Upper and Lower Sequence of a Cage ${ }^{1}$

Robert Milewski
University of Białystok

MML Identifier: JORDAN1E.

The notation and terminology used in this paper are introduced in the following papers: [21], [7], [15], [8], [2], [19], [4], [17], [3], [14], [13], [6], [1], [5], [11], [22], [12], [18], [20], [16], [9], and [10].

1. Preliminaries

In this paper n is a natural number.
One can prove the following propositions:
(1) For every non empty subset X of \mathcal{E}_{T}^{2} and for every compact subset Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ holds N -bound $X \leqslant \mathrm{~N}$-bound Y.
(2) For every non empty subset X of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every compact subset Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ holds E-bound $X \leqslant$ E-bound Y.
(3) For every non empty subset X of $\mathcal{E}_{\text {T }}^{2}$ and for every compact subset Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ holds S -bound $X \geqslant \mathrm{~S}$-bound Y.
(4) For every non empty subset X of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every compact subset Y of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $X \subseteq Y$ holds W -bound $X \geqslant \mathrm{~W}$-bound Y.
(5) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is in the area of g. Let p be an element of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \operatorname{rng} f$, then $f-: p$ is in the area of g.
(6) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is in the area of g. Let p be an element of the carrier of $\mathcal{E}_{\mathrm{T}}^{\mathcal{2}}$. If $p \in \operatorname{rng} f$, then $f:-p$ is in the area of g.

[^0](7) For every non empty finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \widetilde{\mathcal{L}}(f)$ holds $\rfloor p, f \neq \emptyset$.
(8) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and len $\lfloor f, p \geqslant 2$, then $f(1) \in \widetilde{\mathcal{L}}(\downharpoonright f, p)$.
(9) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is a special sequence. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$, then $f(1) \notin$ $\widetilde{\mathcal{L}}(\operatorname{mid}(f, \operatorname{Index}(p, f)+1$, len $f))$.
(10) For all natural numbers i, j, m, n such that $i+j=m+n$ and $i \leqslant m$ and $j \leqslant n$ holds $i=m$.
(11) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is a special sequence. Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $p \in \widetilde{\mathcal{L}}(f)$ and $f(1) \in \widetilde{\mathcal{L}}(\downharpoonleft p, f)$, then $f(1)=p$.

2. About Upper and Lower Sequence of a Cage

Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. The functor $\operatorname{UpperSeq}(C, n)$ yielding a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 1) $\operatorname{UpperSeq}(C, n)=\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}\right)-: \operatorname{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
The following proposition is true
(12) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds len $\operatorname{UpperSeq}(C, n)=$ $(\operatorname{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))) \leftarrow\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min } \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))\right.$.
Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. The functor LowerSeq (C, n) yields a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 2) LowerSeq $(C, n)=\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}\right):-\operatorname{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
Next we state the proposition
(13) Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and n be a natural number. Then len LowerSeq $(C, n)=$ $\left(\operatorname{len}\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))}\right)-(\operatorname{E-max} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))) \varphi\right.$ $\left.\left((\operatorname{Cage}(C, n))_{\circlearrowleft}^{\mathrm{W}-\min } \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))\right)\right)+1$.
Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Note that UpperSeq (C, n) is non empty and $\operatorname{LowerSeq}(C, n)$ is non empty.

Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Observe that $\operatorname{UpperSeq}(C, n)$ is one-to-one special unfolded and s.n.c. and LowerSeq (C, n) is one-to-one special unfolded and s.n.c..

The following propositions are true:
(14) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds len UpperSeq $(C, n)+\operatorname{len} \operatorname{LowerSeq}(C, n)=$ len Cage $(C, n)+1$.
(15) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds $(\operatorname{Cage}(C, n))_{\circlearrowleft}^{\text {W-min }} \tilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\operatorname{UpperSeq}(C, n) \wedge \operatorname{LowerSeq}(C, n)$.
(16) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n) \times$ LowerSeq $(C, n))$.
(17) For every compact non vertical non horizontal non empty subset ${ }_{\sim}^{C}$ of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n)) \cup \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))$.
(18) For every simple closed curve P holds $\mathrm{W}-\min P \neq \mathrm{E}-\mathrm{min} P$.
(19) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds len $\operatorname{UpperSeq}(C, n) \geqslant 3$ and len LowerSeq $(C, n) \geqslant 3$.
Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Observe that $\operatorname{UpperSeq}(C, n)$ is special sequence and LowerSeq (C, n) is special sequence.

Next we state several propositions:
(20) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every natural number n holds $\widetilde{\mathcal{L}}(\operatorname{UpperSeq}(C, n)) \cap \widetilde{\mathcal{L}}(\operatorname{LowerSeq}(C, n))=$ $\{\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, E-max $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))\}$.
(21) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{UpperSeq}(C, n)$ is in the area of Cage (C, n).
(22) For every compact non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\operatorname{LowerSeq}(C, n)$ is in the area of $\operatorname{Cage}(C, n)$.
(23) For every compact connected non vertical non horizontal subset C of \mathcal{E}_{T}^{2} holds $\left((\operatorname{Cage}(C, n))_{2}\right)_{2}=\mathrm{N}$-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(24) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and k be a natural number. If $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} \operatorname{Cage}(C, n)$ and $(\operatorname{Cage}(C, n))_{k}=\operatorname{E}-\max \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $\left((\operatorname{Cage}(C, n))_{k+1}\right)_{1}=$ E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(25) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and k be a natural number. If $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} \operatorname{Cage}(C, n)$ and $(\operatorname{Cage}(C, n))_{k}=S-m a x \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $\left((\operatorname{Cage}(C, n))_{k+1}\right)_{2}=$ S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(26) Let C be a compact connected non vertical non horizontal subset of
$\mathcal{E}_{\mathrm{T}}^{2}$ and k be a natural number. If $1 \leqslant k$ and $k+1 \leqslant$ len Cage (C, n) and $(\operatorname{Cage}(C, n))_{k}=\mathrm{W}-\min \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $\left((\operatorname{Cage}(C, n))_{k+1}\right)_{1}=$ W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19-24, 2001.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[13] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[14] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[15] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[18] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 8, 2001

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

