Some Remarks on Finite Sequences on $Go-boards^1$

Adam Naumowicz University of Białystok

Summary. This paper shows some properties of finite sequences on Goboards. It also provides the partial correspondence between two ways of decomposition of curves induced by cages.

MML Identifier: JORDAN1F.

The articles [20], [24], [8], [19], [9], [2], [3], [22], [4], [15], [14], [16], [18], [5], [7], [13], [1], [6], [12], [17], [23], [21], [10], and [11] provide the terminology and notation for this paper.

We follow the rules: i, j, k, n denote natural numbers, f denotes a finite sequence of elements of the carrier of \mathcal{E}_{T}^{2} , and G denotes a Go-board.

We now state several propositions:

- (1) Suppose that
- (i) f is a sequence which elements belong to G,
- (ii) $\mathcal{L}(G \circ (i, j), G \circ (i, k))$ meets $\mathcal{L}(f)$,
- (iii) $\langle i, j \rangle \in$ the indices of G,
- (iv) $\langle i, k \rangle \in$ the indices of G, and
- (v) $j \leq k$.

Then there exists n such that $j \leq n$ and $n \leq k$ and $(G \circ (i, n))_2 = \inf(\operatorname{proj2}^{\circ}(\mathcal{L}(G \circ (i, j), G \circ (i, k)) \cap \widetilde{\mathcal{L}}(f))).$

- (2) Suppose that
- (i) f is a sequence which elements belong to G,
- (ii) $\mathcal{L}(G \circ (i, j), G \circ (i, k))$ meets $\widetilde{\mathcal{L}}(f)$,
- (iii) $\langle i, j \rangle \in$ the indices of G,
- (iv) $\langle i, k \rangle \in$ the indices of G, and

C 2001 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

(v) $j \leq k$.

Then there exists n such that $j \leq n$ and $n \leq k$ and $(G \circ (i, n))_2 = \sup(\operatorname{proj2}^{\circ}(\mathcal{L}(G \circ (i, j), G \circ (i, k)) \cap \widetilde{\mathcal{L}}(f))).$

- (3) Suppose that
- (i) f is a sequence which elements belong to G,
- (ii) $\mathcal{L}(G \circ (j, i), G \circ (k, i))$ meets $\mathcal{L}(f)$,
- (iii) $\langle j, i \rangle \in$ the indices of G,
- (iv) $\langle k, i \rangle \in$ the indices of G, and

(v) $j \leq k$. Then there exists n such that $j \leq n$ and $n \leq k$ and $(G \circ (n, i))_{\mathbf{1}} = \inf(\operatorname{proj1}^{\circ}(\mathcal{L}(G \circ (j, i), G \circ (k, i)) \cap \widetilde{\mathcal{L}}(f))).$

- (4) Suppose that
- (i) f is a sequence which elements belong to G,
- (ii) $\mathcal{L}(G \circ (j, i), G \circ (k, i))$ meets $\widetilde{\mathcal{L}}(f)$,
- (iii) $\langle j, i \rangle \in$ the indices of G,
- (iv) $\langle k, i \rangle \in$ the indices of G, and
- (v) $j \leq k$.

Then there exists n such that $j \leq n$ and $n \leq k$ and $(G \circ (n, i))_{\mathbf{1}} = \sup(\operatorname{proj1}^{\circ}(\mathcal{L}(G \circ (j, i), G \circ (k, i)) \cap \widetilde{\mathcal{L}}(f))).$

- (5) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ and for every natural number n holds $(\mathrm{UpperSeq}(C, n))_1 = \mathrm{W-min} \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)).$
- (6) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ and for every natural number n holds $(\mathrm{LowerSeq}(C, n))_1 = \mathrm{E}\operatorname{-max} \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)).$
- (7) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ and for every natural number n holds $(\mathrm{UpperSeq}(C,n))_{\mathrm{len}\,\mathrm{UpperSeq}(C,n)} =$ $\mathrm{E}\operatorname{-max}\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n)).$
- (8) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^2$ and for every natural number n holds $(\mathrm{LowerSeq}(C, n))_{\mathrm{len \, LowerSeq}(C, n)} =$ W-min $\widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)).$
- (9) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n be a natural number. Then $\widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n)) = \mathrm{UpperArc}\,\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))$ and $\widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n)) = \mathrm{LowerArc}\,\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))$ or $\widetilde{\mathcal{L}}(\mathrm{UpperSeq}(C,n)) = \mathrm{LowerArc}\,\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))$ and $\widetilde{\mathcal{L}}(\mathrm{LowerSeq}(C,n)) = \mathrm{UpperArc}\,\widetilde{\mathcal{L}}(\mathrm{Cage}(C,n))$.

We adopt the following convention: C is a compact non vertical non horizontal non empty subset of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve, p is a point of \mathcal{E}_{T}^{2} , and i_{1} , j_{1} , i_{2} , j_{2} are natural numbers.

Next we state four propositions:

(10) Let C be a connected compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n be a natural number. Then UpperSeq(C, n) is a sequence which elements belong to Gauge(C, n).

814

- (11) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose that
 - (i) f is a sequence which elements belong to G,
- (ii) there exist i, j such that $\langle i, j \rangle \in$ the indices of G and $p = G \circ (i, j)$, and
- (iii) for all i_1, j_1, i_2, j_2 such that $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the indices of G and $p = G \circ (i_1, j_1)$ and $f_1 = G \circ (i_2, j_2)$ holds $|i_2 i_1| + |j_2 j_1| = 1$.

Then $\langle p \rangle \cap f$ is a sequence which elements belong to G.

- (12) Let C be a connected compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and n be a natural number. Then $\mathrm{LowerSeq}(C, n)$ is a sequence which elements belong to $\mathrm{Gauge}(C, n)$.
- (13) Suppose $p_1 = \frac{W-bound C+E-bound C}{2}$ and $p_2 = \inf(\operatorname{proj2^{\circ}}(\mathcal{L}(\operatorname{Gauge}(C,1) \circ (\operatorname{Center} \operatorname{Gauge}(C,1),1), \operatorname{Gauge}(C,1) \circ (\operatorname{Center} \operatorname{Gauge}(C,1), \operatorname{width} \operatorname{Gauge}(C,1))) \cap \operatorname{UpperArc} \widetilde{\mathcal{L}}(\operatorname{Cage}(C,i+1)))$. Then there exists j such that $1 \leq j$ and $j \leq \operatorname{width} \operatorname{Gauge}(C,i+1)$ and $p = \operatorname{Gauge}(C,i+1) \circ (\operatorname{Center} \operatorname{Gauge}(C,i+1),j)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [7] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
- [8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [14] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501–509, 2001.
- [15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [16] Robert Milewski. Upper and lower sequence of a cage. Formalized Mathematics, 9(4):787– 790, 2001.
- [17] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

ADAM NAUMOWICZ

- [18] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [19] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [20] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [22] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received August 29, 2001