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Summary. This paper shows some properties of finite sequences on Go-
boards. It also provides the partial correspondence between two ways of decom-
position of curves induced by cages.
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The articles [20], [24], [8], [19], [9], [2], [3], [22], [4], [15], [14], [16], [18], [5],

[7], [13], [1], [6], [12], [17], [23], [21], [10], and [11] provide the terminology and

notation for this paper.

We follow the rules: i, j, k, n denote natural numbers, f denotes a finite

sequence of elements of the carrier of E2
T, and G denotes a Go-board.

We now state several propositions:

(1) Suppose that

(i) f is a sequence which elements belong to G,

(ii) L(G ◦ (i, j), G ◦ (i, k)) meets L̃(f),

(iii) 〈〈i, j〉〉 ∈ the indices of G,

(iv) 〈〈i, k〉〉 ∈ the indices of G, and

(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (i, n))2 =

inf(proj2◦(L(G ◦ (i, j), G ◦ (i, k)) ∩ L̃(f))).

(2) Suppose that

(i) f is a sequence which elements belong to G,

(ii) L(G ◦ (i, j), G ◦ (i, k)) meets L̃(f),

(iii) 〈〈i, j〉〉 ∈ the indices of G,

(iv) 〈〈i, k〉〉 ∈ the indices of G, and
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(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (i, n))2 =

sup(proj2◦(L(G ◦ (i, j), G ◦ (i, k)) ∩ L̃(f))).

(3) Suppose that

(i) f is a sequence which elements belong to G,

(ii) L(G ◦ (j, i), G ◦ (k, i)) meets L̃(f),

(iii) 〈〈j, i〉〉 ∈ the indices of G,

(iv) 〈〈k, i〉〉 ∈ the indices of G, and

(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (n, i))1 =

inf(proj1◦(L(G ◦ (j, i), G ◦ (k, i)) ∩ L̃(f))).

(4) Suppose that

(i) f is a sequence which elements belong to G,

(ii) L(G ◦ (j, i), G ◦ (k, i)) meets L̃(f),

(iii) 〈〈j, i〉〉 ∈ the indices of G,

(iv) 〈〈k, i〉〉 ∈ the indices of G, and

(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (n, i))1 =

sup(proj1◦(L(G ◦ (j, i), G ◦ (k, i)) ∩ L̃(f))).

(5) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds (UpperSeq(C, n))1 =W-min L̃(Cage(C, n)).

(6) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds (LowerSeq(C, n))1 = E-max L̃(Cage(C, n)).

(7) For every compact non vertical non horizontal subset C of E2
T and

for every natural number n holds (UpperSeq(C, n))lenUpperSeq(C,n) =

E-max L̃(Cage(C, n)).

(8) For every compact non vertical non horizontal subset C of E2
T and

for every natural number n holds (LowerSeq(C, n))len LowerSeq(C,n) =

W-min L̃(Cage(C, n)).

(9) Let C be a compact non vertical non horizontal subset of E2
T and n be a

natural number. Then L̃(UpperSeq(C, n)) = UpperArc L̃(Cage(C, n)) and

L̃(LowerSeq(C, n)) = LowerArc L̃(Cage(C, n)) or L̃(UpperSeq(C, n)) =

LowerArc L̃(Cage(C, n)) and L̃(LowerSeq(C, n)) = UpperArc L̃(Cage(C, n)).

We adopt the following convention: C is a compact non vertical non hori-

zontal non empty subset of E2
T satisfying conditions of simple closed curve, p is

a point of E2
T, and i1, j1, i2, j2 are natural numbers.

Next we state four propositions:

(10) Let C be a connected compact non vertical non horizontal subset of E2
T

and n be a natural number. Then UpperSeq(C, n) is a sequence which

elements belong to Gauge(C, n).
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(11) Let f be a finite sequence of elements of E2
T. Suppose that

(i) f is a sequence which elements belong to G,

(ii) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of G and p = G ◦ (i, j),

and

(iii) for all i1, j1, i2, j2 such that 〈〈i1, j1〉〉 ∈ the indices of G and 〈〈i2, j2〉〉 ∈ the

indices ofG and p = G◦(i1, j1) and f1 = G◦(i2, j2) holds |i2−i1|+|j2−j1| =

1.

Then 〈p〉 a f is a sequence which elements belong to G.

(12) Let C be a connected compact non vertical non horizontal subset of E2
T

and n be a natural number. Then LowerSeq(C, n) is a sequence which

elements belong to Gauge(C, n).

(13) Suppose p1 = W-boundC+E-boundC
2 and p2 = inf(proj2◦(L(Gauge(C, 1) ◦

(CenterGauge(C, 1), 1),Gauge(C, 1) ◦ (CenterGauge(C, 1),widthGauge

(C, 1))) ∩ UpperArc L̃(Cage(C, i + 1)))). Then there exists j such that

1 ¬ j and j ¬ widthGauge(C, i + 1) and p = Gauge(C, i + 1) ◦

(CenterGauge(C, i + 1), j).
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