On Outside Fashoda Meet Theorem

Yatsuka Nakamura
Shinshu University
Nagano

Summary. We have proven the "Fashoda Meet Theorem" in [12]. Here we prove the outside version of it. It says that if Britain and France intended to set the courses for ships to the opposite side of Africa, they must also meet.

MML Identifier: JGRAPH_2.

The articles [19], [8], [1], [2], [3], [4], [12], [13], [11], [5], [14], [7], [10], [20], [17], [18], [16], [9], [15], and [6] provide the terminology and notation for this paper.

One can prove the following propositions:
(1) For all real numbers a, b such that $a \neq 0$ and $b \neq 0$ holds $\frac{a}{b} \cdot \frac{b}{a}=1$.
(2) For every real number a such that $1 \leqslant a$ holds $a \leqslant a^{2}$.
(3) For every real number a such that $-1 \geqslant a$ holds $-a \leqslant a^{2}$.
(4) For every real number a such that $-1>a$ holds $-a<a^{2}$.
(5) For all real numbers a, b such that $b^{2} \leqslant a^{2}$ and $a \geqslant 0$ holds $-a \leqslant b$ and $b \leqslant a$.
(6) For all real numbers a, b such that $b^{2}<a^{2}$ and $a \geqslant 0$ holds $-a<b$ and $b<a$.
(7) For all real numbers a, b such that $-a \leqslant b$ and $b \leqslant a$ holds $b^{2} \leqslant a^{2}$.
(8) For all real numbers a, b such that $-a<b$ and $b<a$ holds $b^{2}<a^{2}$.

In the sequel T, T_{1}, T_{2}, S denote non empty topological spaces.
Next we state a number of propositions:
(9) Let f be a map from T_{1} into S, g be a map from T_{2} into S, and F_{1}, F_{2} be subsets of T. Suppose that T_{1} is a subspace of T and T_{2} is a subspace of T and $F_{1}=\Omega_{\left(T_{1}\right)}$ and $F_{2}=\Omega_{\left(T_{2}\right)}$ and $\Omega_{\left(T_{1}\right)} \cup \Omega_{\left(T_{2}\right)}=\Omega_{T}$ and F_{1} is closed and F_{2} is closed and f is continuous and g is continuous and for every set p such that $p \in \Omega_{\left(T_{1}\right)} \cap \Omega_{\left(T_{2}\right)}$ holds $f(p)=g(p)$. Then there exists a map h from T into S such that $h=f+\cdot g$ and h is continuous.
(10) Let n be a natural number, q_{2} be a point of \mathcal{E}^{n}, q be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and r be a real number. If $q=q_{2}$, then $\operatorname{Ball}\left(q_{2}, r\right)=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:\left|q-q_{3}\right|<r\right\}$.
(11) $\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right)_{1}=0$ and $\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right)_{\mathbf{2}}=0$.
(12) $1 . \operatorname{REAL} 2=\langle(1$ qua real number $),(1$ qua real number $)\rangle$.
(13) $(1 . \operatorname{REAL} 2)_{\mathbf{1}}=1$ and $(1 . \operatorname{REAL} 2)_{\mathbf{2}}=1$.
(14) dom proj1 $=$ the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and dom proj1 $=\mathcal{R}^{2}$.
(15) dom proj $2=$ the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and dom proj $2=\mathcal{R}^{2}$.
(16) proj1 is a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into \mathbb{R}^{1}.
(17) proj2 is a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathbb{R}^{\mathbf{1}}$.
(18) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $p=[\operatorname{proj} 1(p), \operatorname{proj} 2(p)]$.
(19) For every subset B of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $B=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ holds $B^{\mathrm{c}} \neq \emptyset$ and (the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$) $\backslash B \neq \emptyset$.
(20) Let X, Y be non empty topological spaces and f be a map from X into Y. Then f is continuous if and only if for every point p of X and for every subset V of Y such that $f(p) \in V$ and V is open there exists a subset W of X such that $p \in W$ and W is open and $f^{\circ} W \subseteq V$.
(21) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and G be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose G is open and $p \in G$. Then there exists a real number r such that $r>0$ and $\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: p_{1}-r<q_{1} \wedge q_{1}<p_{1}+r \wedge p_{2}-r<q_{2} \wedge q_{2}<p_{2}+r\right\} \subseteq G$.
(22) Let X, Y, Z be non empty topological spaces, B be a subset of Y, C be a subset of Z, f be a map from X into Y, and h be a map from $Y \upharpoonright B$ into $Z \upharpoonright C$. Suppose f is continuous and h is continuous and $\operatorname{rng} f \subseteq B$ and $B \neq \emptyset$ and $C \neq \emptyset$. Then there exists a map g from X into Z such that g is continuous and $g=h \cdot f$.
In the sequel p, q are points of $\mathcal{E}_{\mathrm{T}}^{2}$.
The function OutInSq from (the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$) $\backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ into (the carrier of $\left.\mathcal{E}_{\mathbb{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{T}^{2}}\right\}$ is defined by the condition (Def. 1).
(Def. 1) Let p be a point of \mathcal{E}_{T}^{2} such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$. Then
(i) if $p_{2} \leqslant p_{1}$ and $-p_{1} \leqslant p_{2}$ or $p_{2} \geqslant p_{1}$ and $p_{2} \leqslant-p_{1}$, then $\operatorname{OutInSq}(p)=$ $\left[\frac{1}{p_{1}}, \frac{p_{2}}{p_{1}} p_{1}\right]$, and
(ii) if $p_{\mathbf{2}} \nless p_{1}$ or $-p_{1} \nless p_{\mathbf{2}}$ and if $p_{\mathbf{2}} \ngtr p_{1}$ or $p_{2} \nless-p_{1}$, then $\operatorname{OutInSq}(p)=$ $\left[\frac{p_{1}}{p_{2}}, \frac{1}{p_{2}}, \frac{1}{p_{2}}\right]$.
Next we state a number of propositions:
(23) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2} \nless p_{1}$ or $-p_{1} \nless p_{\mathbf{2}}$ but $p_{\mathbf{2}} \ngtr p_{1}$ or $p_{2} \nless-p_{1}$. Then $p_{1} \leqslant p_{2}$ and $-p_{2} \leqslant p_{1}$ or $p_{1} \geqslant p_{2}$ and $p_{1} \leqslant-p_{2}$.
(24) Let p be a point of \mathcal{E}_{T}^{2} such that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$. Then
(i) if $p_{1} \leqslant p_{2}$ and $-p_{2} \leqslant p_{1}$ or $p_{1} \geqslant p_{2}$ and $p_{1} \leqslant-p_{2}$, then $\operatorname{OutInSq}(p)=$ $\left[\frac{\frac{p_{1}}{p_{2}}}{p_{2}}, \frac{1}{p_{2}}\right]$, and
(ii) if $p_{1} \nless p_{2}$ or $-p_{2} \nless p_{1}$ and if $p_{1} \ngtr p_{2}$ or $p_{1} \nless-p_{2}$, then $\operatorname{OutInSq}(p)=$ $\left[\frac{1}{p_{1}}, \frac{\frac{p_{2}}{p_{1}}}{p_{1}}\right]$.
(25) Let D be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and K_{0} be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$. Suppose $K_{0}=$ $\left\{p:\left(p_{2} \leqslant p_{1} \wedge-p_{1} \leqslant p_{2} \vee p_{2} \geqslant p_{1} \wedge p_{2} \leqslant-p_{1}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then $\operatorname{rng}\left(\right.$ OutInSq $\left.\upharpoonright K_{0}\right) \subseteq$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D \upharpoonright K_{0}$.
(26) Let D be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and K_{0} be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$. Suppose $K_{0}=$ $\left\{p:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant p_{2} \wedge p_{1} \leqslant-p_{2}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then $\operatorname{rng}\left(\right.$ OutInSq $\left.\upharpoonright K_{0}\right) \subseteq$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D \upharpoonright K_{0}$.
(27) Let K_{1} be a set and D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{1}=\{p ; p$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{2} \leqslant p_{1} \wedge-p_{1} \leqslant p_{2} \vee p_{2} \geqslant p_{1} \wedge p_{2} \leqslant\right.$ $\left.\left.-p_{1}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $D^{\mathrm{c}}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then K_{1} is a non empty subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ and a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(28) Let K_{1} be a set and D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{1}=\{p ; p$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant p_{2} \wedge p_{1} \leqslant\right.$ $\left.\left.-p_{\mathbf{2}}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $D^{\mathrm{c}}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then K_{1} is a non empty subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ and a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(29) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=r_{1}+r_{2}$ and g is continuous.
(30) Let X be a non empty topological space and a be a real number. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X holds $g(p)=a$ and g is continuous.
(31) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=r_{1}-r_{2}$ and g is continuous.
(32) Let X be a non empty topological space and f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=r_{1} \cdot r_{1}$ and g is continuous.
(33) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=a \cdot r_{1}$ and g is continuous.
(34) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=r_{1}+a$ and g is continuous.
(35) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=r_{1} \cdot r_{2}$ and g is continuous.
(36) Let X be a non empty topological space and f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and for every point q of X holds $f_{1}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=\frac{1}{r_{1}}$ and g is continuous.
(37) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\frac{r_{1}}{r_{2}}$ and g is continuous.
(38) Let X be a non empty topological space and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous and for every point q of X holds $f_{2}(q) \neq 0$. Then there exists a map g from X into $\mathbb{R}^{\mathbf{1}}$ such that
(i) for every point p of X and for all real numbers r_{1}, r_{2} such that $f_{1}(p)=r_{1}$ and $f_{2}(p)=r_{2}$ holds $g(p)=\frac{\frac{r_{1}}{r_{2}}}{r_{2}}$, and
(ii) g is continuous.
(39) Let K_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\mathbb{R}^{\mathbf{1}}$. If for every point p of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ holds $f(p)=\operatorname{proj} 1(p)$, then f is continuous.
(40) Let K_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\mathbb{R}^{\mathbf{1}}$. If for every point p of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ holds $f(p)=\operatorname{proj} 2(p)$, then f is continuous.
(41) Let K_{2} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $f(p)=\frac{1}{p_{1}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $q_{1} \neq 0$.
Then f is continuous.
(42) Let K_{2} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $f(p)=\frac{1}{p_{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $q_{2} \neq 0$.
Then f is continuous.
(43) Let K_{2} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ into \mathbb{R}^{1}. Suppose that
(i) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $f(p)=\frac{\frac{p_{2}}{p_{1}}}{p_{1}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $q_{1} \neq 0$.
Then f is continuous.
(44) Let K_{2} be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) for every point p of \mathcal{E}_{T}^{2} such that $p \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $f(p)=\frac{\frac{p_{1}}{p_{2}}}{p_{2}}$, and
(ii) for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{2}$ holds $q_{2} \neq 0$.
Then f is continuous.
(45) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, f$ be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f_{1}, f_{2} be maps from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\mathbb{R}^{\mathbf{1}}$. Suppose that
(i) f_{1} is continuous,
(ii) f_{2} is continuous,
(iii) $K_{0} \neq \emptyset$,
(iv) $B_{0} \neq \emptyset$, and
(v) for all real numbers x, y, r, s such that $[x, y] \in K_{0}$ and $r=f_{1}([x, y])$ and $s=f_{2}([x, y])$ holds $f([x, y])=[r, s]$.
Then f is continuous.
(46) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=$ OutInSq $\upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{2} \leqslant p_{1} \wedge-p_{1} \leqslant p_{2} \vee p_{2} \geqslant p_{1} \wedge p_{2} \leqslant-p_{1}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous.
(47) Let K_{0}, B_{0} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=$ OutInSq $\upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{1} \leqslant p_{2} \wedge-p_{2} \leqslant p_{1} \vee p_{1} \geqslant p_{2} \wedge p_{1} \leqslant-p_{2}\right) \wedge p \neq 0_{\mathcal{E}_{T}^{2}}\right\}$. Then f is continuous.
In this article we present several logical schemes. The scheme TopSubset concerns a unary predicate \mathcal{P}, and states that:
$\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: \mathcal{P}[p]\right\}$ is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$
for all values of the parameters.
The scheme Top Compl deals with a subset \mathcal{A} of $\mathcal{E}_{\mathrm{T}}^{2}$ and a unary predicate \mathcal{P}, and states that:

$$
-\mathcal{A}=\left\{p ; p \text { ranges over points of } \mathcal{E}_{\mathrm{T}}^{2}: \text { not } \mathcal{P}[p]\right\}
$$

provided the parameters meet the following requirement:

- $\mathcal{A}=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: \mathcal{P}[p]\right\}$.

The scheme ClosedSubset deals with two unary functors \mathcal{F} and \mathcal{G} yielding real numbers, and states that:
$\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: \mathcal{F}(p) \leqslant \mathcal{G}(p)\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$
provided the following conditions are met:

- For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathcal{F}(p-q)=\mathcal{F}(p)-\mathcal{F}(q)$ and $\mathcal{G}(p-q)=\mathcal{G}(p)-\mathcal{G}(q)$, and
- For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|p-q|^{\mathbf{2}}=|\mathcal{F}(p-q)|^{\mathbf{2}}+|\mathcal{G}(p-q)|^{\mathbf{2}}$.

One can prove the following propositions:
(48) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=$ OutInSq $\upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{\mathbf{2}} \leqslant p_{\mathbf{1}} \wedge-p_{\mathbf{1}} \leqslant p_{\mathbf{2}} \vee p_{\mathbf{2}} \geqslant\right.\right.$ $\left.\left.p_{\mathbf{1}} \wedge p_{\mathbf{2}} \leqslant-p_{\mathbf{1}}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(49) Let B_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$, and f be a map from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0} \upharpoonright K_{0}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B_{0}$. Suppose $f=\mathrm{OutInSq} \upharpoonright K_{0}$ and $B_{0}=$ (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$ and $K_{0}=\left\{p:\left(p_{\mathbf{1}} \leqslant p_{\mathbf{2}} \wedge-p_{\mathbf{2}} \leqslant p_{\mathbf{1}} \vee p_{1} \geqslant\right.\right.$ $\left.\left.p_{\mathbf{2}} \wedge p_{\mathbf{1}} \leqslant-p_{\mathbf{2}}\right) \wedge p \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then f is continuous and K_{0} is closed.
(50) Let D be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $D^{\mathrm{c}}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$. Then there exists a map h from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright D$ such that $h=$ OutInSq and h is continuous.
(51) Let B, K_{0}, K_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $B=\left\{0_{\mathcal{E}_{\mathrm{T}}^{2}}\right\}$,
(ii) $K_{0}=\left\{p:-1<p_{1} \wedge p_{1}<1 \wedge-1<p_{\mathbf{2}} \wedge p_{\mathbf{2}}<1\right\}$, and
(iii) $K_{3}=\left\{q:-1=q_{1} \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant 1 \vee q_{1}=1 \wedge-1 \leqslant q_{2} \wedge q_{2} \leqslant\right.$ $\left.1 \vee-1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1 \vee 1=q_{2} \wedge-1 \leqslant q_{1} \wedge q_{1} \leqslant 1\right\}$.
Then there exists a map f from $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B^{c}$ into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright B^{\mathrm{c}}$ such that
(iv) f is continuous and one-to-one,
(v) for every point t of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $t \in K_{0}$ and $t \neq 0_{\mathcal{E}_{\mathrm{T}}^{2}}$ holds $f(t) \notin$ $K_{0} \cup K_{3}$,
(vi) for every point r of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $r \notin K_{0} \cup K_{3}$ holds $f(r) \in K_{0}$, and
(vii) for every point s of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $s \in K_{3}$ holds $f(s)=s$.
(52) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, K_{0}$ be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $K_{0}=\left\{p:-1<p_{1} \wedge p_{1}<\right.$ $\left.1 \wedge-1<p_{\mathbf{2}} \wedge p_{\mathbf{2}}<1\right\}$ and $f(O)_{\mathbf{1}}=-1$ and $f(I)_{\mathbf{1}}=1$ and $-1 \leqslant f(O)_{\mathbf{2}}$ and $f(O)_{2} \leqslant 1$ and $-1 \leqslant f(I)_{2}$ and $f(I)_{2} \leqslant 1$ and $g(O)_{2}=-1$ and $g(I)_{\mathbf{2}}=1$ and $-1 \leqslant g(O)_{\mathbf{1}}$ and $g(O)_{\mathbf{1}} \leqslant 1$ and $-1 \leqslant g(I)_{\mathbf{1}}$ and $g(I)_{\mathbf{1}} \leqslant 1$ and $\operatorname{rng} f \cap K_{0}=\emptyset$ and $\operatorname{rng} g \cap K_{0}=\emptyset$. Then $\operatorname{rng} f \cap \operatorname{rng} g \neq \emptyset$.
(53) Let A, B, C, D be real numbers and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that for every point t of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $f(t)=\left[A \cdot t_{\mathbf{1}}+B, C \cdot t_{\mathbf{2}}+D\right]$. Then f is continuous.
(54) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-toone and g is continuous and one-to-one and $f(O)_{\mathbf{1}}=a$ and $f(I)_{\mathbf{1}}=b$ and $c \leqslant f(O)_{2}$ and $f(O)_{2} \leqslant d$ and $c \leqslant f(I)_{2}$ and $f(I)_{2} \leqslant d$ and $g(O)_{2}=c$ and $g(I)_{\mathbf{2}}=d$ and $a \leqslant g(O)_{\mathbf{1}}$ and $g(O)_{\mathbf{1}} \leqslant b$ and $a \leqslant g(I)_{\mathbf{1}}$ and $g(I)_{\mathbf{1}} \leqslant b$ and $a<b$ and $c<d$ and it is not true that there exists a point r of \mathbb{I} such that $a<f(r)_{\mathbf{1}}$ and $f(r)_{\mathbf{1}}<b$ and $c<f(r)_{\mathbf{2}}$ and $f(r)_{\mathbf{2}}<d$ and it is not true that there exists a point r of \mathbb{I} such that $a<g(r)_{\mathbf{1}}$ and $g(r)_{\mathbf{1}}<b$ and $c<g(r)_{2}$ and $g(r)_{2}<d$. Then rng $f \cap \operatorname{rng} g \neq \emptyset$.
(55)(i) $\quad\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{7}\right)_{\mathbf{2}} \leqslant\left(p_{7}\right)_{1}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and
(ii) $\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{7}\right)_{\mathbf{1}} \leqslant\left(p_{7}\right)_{2}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(56)(i) $\quad\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:-\left(p_{7}\right)_{1} \leqslant\left(p_{7}\right)_{2}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and
(ii) $\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{7}\right)_{\mathbf{2}} \leqslant-\left(p_{7}\right)_{1}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(57)(i) $\quad\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:-\left(p_{7}\right)_{2} \leqslant\left(p_{7}\right)_{1}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and
(ii) $\left\{p_{7} ; p_{7}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left(p_{7}\right)_{\mathbf{1}} \leqslant-\left(p_{7}\right)_{2}\right\}$ is a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[12] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193-201, 1998.
[13] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[15] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Formalized Mathematics, 6(3):339-343, 1997.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Zinaida Trybulec and Halina Swięczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

