On the Simple Closed Curve Property of the Circle and the Fashoda Meet Theorem

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. First, we prove the fact that the circle is the simple closed curve, which was defined as a curve homeomorphic to the square. For this proof, we introduce a mapping which is a homeomorphism from 2-dimensional plane to itself. This mapping maps the square to the circle. Secondly, we prove the Fashoda meet theorem for the circle using this homeomorphism.

MML Identifier: JGRAPH_3.

The terminology and notation used in this paper have been introduced in the following articles: [17], [5], [7], [1], [2], [11], [3], [12], [4], [13], [10], [18], [15], [16], [14], [8], [9], and [6].

1. Preliminaries

In this paper x, y, z, u, a are real numbers.
We now state a number of propositions:
(1) If $x^{2}=y^{2}$, then $x=y$ or $x=-y$.
(2) If $x^{2}=1$, then $x=1$ or $x=-1$.
(3) If $0 \leqslant x$ and $x \leqslant 1$, then $x^{2} \leqslant x$.
(4) If $a \geqslant 0$ and $(x-a) \cdot(x+a) \leqslant 0$, then $-a \leqslant x$ and $x \leqslant a$.
(5) If $x^{2}-1 \leqslant 0$, then $-1 \leqslant x$ and $x \leqslant 1$.
(6) $\quad x<y$ and $x<z$ iff $x<\min (y, z)$.
(7) If $0<x$, then $\frac{x}{3}<x$ and $\frac{x}{4}<x$.
(8) If $x \geqslant 1$, then $\sqrt{x} \geqslant 1$ and if $x>1$, then $\sqrt{x}>1$.
(9) If $x \leqslant y$ and $z \leqslant u$, then $[y, z] \subseteq[x, u]$.
(10) For every point p of $\mathcal{E}_{\text {T }}^{2}$ holds $|p|=\sqrt{\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}}$ and $|p|^{2}=\left(p_{1}\right)^{2}+$ $\left(p_{2}\right)^{2}$.
(11) For every function f and for all sets B, C holds $(f \upharpoonright B)^{\circ} C=f^{\circ}(C \cap B)$.
(12) Let X be a topological structure, Y be a non empty topological structure, f be a map from X into Y, and P be a subset of X. Then $f \upharpoonright P$ is a map from $X \upharpoonright P$ into Y.
(13) Let X, Y be non empty topological spaces, p_{0} be a point of X, D be a non empty subset of X, E be a non empty subset of Y, and f be a map from X into Y. Suppose that $D^{\mathrm{c}}=\left\{p_{0}\right\}$ and $E^{\mathrm{c}}=\left\{f\left(p_{0}\right)\right\}$ and X is a T_{2} space and Y is a T_{2} space and for every point p of $X \upharpoonright D$ holds $f(p) \neq f\left(p_{0}\right)$ and there exists a map h from $X \upharpoonright D$ into $Y \upharpoonright E$ such that $h=f \upharpoonright D$ and h is continuous and for every subset V of Y such that $f\left(p_{0}\right) \in V$ and V is open there exists a subset W of X such that $p_{0} \in W$ and W is open and $f^{\circ} W \subseteq V$. Then f is continuous.

2. The Circle is a Simple Closed Curve

In the sequel p, q denote points of $\mathcal{E}_{\mathrm{T}}^{2}$.
The function SqCirc from the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ into the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the condition (Def. 1).
(Def. 1) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Then
(i) if $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}(p)=p$,
(ii) if $p_{\mathbf{2}} \leqslant p_{1}$ and $-p_{1} \leqslant p_{2}$ or $p_{2} \geqslant p_{1}$ and $p_{2} \leqslant-p_{1}$ and if $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}(p)=\left[\frac{p_{1}}{\sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}}, \frac{p_{2}}{\sqrt{1+\left(\frac{p_{2}}{\left.p_{1}\right)^{2}}\right.}}\right]$, and
(iii) if $p_{2} \nless p_{1}$ or $-p_{1} \nless p_{\mathbf{2}}$ but $p_{2} \ngtr p_{1}$ or $p_{2} \nless-p_{1}$ and $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}(p)=\left[\frac{p_{1}}{\sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}}, \frac{p_{2}}{\sqrt{1+\left(\frac{p_{1}}{\left.p_{2}\right)^{2}}\right.}}\right]$.
We now state a number of propositions:
(14) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$. Then
(i) if $p_{1} \leqslant p_{2}$ and $-p_{2} \leqslant p_{1}$ or $p_{1} \geqslant p_{2}$ and $p_{1} \leqslant-p_{2}$, then $\operatorname{SqCirc}(p)=$ $\left[\frac{p_{1}}{\sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}}, \frac{p_{2}}{\sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}}\right]$, and
(ii) if $p_{1} \nless p_{2}$ or $-p_{2} \nless p_{1}$ and if $p_{\mathbf{1}} \ngtr p_{\mathbf{2}}$ or $p_{\mathbf{1}} \nless-p_{\mathbf{2}}$, then $\operatorname{SqCirc}(p)=$ $\left[\frac{p_{1}}{\sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}}, \frac{p_{2}}{\sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}}\right]$.
(15) Let X be a non empty topological space and f_{1} be a map from X into \mathbb{R}^{1}. Suppose f_{1} is continuous and for every point q of X there exists a real number r such that $f_{1}(q)=r$ and $r \geqslant 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=\sqrt{r_{1}}$ and g is continuous.
(16) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\left(\frac{r_{1}}{r_{2}}\right)^{2}$, and
(ii) g is continuous.
(17) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=1+\left(\frac{r_{1}}{r_{2}}\right)^{2}$, and
(ii) g is continuous.
(18) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\sqrt{1+\left(\frac{r_{1}}{r_{2}}\right)^{2}}$, and
(ii) g is continuous.
(19) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\frac{r_{1}}{\sqrt{1+\left(\frac{r_{1}}{r_{2}}\right)^{2}}}$, and
(ii) g is continuous.
(20) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\frac{r_{2}}{\sqrt{1+\left(\frac{r_{1}}{r_{2}}\right)^{2}}}$, and
(ii) g is continuous.
(21) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=\frac{p_{1}}{\sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{1} \neq 0$.
Then f is continuous.
(22) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=\frac{p_{2}}{\sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{1} \neq 0$.
Then f is continuous.
(23) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into \mathbb{R}^{1}. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=\frac{p_{2}}{\sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{2} \neq 0$.
Then f is continuous.
(24) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=\frac{p_{1}}{\sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{2} \neq 0$.
Then f is continuous.
(25) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=$ SqCirc $\left\lceil K_{0}\right.$ and $B_{0}=\left(\right.$ the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=$ $\left\{p:\left(p_{\mathbf{2}} \leqslant p_{\mathbf{1}} \wedge-p_{\mathbf{1}} \leqslant p_{\mathbf{2}} \vee p_{\mathbf{2}} \geqslant p_{\mathbf{1}} \wedge p_{\mathbf{2}} \leqslant-p_{\mathbf{1}}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous.
(26) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=$ SqCirc $\upharpoonright K_{0}$ and $B_{0}=\left(\right.$ the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=$ $\left\{p:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant p_{2} \wedge p_{1} \leqslant-p_{2}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous.

In this article we present several logical schemes. The scheme TopIncl concerns a unary predicate \mathcal{P}, and states that:
$\left\{p: \mathcal{P}[p] \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\} \subseteq\left(\right.$ the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$
for all values of the parameters.
The scheme TopInter concerns a unary predicate \mathcal{P}, and states that: $\left\{p: \mathcal{P}[p] \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}=\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: \mathcal{P}\left[p_{7}\right]\right\} \cap$ $\left(\left(\right.\right.$ the carrier of $\left.\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}\right)$
for all values of the parameters.
Next we state several propositions:
(27) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\operatorname{SqCirc} \upharpoonright K_{0}$ and $B_{0}=$ (the
carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{\mathbf{2}} \leqslant p_{\mathbf{1}} \wedge-p_{\mathbf{1}} \leqslant p_{\mathbf{2}} \vee p_{\mathbf{2}} \geqslant\right.\right.$ $\left.\left.p_{1} \wedge p_{2} \leqslant-p_{1}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(28) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\operatorname{SqCirc} \upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant\right.\right.$ $\left.\left.p_{\mathbf{2}} \wedge p_{\mathbf{1}} \leqslant-p_{\mathbf{2}}\right) \wedge p \neq 0_{\mathcal{E}_{\mathbf{T}}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(29) Let D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $D^{c}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then there exists a map h from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ such that $h=\operatorname{SqCirc} \upharpoonright D$ and h is continuous.
(30) For every non empty subset D of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $D=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ holds $D^{\mathrm{c}}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$.
(31) There exists a map h from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that $h=\mathrm{SqCirc}$ and h is continuous.
(32) SqCirc is one-to-one.

Let us observe that SqCirc is one-to-one.
One can prove the following propositions:
(33) Let K_{2}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $K_{2}=\left\{q:-1=q_{1} \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant 1 \vee q_{1}=1 \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant\right.$ $\left.1 \vee-1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1 \vee 1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1\right\}$, and
(ii) $\quad C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}\right|=1\right\}$.

Then $\mathrm{SqCirc}^{\circ} K_{2}=C_{1}$.
(34) Let P, K_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P$. Suppose that
(i) $K_{2}=\left\{q:-1=q_{1} \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant 1 \vee q_{1}=1 \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant\right.$ $\left.1 \vee-1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1 \vee 1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1\right\}$, and
(ii) f is a homeomorphism.

Then P is a simple closed curve.
(35) Let K_{2} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{2}=\left\{q:-1=q_{1} \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant\right.$ $1 \vee q_{1}=1 \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant 1 \vee-1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1 \vee 1=$ $\left.q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1\right\}$. Then K_{2} is a simple closed curve and compact.
(36) For every subset C_{1} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $C_{1}=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ holds C_{1} is a simple closed curve.

3. The Fashoda Meet Theorem for the Circle

Next we state a number of propositions:
(37) Let K_{0}, C_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{0}=\left\{p:-1 \leqslant p_{\mathbf{1}} \wedge p_{\mathbf{1}} \leqslant\right.$ $\left.1 \wedge-1 \leqslant p_{2} \wedge p_{2} \leqslant 1\right\}$ and $C_{0}=\left\{p_{1} ; p_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{1}\right| \leqslant 1\right\}$. Then $\operatorname{SqCirc}^{-1}\left(C_{0}\right) \subseteq K_{0}$.
(38) Let given p. Then
(i) if $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}^{-1}(p)=0_{\mathcal{E}_{\mathrm{T}}^{2}}$,
(ii) if $p_{2} \leqslant p_{1}$ and $-p_{1} \leqslant p_{2}$ or $p_{2} \geqslant p_{1}$ and $p_{2} \leqslant-p_{1}$ and if $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}^{-1}(p)=\left[p_{1} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}, p_{2} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}\right]$, and
(iii) if $p_{2} \nless p_{1}$ or $-p_{1} \nless p_{2}$ but $p_{2} \ngtr p_{1}$ or $p_{2} \nless-p_{1}$ and $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$, then $\operatorname{SqCirc}^{-1}(p)=\left[p_{1} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}, p_{2} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}\right]$.
(39) SqCirc^{-1} is a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$.
(40) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$. Then
(i) if $p_{1} \leqslant p_{2}$ and $-p_{2} \leqslant p_{1}$ or $p_{1} \geqslant p_{2}$ and $p_{1} \leqslant-p_{2}$, then $\operatorname{SqCirc}^{-1}(p)=$ $\left[p_{1} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}, p_{2} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}\right]$, and
(ii) if $p_{1} \nless p_{2}$ or $-p_{2} \nless p_{1}$ and if $p_{1} \ngtr p_{2}$ or $p_{1} \nless-p_{2}$, then $\operatorname{SqCirc}^{-1}(p)=$ $\left[p_{1} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}, p_{2} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}\right]$.
(41) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=r_{1} \cdot \sqrt{1+\left(\frac{r_{1}}{r_{2}}\right)^{2}}$, and
(ii) g is continuous.
(42) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=r_{2} \cdot \sqrt{1+\left(\frac{r_{1}}{r_{2}}\right)^{2}}$, and
(ii) g is continuous.
(43) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=p_{1} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{1} \neq 0$.
Then f is continuous.
(44) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into \mathbb{R}^{1}. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=p_{2} \cdot \sqrt{1+\left(\frac{p_{2}}{p_{1}}\right)^{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{1} \neq 0$.

Then f is continuous.
(45) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into \mathbb{R}^{1}. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=p_{\mathbf{2}} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{2} \neq 0$.
Then f is continuous.
(46) Let K_{1} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $f(p)=p_{1} \cdot \sqrt{1+\left(\frac{p_{1}}{p_{2}}\right)^{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{1}$ holds $q_{2} \neq 0$.
Then f is continuous.
(47) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\operatorname{SqCirc}^{-1} \mid K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{T}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{2} \leqslant p_{1} \wedge-p_{1} \leqslant p_{2} \vee p_{2} \geqslant p_{1} \wedge p_{2} \leqslant-p_{1}\right) \wedge p \neq 0_{\mathcal{E}_{T}^{2}}\right\}$. Then f is continuous.
(48) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\mathrm{SqCirc}^{-1} \mid K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant p_{2} \wedge p_{1} \leqslant-p_{2}\right) \wedge p \neq 0_{\mathcal{E}_{T}^{2}}\right\}$. Then f is continuous.
(49) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\mathrm{SqCirc}^{-1} \upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{2} \leqslant p_{1} \wedge-p_{1} \leqslant p_{2} \vee p_{2} \geqslant\right.\right.$ $\left.\left.p_{\mathbf{1}} \wedge p_{\mathbf{2}} \leqslant-p_{\mathbf{1}}\right) \wedge p \neq 0_{\mathcal{E}_{T}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(50) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\operatorname{SqCirc}^{-1} \upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{\mathbf{1}} \leqslant p_{\mathbf{2}} \wedge-p_{\mathbf{2}} \leqslant p_{1} \vee p_{1} \geqslant\right.\right.$ $\left.\left.p_{2} \wedge p_{1} \leqslant-p_{2}\right) \wedge p \neq 0_{\mathcal{E}_{T}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(51) Let D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $D^{\mathrm{c}}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then there exists a map h from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ such that $h=\operatorname{SqCirc}^{-1} \upharpoonright D$ and h is continuous.
(52) There exists a map h from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that $h=\mathrm{SqCirc}^{-1}$ and h is continuous.
(54) ${ }^{1}(\mathrm{i}) \quad \mathrm{SqCirc}$ is a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$,
(ii) rng SqCirc $=$ the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and

[^0](iii) for every map f from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$ such that $f=\operatorname{SqCirc}$ holds f is a homeomorphism.
(55) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{3}, K_{4}, K_{5}, K_{6}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=$ $\{p:|p| \leqslant 1\}$ and $K_{3}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=1 \wedge\left(q_{1}\right)_{2} \leqslant$ $\left.\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geqslant-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|q_{2}\right|=1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geqslant\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leqslant-\left(q_{2}\right)_{\mathbf{1}}\right\}$ and $K_{5}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geqslant-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{6}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leqslant-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{4}$ and $f(I) \in K_{3}$ and $g(O) \in K_{6}$ and $g(I) \in K_{5}$ and $\operatorname{rng} f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then rng $f \cap \operatorname{rng} g \neq \emptyset$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\text {T }}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193-201, 1998.
[12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ The proposition (53) has been removed.

