Properties of Fuzzy Relation

Noboru Endou
Gifu National College of Technology

Takashi Mitsuishi
Miyagi University

Keiji Ohkubo
Shinshu University
Nagano

Abstract

Summary. In this article, we introduce four fuzzy relations and the composition, and some useful properties are shown by them. In section 2, the definition of converse relation R^{-1} of fuzzy relation R and properties concerning it are described. In the next section, we define the composition of the fuzzy relation and show some properties. In the final section we describe the identity relation, the universe relation and the zero relation.

MML Identifier: FUZZY_4.

The notation and terminology used here are introduced in the following papers: [5], [6], [2], [9], [4], [3], [8], [7], and [1].

1. Basic Properties of the Membership Function

We follow the rules: x, y, z are sets and C_{1}, C_{2}, C_{3} are non empty sets.
Let C_{1} be a non empty set and let F be a membership function of C_{1}. One can check that $\operatorname{rng} F$ is non empty.

Next we state four propositions:
(1) Let F be a membership function of C_{1}. Then $\operatorname{rng} F$ is bounded and for every x such that $x \in \operatorname{dom} F$ holds $F(x) \leqslant \sup \operatorname{rng} F$ and for every x such that $x \in \operatorname{dom} F$ holds $F(x) \geqslant \inf \operatorname{rng} F$.
(2) For all membership functions F, G of C_{1} such that for every x such that $x \in C_{1}$ holds $F(x) \leqslant G(x)$ holds sup $\operatorname{rng} F \leqslant \sup \operatorname{rng} G$.
(3) For every Membership function f of C_{1}, C_{2} and for every element c of : C_{1}, C_{2}] holds $0 \leqslant f(c)$ and $f(c) \leqslant 1$.
(4) For every Membership function f of C_{1}, C_{2} and for all x, y such that $\langle x, y\rangle \in\left\{C_{1}, C_{2}\right\}$ holds $0 \leqslant f(\langle x, y\rangle)$ and $f(\langle x, y\rangle) \leqslant 1$.

2. Definition of Converse Fuzzy Relation and some Properties

Let C_{1}, C_{2} be non empty sets and let h be a Membership function of C_{2}, C_{1}. The functor converse h yielding a Membership function of C_{1}, C_{2} is defined by:
(Def. 1) For all x, y such that $\langle x, y\rangle \in\left\{C_{1}, C_{2}:\right]$ holds $($ converse $h)(\langle x, y\rangle)=$ $h(\langle y, x\rangle)$.
Let C_{1}, C_{2} be non empty sets, let f be a Membership function of C_{2}, C_{1}, and let R be a fuzzy relation of C_{2}, C_{1}, f. The functor R^{-1} yields a fuzzy relation of C_{1}, C_{2}, converse f and is defined by:
(Def. 2) $R^{-1}=\left[: C_{1}, C_{2} \text {, (converse } f\right)^{\circ}: C_{1}, C_{2}$! $]$.
The following propositions are true:
(5) For every Membership function f of C_{1}, C_{2} holds converse converse $f=$ f.
(6) For every Membership function f of C_{1}, C_{2} and for every fuzzy relation R of C_{1}, C_{2}, f holds $\left(R^{-1}\right)^{-1}=R$.
(7) For every Membership function f of C_{1}, C_{2} holds 1-minus converse $f=$ converse 1-minus f.
(8) For every Membership function f of C_{1}, C_{2} and for every fuzzy relation R of C_{1}, C_{2}, f holds $\left(R^{-1}\right)^{\mathrm{c}}=\left(R^{\mathrm{c}}\right)^{-1}$.
(9) For all Membership functions f, g of C_{1}, C_{2} holds converse $\max (f, g)=$ max (converse f, converse g).
(10) Let f, g be Membership functions of C_{1}, C_{2}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{1}, C_{2}, g. Then $(R \cup S)^{-1}=R^{-1} \cup S^{-1}$.
(11) For all Membership functions f, g of C_{1}, C_{2} holds converse $\min (f, g)=$ \min (converse f, converse g).
(12) Let f, g be Membership functions of C_{1}, C_{2}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{1}, C_{2}, g. Then $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$.
(13) Let f, g be Membership functions of C_{1}, C_{2} and given x, y. If $x \in C_{1}$ and $y \in C_{2}$, then if $f(\langle x, y\rangle) \leqslant g(\langle x, y\rangle)$, then (converse $\left.f\right)(\langle y, x\rangle) \leqslant$ (converse g) $(\langle y, x\rangle)$.
(14) Let f, g be Membership functions of C_{1}, C_{2}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{1}, C_{2}, g. If $R \subseteq S$, then $R^{-1} \subseteq S^{-1}$.
(15) For all Membership functions f, g of C_{1}, C_{2} holds converse $\min (f, 1$-minus $g)=\min ($ converse $f, 1$-minus converse $g)$.
(16) Let f, g be Membership functions of C_{1}, C_{2}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{1}, C_{2}, g. Then $(R \backslash S)^{-1}=R^{-1} \backslash S^{-1}$.
(17) For all Membership functions f, g of C_{1}, C_{2} holds converse $\max (\min (f, 1$-minus $g), \min (1$-minus $f, g))=$ $\max (\min$ (converse $f, 1$-minus converse g), $\min (1$-minus converse f, converse $g)$).
(18) Let f, g be Membership functions of C_{1}, C_{2}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{1}, C_{2}, g. Then $(R \dot{-} S)^{-1}=R^{-1} \dot{-} S^{-1}$.

3. Definition of the Composition and some Properties

Let C_{1}, C_{2}, C_{3} be non empty sets, let h be a Membership function of C_{1}, C_{2}, let g be a Membership function of C_{2}, C_{3}, and let x, z be sets. Let us assume that $x \in C_{1}$ and $z \in C_{3}$. The functor $\min (h, g, x, z)$ yields a membership function of C_{2} and is defined by:
(Def. 3) For every element y of C_{2} holds $(\min (h, g, x, z))(y)=\min (h(\langle x$, $y\rangle), g(\langle y, z\rangle))$.
Let C_{1}, C_{2}, C_{3} be non empty sets, let h be a Membership function of C_{1}, C_{2}, and let g be a Membership function of C_{2}, C_{3}. The functor $h g$ yields a Membership function of C_{1}, C_{3} and is defined by:
(Def. 4) For all x, z such that $\langle x, z\rangle \in\left\{C_{1}, C_{3}:\right.$ holds $(h g)(\langle x, z\rangle)=$ sup rng $\min (h, g, x, z)$.
Let C_{1}, C_{2}, C_{3} be non empty sets, let f be a Membership function of C_{1}, C_{2}, let g be a Membership function of C_{2}, C_{3}, let R be a fuzzy relation of C_{1}, C_{2}, f, and let S be a fuzzy relation of C_{2}, C_{3}, g. The functor $R S$ yields a fuzzy relation of $C_{1}, C_{3}, f g$ and is defined as follows:
(Def. 5) $\quad R S=\left[: C_{1}, C_{3}\right.$!, $(f g)^{\circ}: C_{1}, C_{3}$: $]$.
Next we state a number of propositions:
(19) For every Membership function f of C_{1}, C_{2} and for all Membership functions g, h of C_{2}, C_{3} holds $f \max (g, h)=\max (f g, f h)$.
(20) Let f be a Membership function of C_{1}, C_{2}, g, h be Membership functions of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, S be a fuzzy relation of C_{2}, C_{3}, g, and T be a fuzzy relation of C_{2}, C_{3}, h. Then $R(S \cup T)=R S \cup R T$.
(21) For all Membership functions f, g of C_{1}, C_{2} and for every Membership function h of C_{2}, C_{3} holds $\max (f, g) h=\max (f h, g h)$.
(22) Let f, g be Membership functions of C_{1}, C_{2}, h be a Membership function of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, S be a fuzzy relation of C_{1}, C_{2}, g, and T be a fuzzy relation of C_{2}, C_{3}, h. Then $(R \cup S) T=R T \cup S T$.
(23) Let f be a Membership function of C_{1}, C_{2}, g, h be Membership functions of C_{2}, C_{3}, and x, z be sets. If $x \in C_{1}$ and $z \in C_{3}$, then $(f \min (g, h))(\langle x$, $z\rangle) \leqslant(\min (f g, f h))(\langle x, z\rangle)$.
(24) Let f be a Membership function of C_{1}, C_{2}, g, h be Membership functions of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, S be a fuzzy relation of C_{2}, C_{3}, g, and T be a fuzzy relation of C_{2}, C_{3}, h. Then $R(S \cap T) \subseteq(R S) \cap(R T)$.
(25) Let f, g be Membership functions of C_{1}, C_{2}, h be a Membership function of C_{2}, C_{3}, and x, z be sets. If $x \in C_{1}$ and $z \in C_{3}$, then $(\min (f, g) h)(\langle x$, $z\rangle) \leqslant(\min (f h, g h))(\langle x, z\rangle)$.
(26) Let f, g be Membership functions of C_{1}, C_{2}, h be a Membership function of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, S be a fuzzy relation of C_{1}, C_{2}, g, and T be a fuzzy relation of C_{2}, C_{3}, h. Then $(R \cap S) T \subseteq(R T) \cap(S T)$.
(27) For every Membership function f of C_{1}, C_{2} and for every Membership function g of C_{2}, C_{3} holds converse $f g=$ converse g converse f.
(28) Let f be a Membership function of C_{1}, C_{2}, g be a Membership function of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, and S be a fuzzy relation of C_{2}, C_{3}, g. Then $(R S)^{-1}=S^{-1} R^{-1}$.
(29) Let f, g be Membership functions of C_{1}, C_{2}, h, k be Membership functions of C_{2}, C_{3}, and x, z be sets. Suppose $x \in C_{1}$ and $z \in C_{3}$ and for every set y such that $y \in C_{2}$ holds $f(\langle x, y\rangle) \leqslant g(\langle x, y\rangle)$ and $h(\langle y, z\rangle) \leqslant k(\langle y$, $z\rangle)$. Then $(f h)(\langle x, z\rangle) \leqslant(g k)(\langle x, z\rangle)$.
(30) Let f, g be Membership functions of C_{1}, C_{2}, h, k be Membership functions of C_{2}, C_{3}, R be a fuzzy relation of C_{1}, C_{2}, f, S be a fuzzy relation of C_{1}, C_{2}, g, T be a fuzzy relation of C_{2}, C_{3}, h, and W be a fuzzy relation of C_{2}, C_{3}, k. If $R \subseteq S$ and $T \subseteq W$, then $R T \subseteq S W$.

4. Definition of Identity Relation and Properties of Universe and Zero Relation

Let C_{1}, C_{2} be non empty sets. The functor $\operatorname{Imf}\left(C_{1}, C_{2}\right)$ yields a Membership function of C_{1}, C_{2} and is defined as follows:
(Def. 6) For all x, y such that $\langle x, y\rangle \in\left\lceil C_{1}, C_{2} \ddagger\right.$ holds if $x=y$, then $\left(\operatorname{Imf}\left(C_{1}, C_{2}\right)\right)(\langle x, y\rangle)=1$ and if $x \neq y$, then $\left(\operatorname{Imf}\left(C_{1}, C_{2}\right)\right)(\langle x, y\rangle)=0$.
One can prove the following propositions:
(31) For every element c of : C_{1}, C_{2} : holds $\left(\operatorname{Zmf}\left(C_{1}, C_{2}\right)\right)(c)=0$ and $\left(\operatorname{Umf}\left(C_{1}, C_{2}\right)\right)(c)=1$.
(32) For all x, y such that $\langle x, y\rangle \in: C_{1}, C_{2}$: holds $\left(\operatorname{Zmf}\left(C_{1}, C_{2}\right)\right)(\langle x, y\rangle)=0$ and $\left(\operatorname{Umf}\left(C_{1}, C_{2}\right)\right)(\langle x, y\rangle)=1$.
(33) Let f be a Membership function of C_{2}, C_{3}, O_{1} be a zero relation of C_{1}, C_{2}, O_{2} be a zero relation of C_{1}, C_{3}, and R be a fuzzy relation of C_{2}, C_{3}, f. Then $O_{1} R=O_{2}$.
(34) For every Membership function f of C_{1}, C_{2} holds $f \operatorname{Zmf}\left(C_{2}, C_{3}\right)=$ $\operatorname{Zmf}\left(C_{1}, C_{3}\right)$.
(35) Let f be a Membership function of C_{1}, C_{2}, O_{1} be a zero relation of C_{2}, C_{3}, O_{2} be a zero relation of C_{1}, C_{3}, and R be a fuzzy relation of C_{1}, C_{2}, f. Then $R O_{1}=O_{2}$.
(36) For every Membership function f of C_{1}, C_{1} holds $f \operatorname{Zmf}\left(C_{1}, C_{1}\right)=$ $\operatorname{Zmf}\left(C_{1}, C_{1}\right) f$.
(37) Let f be a Membership function of C_{1}, C_{1}, O be a zero relation of C_{1}, C_{1}, and R be a fuzzy relation of C_{1}, C_{1}, f. Then $R O=O R$.

References

[1] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[2] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[3] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351-356, 2001.
[6] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. The concept of fuzzy relation and basic properties of its operation. Formalized Mathematics, 9(3):517-524, 2001.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[9] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

