there exist i1, j1 such that 1 ¬ i1 and

i1 + 1 ¬ lenGauge(C,m) and 1 ¬ j1 and j1 + 1 ¬ widthGauge(C,m) and

cell(Gauge(C, n), i, j) ⊆ cell(Gauge(C,m), i1, j1).

(45) If i ¬ lenGauge(C, n), then cell(Gauge(C, n), i, 0) ⊆ UBDC.

(46) If i ¬ lenGauge(C, n), then cell(Gauge(C, n), i,widthGauge(C, n)) ⊆

UBDC.

(47) For every subset P of E2

T
such that P is Bounded holds UBDP is not

Bounded.

(48) Let f be a non constant standard special circular sequence. If f
p
ª is

clockwise oriented, then f is clockwise oriented.

(49) For every non constant standard special circular sequence f such that

LeftComp(f) = UBD L̃(f) holds f is clockwise oriented.
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6. More about Cages

The following propositions are true:

(50) LeftComp(Cage(C, i))c = RightComp(Cage(C, i)).

(51) If C is connected, then the Go-board of Cage(C, n) = Gauge(C, n).

(52) If C is connected, then N-minC ∈ rightcell(Cage(C, n), 1).

(53) If C is connected and i ¬ j, then L̃(Cage(C, j)) ⊆ RightComp(Cage(C, i)).

(54) If C is connected and i ¬ j, then LeftComp(Cage(C, i)) ⊆

LeftComp(Cage(C, j)).

(55) If C is connected and i ¬ j, then RightComp(Cage(C, j)) ⊆

RightComp(Cage(C, i)).

7. Preparing the Internal Approximation

Let us consider C, n. The functor X-SpanStart(C, n) yielding a natural number

is defined as follows:

(Def. 2) X-SpanStart(C, n) = 2n−′1 + 2.

Next we state three propositions:

(56) X-SpanStart(C, n) = CenterGauge(C, n).

(57) 2 < X-SpanStart(C, n) and X-SpanStart(C, n) < lenGauge(C, n).

(58) 1 ¬ X-SpanStart(C, n) −′ 1 and X-SpanStart(C, n) −′ 1 <

lenGauge(C, n).

Let us consider C, n. We say that n is sufficiently large for C if and only if:

(Def. 3) There exists j such that j < widthGauge(C, n) and cell(Gauge(C, n),

X-SpanStart(C, n)−′ 1, j) ⊆ BDDC.

One can prove the following propositions:

(59) If n is sufficiently large for C, then n ­ 1.

(60) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1 −
′ 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).
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(61) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).

(62) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),

(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2, j1 −
′ 1〉〉 ∈ the indices of Gauge(C, n).

(63) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that

(i) left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),

(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1 + 1, j2〉〉 ∈ the indices of Gauge(C, n).

(64) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) front left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1, j1 + 2〉〉 ∈ the indices of Gauge(C, n).
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(65) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) front left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 2, j1〉〉 ∈ the indices of Gauge(C, n).

(66) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) front left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),

(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2 −
′ 1, j1〉〉 ∈ the indices of Gauge(C, n).

(67) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that

(i) front left cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),

(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1, j2 −
′ 1〉〉 ∈ the indices of Gauge(C, n).

(68) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) front right cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1 + 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).
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(69) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that

(i) front right cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),

(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 1, j1 −
′ 1〉〉 ∈ the indices of Gauge(C, n).

(70) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) front right cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),

(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2, j1 + 1〉〉 ∈ the indices of Gauge(C, n).

(71) Let C be a compact non vertical non horizontal non empty subset of

E2

T
, given n, and f be a finite sequence of elements of E2

T
. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that

(i) front right cell(f, len f −′ 1,Gauge(C, n)) meets C,

(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),

(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),

(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and

(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1 −
′ 1, j2〉〉 ∈ the indices of Gauge(C, n).
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