Input and Output of Instructions ${ }^{1}$

Artur Korniłowicz
University of Białystok

MML Identifier: AMI_7.

The terminology and notation used here are introduced in the following articles: [10], [5], [9], [6], [13], [1], [7], [4], [2], [11], [3], [12], and [8].

1. Preliminaries

In this paper N is a set with non empty elements.
One can prove the following propositions:
(1) For all sets x, y, z such that $x \neq y$ and $x \neq z$ holds $\{x, y, z\} \backslash\{x\}=\{y, z\}$.
(2) For every non empty non void AMI A over N and for every state s of A and for every object o of A holds $s(o) \in \operatorname{ObjectKind}(o)$.
(3) Let A be a realistic IC-Ins-separated definite non empty non void AMI over N, s be a state of A, f be an instruction-location of A, and w be an element of ObjectKind $\left(\mathbf{I C}_{A}\right)$. Then $\left(s+\cdot\left(\mathbf{I C}_{A}, w\right)\right)(f)=s(f)$.
Let N be a set with non empty elements, let A be an IC-Ins-separated definite non empty non void AMI over N, let s be a state of A, let o be an object of A, and let a be an element of ObjectKind (o). Then $s+\cdot(o, a)$ is a state of A.

We now state several propositions:
(4) Let A be a steady-programmed IC-Ins-separated definite non empty non void AMI over N, s be a state of A, o be an object of A, f be an instruction-location of A, I be an instruction of A, and w be an element of $\operatorname{ObjectKind}(o)$. If $f \neq o$, then $(\operatorname{Exec}(I, s))(f)=(\operatorname{Exec}(I, s+\cdot(o, w)))(f)$.

[^0](5) Let A be an IC-Ins-separated definite non empty non void AMI over N, s be a state of A,o be an object of A, and w be an element of $\operatorname{ObjectKind}(o)$. If $o \neq \mathbf{I} \mathbf{C}_{A}$, then $\mathbf{I C}_{s}=\mathbf{I C}_{s+\cdot(o, w)}$.
(6) Let A be a standard IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, s be a state of A, o be an object of A, and w be an element of $\operatorname{ObjectKind}(o)$. If I is sequential and $o \neq \mathbf{I C}_{A}$, then $\mathbf{I} \mathbf{C}_{\operatorname{Exec}(I, s)}=\mathbf{I} \mathbf{C}_{\operatorname{Exec}(I, s+\cdot(o, w))}$.
(7) Let A be a standard IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, s be a state of A, o be an object of A, and w be an element of $\operatorname{ObjectKind}(o)$. If I is sequential and $o \neq \mathbf{I C}_{A}$, then $\mathbf{I C}_{\operatorname{Exec}(I, s+\cdot(o, w))}=\mathbf{I C}_{\operatorname{Exec}(I, s)+\cdot(o, w)}$.
(8) Let A be a standard steady-programmed IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, s be a state of A, o be an object of A, w be an element of $\operatorname{ObjectKind}(o)$, and i be an instruction-location of A. Then $(\operatorname{Exec}(I, s+\cdot(o, w)))(i)=(\operatorname{Exec}(I, s)+$. $(o, w))(i)$.

2. Input and Output of Instructions

Let N be a set and let A be an AMI over N. We say that A has non trivial instruction set if and only if:
(Def. 1) The instructions of A are non trivial.
Let N be a set and let A be a non empty AMI over N. We say that A has non trivial ObjectKinds if and only if:
(Def. 2) For every object o of A holds ObjectKind (o) is non trivial.
Let N be a set with non empty elements. One can verify that $\operatorname{STC}(N)$ has non trivial ObjectKinds.

Let N be a set with non empty elements. Observe that there exists a regular standard IC-Ins-separated definite non empty non void AMI over N which is halting, realistic, steady-programmed, programmable, IC-good, and Execpreserving and has explicit jumps, no implicit jumps, non trivial ObjectKinds, and non trivial instruction set.

Let N be a set with non empty elements. Note that every definite non empty non void AMI over N which has non trivial ObjectKinds has also non trivial instruction set.

Let N be a set with non empty elements. One can check that every IC-Insseparated non empty AMI over N which has non trivial ObjectKinds has also non trivial instruction locations.

Let N be a set with non empty elements, let A be a non empty AMI over N with non trivial ObjectKinds, and let o be an object of A. Observe that ObjectKind (o) is non trivial.

Let N be a set with non empty elements and let A be an AMI over N with non trivial instruction set. Note that the instructions of A is non trivial.

Let N be a set with non empty elements and let A be an IC-Ins-separated non empty AMI over N with non trivial instruction locations. Note that ObjectKind $\left(\mathbf{I C}_{A}\right)$ is non trivial.

Let N be a set with non empty elements, let A be a non empty non void AMI over N, and let I be an instruction of A. The functor Output I yielding a subset of the carrier of A is defined as follows:
(Def. 3) For every object o of A holds $o \in$ Output I iff there exists a state s of A such that $s(o) \neq(\operatorname{Exec}(I, s))(o)$.
Let N be a set with non empty elements, let A be an IC-Ins-separated definite non empty non void AMI over N, and let I be an instruction of A. The functor IODiff I yielding a subset of the carrier of A is defined by the condition (Def. 4).
(Def. 4) Let o be an object of A. Then $o \in \operatorname{IODiff} I$ if and only if for every state s of A and for every element a of $\operatorname{ObjectKind}(o) \operatorname{holds} \operatorname{Exec}(I, s)=$ $\operatorname{Exec}(I, s+\cdot(o, a))$.
The functor IOSum I yielding a subset of the carrier of A is defined by the condition (Def. 5).
(Def. 5) Let o be an object of A. Then $o \in \operatorname{IOSum} I$ if and only if there exists a state s of A and there exists an element a of $\operatorname{ObjectKind}(o)$ such that $\operatorname{Exec}(I, s+\cdot(o, a)) \neq \operatorname{Exec}(I, s)+\cdot(o, a)$.
Let N be a set with non empty elements, let A be an IC-Ins-separated definite non empty non void AMI over N, and let I be an instruction of A. The functor Input I yielding a subset of the carrier of A is defined as follows:
(Def. 6) $\quad \operatorname{Input} I=\operatorname{IOSum} I \backslash$ IODiff I.
The following propositions are true:
(9) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. Then IODiff I misses Input I.
(10) Let A be an IC-Ins-separated definite non empty non void AMI over N with non trivial ObjectKinds and I be an instruction of A. Then IODiff $I \subseteq$ Output I.
(11) For every IC-Ins-separated definite non empty non void AMI A over N and for every instruction I of A holds Output $I \subseteq \operatorname{IOSum} I$.
(12) For every IC-Ins-separated definite non empty non void AMI A over N and for every instruction I of A holds Input $I \subseteq \operatorname{IOSum} I$.
(13) Let A be an IC-Ins-separated definite non empty non void AMI over N with non trivial ObjectKinds and I be an instruction of A. Then IODiff $I=$ Output $I \backslash \operatorname{Input} I$.
(14) Let A be an IC-Ins-separated definite non empty non void AMI over N with non trivial ObjectKinds and I be an instruction of A. Then IOSum $I=$ Output $I \cup \operatorname{Input} I$.
(15) Let A be an IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, and o be an object of A. If $\operatorname{ObjectKind}(o)$ is trivial, then $o \notin \operatorname{IOSum} I$.
(16) Let A be an IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, and o be an object of A. If $\operatorname{ObjectKind}(o)$ is trivial, then $o \notin \operatorname{Input} I$.
(17) Let A be an IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, and o be an object of A. If $\operatorname{ObjectKind}(o)$ is trivial, then $o \notin$ Output I.
(18) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. Then I is halting if and only if Output I is empty.
(19) Let A be an IC-Ins-separated definite non empty non void AMI over N with non trivial ObjectKinds and I be an instruction of A. If I is halting, then IODiff I is empty.
(20) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If I is halting, then IOSum I is empty.
(21) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If I is halting, then Input I is empty.
Let N be a set with non empty elements, let A be a halting IC-Ins-separated definite non empty non void AMI over N, and let I be a halting instruction of A. One can verify the following observations:

* Input I is empty,
* Output I is empty, and
* IOSum I is empty.

Let N be a set with non empty elements, let A be a halting IC-Ins-separated definite non empty non void AMI over N with non trivial ObjectKinds, and let I be a halting instruction of A. Note that IODiff I is empty.

The following propositions are true:
(22) Let A be a steady-programmed IC-Ins-separated definite non empty non void AMI over N with non trivial instruction set, f be an instructionlocation of A, and I be an instruction of A. Then $f \notin$ IODiff I.
(23) Let A be a standard IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If I is sequential, then $\mathbf{I C}_{A} \notin \mathrm{IODiff} I$.
(24) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If there exists a state s of A such that $(\operatorname{Exec}(I, s))\left(\mathbf{I C}_{A}\right) \neq \mathbf{I C}$, then $\mathbf{I C}_{A} \in$ Output I.
(25) Let A be a standard IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If I is sequential, then $\mathbf{I C}_{A} \in$ Output I.
(26) Let A be an IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If there exists a state s of A such that $(\operatorname{Exec}(I, s))\left(\mathbf{I C}_{A}\right) \neq \mathbf{I} \mathbf{C}_{s}$, then $\mathbf{I C}_{A} \in \operatorname{IOSum} I$.
(27) Let A be a standard IC-Ins-separated definite non empty non void AMI over N and I be an instruction of A. If I is sequential, then $\mathbf{I C}_{A} \in$ IOSum I.
(28) Let A be an IC-Ins-separated definite non empty non void AMI over N, f be an instruction-location of A, and I be an instruction of A. Suppose that for every state s of A and for every programmed finite partial state p of A holds $\operatorname{Exec}(I, s+\cdot p)=\operatorname{Exec}(I, s)+\cdot p$. Then $f \notin \operatorname{IOSum} I$.
(29) Let A be an IC-Ins-separated definite non empty non void AMI over N, I be an instruction of A, and o be an object of A. If I is jump-only, then if $o \in$ Output I, then $o=\mathbf{I C}_{A}$.

3. Input and Output of the Instructions of SCM

In the sequel a, b are data-locations, f is an instruction-location of SCM, and I is an instruction of SCM.

We now state two propositions:
(30) For every state s of SCM and for every element w of ObjectKind $\left(\mathbf{I C}_{\mathbf{S C M}}\right)$ holds $\left(s+\cdot\left(\mathbf{I C}_{\mathbf{S C M}}, w\right)\right)(a)=s(a)$.
(31) $f \neq \operatorname{Next}(f)$.

Let s be a state of SCM, let d_{1} be a data-location, and let k be an integer. Then $s+\cdot\left(d_{1}, k\right)$ is a state of SCM.

Let us observe that SCM has non trivial ObjectKinds.
Next we state a number of propositions:
(32) $\operatorname{IODiff}(a:=a)=\emptyset$.
(33) If $a \neq b$, then IODiff $(a:=b)=\{a\}$.
(34) $\operatorname{IODiff} \operatorname{AddTo}(a, b)=\emptyset$.
(35) IODiff $\operatorname{SubFrom}(a, a)=\{a\}$.
(36) If $a \neq b$, then IODiff $\operatorname{SubFrom}(a, b)=\emptyset$.
(37) $\operatorname{IODiff} \operatorname{MultBy}(a, b)=\emptyset$.
(38) IODiff Divide $(a, a)=\{a\}$.
(39) If $a \neq b$, then IODiff Divide $(a, b)=\emptyset$.
(40) IODiff goto $f=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(41) $\operatorname{IODiff(if~} a=0$ goto $f)=\emptyset$.
(42) $\operatorname{IODiff}($ if $a>0$ goto $f)=\emptyset$.
(43) $\operatorname{Output}(a:=a)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(44) If $a \neq b$, then $\operatorname{Output}(a:=b)=\left\{a, \mathbf{I} \mathbf{C S M}_{\mathbf{S C M}}\right\}$.
(45) Output $\operatorname{AddTo}(a, b)=\left\{a, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(46) Output $\operatorname{SubFrom}(a, b)=\left\{a, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(47) Output $\operatorname{MultBy}(a, b)=\left\{a, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(48) Output Divide $(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(49) Output goto $f=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(50) Output(if $a=0$ goto $f)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(51) Output(if $a>0$ goto $f)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(52) $f \notin \operatorname{IOSum} I$.
(53) $\operatorname{IOSum}(a:=a)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(54) If $a \neq b$, then $\operatorname{IOSum}(a:=b)=\left\{a, b, \mathbf{I} \mathbf{C}_{\mathbf{S C M}}\right\}$.
(55) $\operatorname{IOSum} \operatorname{AddTo}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(56) IOSum $\operatorname{SubFrom}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(57) $\operatorname{IOSum} \operatorname{MultBy}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(58) $\operatorname{IOSum} \operatorname{Divide}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(59) IOSum goto $f=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(60) $\operatorname{IOSum}($ if $a=0$ goto $f)=\left\{a, \mathbf{I} \mathbf{C S M}_{\mathbf{S C M}}\right\}$.
(61) $\operatorname{IOSum}($ if $a>0$ goto $f)=\left\{a, \mathbf{I} \mathbf{C S C M}_{\mathbf{S C M}}\right\}$.
(62) $\operatorname{Input}(a:=a)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(63) If $a \neq b$, then $\operatorname{Input}(a:=b)=\left\{b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(64) Input $\operatorname{AddTo}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(65) Input $\operatorname{SubFrom}(a, a)=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(66) If $a \neq b$, then Input $\operatorname{SubFrom}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(67) Input $\operatorname{MultBy}(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(68) Input Divide $(a, a)=\left\{\mathbf{I C}_{\text {SCM }}\right\}$.
(69) If $a \neq b$, then Input Divide $(a, b)=\left\{a, b, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(70) Input goto $f=\emptyset$.
(71) Input(if $a=0$ goto $f)=\left\{a, \mathbf{I C}_{\mathbf{S C M}}\right\}$.
(72) Input(if $a>0$ goto $f)=\left\{a, \mathbf{I C}_{\mathbf{S C M}}\right\}$.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[6] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1-8, 1996.
[7] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[10] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruction locations. Formalized Mathematics, 9(2):291-301, 2001.
[11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received May 8, 2001

[^0]: ${ }^{1}$ This work has been partially supported by TYPES grant IST-1999-29001.

