On the Simple Closed Curve Property of the Circle and the Fashoda Meet Theorem

Yatsuka Nakamura Shinshu University Nagano

Summary. First, we prove the fact that the circle is the simple closed curve, which was defined as a curve homeomorphic to the square. For this proof, we introduce a mapping which is a homeomorphism from 2-dimensional plane to itself. This mapping maps the square to the circle. Secondly, we prove the Fashoda meet theorem for the circle using this homeomorphism.

MML Identifier: JGRAPH_3.

The terminology and notation used in this paper have been introduced in the following articles: [17], [5], [7], [1], [2], [11], [3], [12], [4], [13], [10], [18], [15], [16], [14], [8], [9], and [6].

1. Preliminaries

In this paper x, y, z, u, a are real numbers.

We now state a number of propositions:

- (1) If $x^2 = y^2$, then x = y or x = -y.
- (2) If $x^2 = 1$, then x = 1 or x = -1.
- (3) If $0 \leq x$ and $x \leq 1$, then $x^2 \leq x$.
- (4) If $a \ge 0$ and $(x-a) \cdot (x+a) \le 0$, then $-a \le x$ and $x \le a$.
- (5) If $x^2 1 \leq 0$, then $-1 \leq x$ and $x \leq 1$.
- (6) x < y and x < z iff $x < \min(y, z)$.
- (7) If 0 < x, then $\frac{x}{3} < x$ and $\frac{x}{4} < x$.
- (8) If $x \ge 1$, then $\sqrt{x} \ge 1$ and if x > 1, then $\sqrt{x} > 1$.

C 2001 University of Białystok ISSN 1426-2630

YATSUKA NAKAMURA

- (9) If $x \leq y$ and $z \leq u$, then $[y, z] \subseteq [x, u]$.
- (10) For every point p of \mathcal{E}_{T}^{2} holds $|p| = \sqrt{(p_{1})^{2} + (p_{2})^{2}}$ and $|p|^{2} = (p_{1})^{2} + (p_{2})^{2}$ $(p_2)^2$.
- (11) For every function f and for all sets B, C holds $(f \upharpoonright B)^{\circ}C = f^{\circ}(C \cap B)$.
- (12) Let X be a topological structure, Y be a non empty topological structure, f be a map from X into Y, and P be a subset of X. Then $f \upharpoonright P$ is a map from $X \upharpoonright P$ into Y.
- (13) Let X, Y be non empty topological spaces, p_0 be a point of X, D be a non empty subset of X, E be a non empty subset of Y, and f be a map from X into Y. Suppose that $D^{c} = \{p_0\}$ and $E^{c} = \{f(p_0)\}$ and X is a T_2 space and Y is a T_2 space and for every point p of $X \upharpoonright D$ holds $f(p) \neq f(p_0)$ and there exists a map h from $X \upharpoonright D$ into $Y \upharpoonright E$ such that $h = f \upharpoonright D$ and h is continuous and for every subset V of Y such that $f(p_0) \in V$ and V is open there exists a subset W of X such that $p_0 \in W$ and W is open and $f^{\circ}W \subseteq V$. Then f is continuous.

2. The Circle is a Simple Closed Curve

In the sequel p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$.

The function SqCirc from the carrier of \mathcal{E}_{T}^{2} into the carrier of \mathcal{E}_{T}^{2} is defined by the condition (Def. 1).

- (Def. 1) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. Then
 - if $p = 0_{\mathcal{E}^2_{\mathrm{T}}}$, then $\operatorname{SqCirc}(p) = p$, (i)

 - (i) If $p = 0_{\mathcal{E}_{\mathrm{T}}^2}$, then $\mathrm{EqChC}(p) = p$, (ii) If $p_2 \leqslant p_1$ and $-p_1 \leqslant p_2$ or $p_2 \geqslant p_1$ and $p_2 \leqslant -p_1$ and if $p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$, then $\mathrm{SqCirc}(p) = [\frac{p_1}{\sqrt{1+(\frac{p_2}{p_1})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_2}{p_1})^2}}]$, and (iii) If $p_2 \leqslant p_1$ or $-p_1 \leqslant p_2$ but $p_2 \gtrless p_1$ or $p_2 \leqslant -p_1$ and $p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$, then $\mathrm{SqCirc}(p) = [\frac{p_1}{\sqrt{1+(\frac{p_1}{p_2})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_1}{p_2})^2}}]$.

We now state a number of propositions:

- (14) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then
 - (i) if $p_1 \leqslant p_2$ and $-p_2 \leqslant p_1$ or $p_1 \geqslant p_2$ and $p_1 \leqslant -p_2$, then SqCirc(p) = $\left[\frac{p_1}{\sqrt{1+(\frac{p_1}{p_2})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_1}{p_2})^2}}\right]$, and
 - (ii) if $p_1 \not\leq p_2$ or $-p_2 \not\leq p_1$ and if $p_1 \not\geq p_2$ or $p_1 \not\leq -p_2$, then SqCirc(p) = $[\frac{p_1}{\sqrt{1+(\frac{p_2}{p_1})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_2}{p_1})^2}}].$
- (15) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous and for every point q of X there exists a real number r such that $f_1(q) = r$ and $r \ge 0$. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = \sqrt{r_1}$ and g is continuous.

- (16) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = (\frac{r_1}{r_2})^2$, and
- (ii) g is continuous.
- (17) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = 1 + (\frac{r_1}{r_2})^2$, and
 - (ii) g is continuous.
- (18) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \sqrt{1 + (\frac{r_1}{r_2})^2}$, and
 - (ii) g is continuous.
- (19) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_1}{\sqrt{1 + (\frac{r_1}{r_2})^2}}$, and
- (ii) g is continuous.
- (20) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_2}{\sqrt{1 + (\frac{r_1}{r_2})^2}}$, and
- (ii) g is continuous.
- (21) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = \frac{p_1}{\sqrt{1 + (\frac{p_2}{p_1})^2}}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \neq 0$.

Then f is continuous.

(22) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that

YATSUKA NAKAMURA

- (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = \frac{p_2}{\sqrt{1 + (\frac{p_2}{p_1})^2}}$, and
- (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \neq 0$.

Then f is continuous.

- (23) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = \frac{p_2}{\sqrt{1 + (\frac{p_1}{p_2})^2}}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \neq 0$.

Then f is continuous.

- (24) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = \frac{p_1}{\sqrt{1 + (\frac{p_1}{p_2})^2}}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \neq 0$.

Then f is continuous.

- (25) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (26) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.

In this article we present several logical schemes. The scheme TopIncl concerns a unary predicate \mathcal{P} , and states that:

 $\{p: \mathcal{P}[p] \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\} \subseteq (\text{the carrier of } \mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ for all values of the parameters.

The scheme *TopInter* concerns a unary predicate \mathcal{P} , and states that:

 $\{p: \mathcal{P}[p] \land p \neq 0_{\mathcal{E}^2_{\mathrm{T}}}\} = \{p_7; p_7 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: \mathcal{P}[p_7]\} \cap$

((the carrier of $\mathcal{E}_{\mathrm{T}}^2$) \ { $0_{\mathcal{E}_{\mathrm{T}}^2}$ })

for all values of the parameters.

Next we state several propositions:

(27) Let B_0 be a subset of $\mathcal{E}^2_{\mathrm{T}}$, K_0 be a subset of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0$, and f be a map from $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 =$ (the

carrier of $\mathcal{E}_{\mathrm{T}}^2 \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous and K_0 is closed.

- (28) Let B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous and K_0 is closed.
- (29) Let D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $D^{\mathrm{c}} = \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then there exists a map h from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright D$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright D$ such that $h = \operatorname{SqCirc} \upharpoonright D$ and h is continuous.
- (30) For every non empty subset D of $\mathcal{E}_{\mathrm{T}}^2$ such that D = (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ holds $D^{\mathrm{c}} = \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$.
- (31) There exists a map h from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ such that $h = \operatorname{SqCirc}$ and h is continuous.
- (32) SqCirc is one-to-one.

Let us observe that SqCirc is one-to-one.

One can prove the following propositions:

- (33) Let K_2 , C_1 be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
- (i) $K_2 = \{q : -1 = q_1 \land -1 \leqslant q_2 \land q_2 \leqslant 1 \lor q_1 = 1 \land -1 \leqslant q_2 \land q_2 \leqslant 1 \lor -1 = q_2 \land -1 \leqslant q_1 \land q_1 \leqslant 1 \lor 1 = q_2 \land -1 \leqslant q_1 \land q_1 \leqslant 1\}$, and
- (ii) $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: |p_2| = 1\}.$ Then SqCirc[°] $K_2 = C_1.$
- (34) Let P, K_2 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_2$ into $(\mathcal{E}_T^2) \upharpoonright P$. Suppose that
 - (i) $K_2 = \{q : -1 = q_1 \land -1 \leqslant q_2 \land q_2 \leqslant 1 \lor q_1 = 1 \land -1 \leqslant q_2 \land q_2 \leqslant q_2 q_2 \leqslant q_2 % q_2 \leqslant q_2 % q_2$

Then P is a simple closed curve.

- (35) Let K_2 be a subset of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $K_2 = \{q : -1 = q_1 \land -1 \leq q_2 \land q_2 \leq 1 \lor q_1 = 1 \land -1 \leq q_2 \land q_2 \leq 1 \lor -1 = q_2 \land -1 \leq q_1 \land q_1 \leq 1 \lor 1 = q_2 \land -1 \leq q_1 \land q_1 \leq 1 \lor 1 = q_2 \land -1 \leq q_1 \land q_1 \leq 1\}$. Then K_2 is a simple closed curve and compact.
- (36) For every subset C_1 of \mathcal{E}_T^2 such that $C_1 = \{p; p \text{ ranges over points of } \mathcal{E}_T^2: |p| = 1\}$ holds C_1 is a simple closed curve.

3. The Fashoda Meet Theorem for the Circle

Next we state a number of propositions:

(37) Let K_0 , C_0 be subsets of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $K_0 = \{p : -1 \leq p_1 \land p_1 \leq 1 \land -1 \leq p_2 \land p_2 \leq 1\}$ and $C_0 = \{p_1; p_1 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}$: $|p_1| \leq 1\}$. Then SqCirc⁻¹(C_0) $\subseteq K_0$.

- (38) Let given p. Then
 - (i) if $p = 0_{\mathcal{E}^2_{\mathcal{T}}}$, then SqCirc⁻¹ $(p) = 0_{\mathcal{E}^2_{\mathcal{T}}}$,
 - (ii) if $p_2 \leqslant p_1^1$ and $-p_1 \leqslant p_2$ or $p_2 \geqslant p_1^1$ and $p_2 \leqslant -p_1$ and if $p \neq 0_{\mathcal{E}_T^2}$, then SqCirc⁻¹ $(p) = [p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}, p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}]$, and
- (iii) if $p_2 \not\leqslant p_1$ or $-p_1 \not\leqslant p_2$ but $p_2 \not\geqslant p_1$ or $p_2 \not\leqslant -p_1$ and $p \neq 0_{\mathcal{E}^2_{\mathrm{T}}}$, then SqCirc⁻¹ $(p) = [p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}, p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}].$
- (39) SqCirc⁻¹ is a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$.
- (40) Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$. Then
 - (i) if $p_1 \leq p_2$ and $-p_2 \leq p_1$ or $p_1 \geq p_2$ and $p_1 \leq -p_2$, then SqCirc⁻¹(p) = $[p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}, p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}]$, and
- (ii) if $p_1 \not\leq p_2$ or $-p_2 \not\leq p_1$ and if $p_1 \not\geq p_2$ or $p_1 \not\leq -p_2$, then SqCirc⁻¹ $(p) = [p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}, p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}].$
- (41) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 \cdot \sqrt{1 + (\frac{r_1}{r_2})^2}$, and
 - (ii) g is continuous.
- (42) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1, r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_2 \cdot \sqrt{1 + (\frac{r_1}{r_2})^2}$, and
 - (ii) g is continuous.
- (43) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \neq 0$.

Then f is continuous.

- (44) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_1 \neq 0$.

Then f is continuous.

- (45) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \neq 0$.

Then f is continuous.

- (46) Let K_1 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $f(p) = p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathrm{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_1$ holds $q_2 \neq 0$.

Then f is continuous.

- (47) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_2 \leqslant p_1 \land -p_1 \leqslant p_2 \lor p_2 \geqslant p_1 \land p_2 \leqslant -p_1) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (48) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leqslant p_2 \land -p_2 \leqslant p_1 \lor p_1 \geqslant p_2 \land p_1 \leqslant -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (49) Let B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : (p_2 \leqslant p_1 \land -p_1 \leqslant p_2 \lor p_2 \geqslant p_1 \land p_2 \leqslant -p_1) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous and K_0 is closed.
- (50) Let B_0 be a subset of $\mathcal{E}^2_{\mathrm{T}}$, K_0 be a subset of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0$, and f be a map from $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 =$ (the carrier of $\mathcal{E}^2_{\mathrm{T}}) \setminus \{0_{\mathcal{E}^2_{\mathrm{T}}}\}$ and $K_0 = \{p : (p_1 \leqslant p_2 \land -p_2 \leqslant p_1 \lor p_1 \geqslant p_2 \land p_1 \leqslant -p_2) \land p \neq 0_{\mathcal{E}^2_{\mathrm{T}}}\}$. Then f is continuous and K_0 is closed.
- (51) Let D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $D^{\mathrm{c}} = \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then there exists a map h from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright D$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright D$ such that $h = \mathrm{SqCirc}^{-1} \upharpoonright D$ and h is continuous.
- (52) There exists a map h from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ such that $h = \mathrm{SqCirc}^{-1}$ and h is continuous.
- (54)¹(i) SqCirc is a map from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$,
- (ii) rng SqCirc = the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and

¹The proposition (53) has been removed.

YATSUKA NAKAMURA

- (iii) for every map f from $\mathcal{E}_{\mathrm{T}}^2$ into $\mathcal{E}_{\mathrm{T}}^2$ such that $f = \operatorname{SqCirc}$ holds f is a homeomorphism.
- (55) Let f, g be maps from I into $\mathcal{E}_{\mathrm{T}}^2$, C_0 , K_3 , K_4 , K_5 , K_6 be subsets of $\mathcal{E}_{\mathrm{T}}^2$, and O, I be points of I. Suppose that O = 0 and I = 1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0 = \{p : |p| \leq 1\}$ and $K_3 = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_1| = 1 \land (q_1)_2 \leq (q_1)_1 \land (q_1)_2 \geq -(q_1)_1\}$ and $K_4 = \{q_2; q_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_2| = 1 \land (q_2)_2 \geq (q_2)_1 \land (q_2)_2 \leq -(q_2)_1\}$ and $K_5 = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_3| = 1 \land (q_3)_2 \geq (q_3)_1 \land (q_3)_2 \geq -(q_3)_1\}$ and $K_6 = \{q_4; q_4 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: |q_4| = 1 \land (q_4)_2 \leq (q_4)_1 \land (q_4)_2 \leq -(q_4)_1\}$ and $f(O) \in K_4$ and $f(I) \in K_3$ and $g(O) \in K_6$ and $g(I) \in K_5$ and $\operatorname{rng} f \subseteq C_0$ and $\operatorname{rng} g \subseteq C_0$. Then $\operatorname{rng} f \cap \operatorname{rng} g \neq \emptyset$.

References

- [1] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
 [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427-440, 1997.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \$\mathcal{E}_T^2\$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193–201, 1998.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received August 20, 2001