Zero-Based Finite Sequences

Tetsuya Tsunetou Kyushu University Grzegorz Bancerek Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

 ${\rm MML} \ {\rm Identifier:} \ {\tt AFINSQ_1}.$

The terminology and notation used in this paper are introduced in the following papers: [11], [4], [7], [6], [5], [1], [3], [2], [8], [12], [13], [10], and [9].

We follow the rules: k, n are natural numbers, x, y, z, y_1 , y_2 , X are sets, and f is a function.

One can prove the following propositions:

- (1) $n \in n+1$.
- (2) If $k \leq n$, then $k = k \cap n$.
- (3) If $k = k \cap n$, then $k \leq n$.
- (4) $n \cup \{n\} = n+1.$
- (5) Seg $n \subseteq n+1$.
- (6) $n+1 = \{0\} \cup \text{Seg } n.$
- (7) For every function r holds r is finite and transfinite sequence-like iff there exists n such that dom r = n.

Let us mention that there exists a function which is finite and transfinite sequence-like.

A finite 0-sequence is a finite transfinite sequence.

In the sequel p, q, r denote finite 0-sequences.

Observe that every set which is natural is also finite. Let us consider p. One can verify that dom p is natural.

Let us consider p. Then $\overline{\overline{p}}$ is a natural number and it can be characterized by the condition:

(Def. 1) $\overline{\overline{p}} = \operatorname{dom} p$.

We introduce len p as a synonym of $\overline{\overline{p}}$.

Let us consider p. Then dom p is a subset of \mathbb{N} . Next we state the proposition

> C 2001 University of Białystok ISSN 1426-2630

(8) If there exists k such that dom $f \subseteq k$, then there exists p such that $f \subseteq p$.

In this article we present several logical schemes. The scheme XSeqEx deals with a natural number \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists p such that dom $p = \mathcal{A}$ and for every k such that $k \in \mathcal{A}$ holds $\mathcal{P}[k, p(k)]$

provided the following conditions are satisfied:

- For all k, y_1, y_2 such that $k \in \mathcal{A}$ and $\mathcal{P}[k, y_1]$ and $\mathcal{P}[k, y_2]$ holds $y_1 = y_2$, and
- For every k such that $k \in \mathcal{A}$ there exists x such that $\mathcal{P}[k, x]$.

The scheme SeqLambda deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that:

There exists a finite 0-sequence p such that $\operatorname{len} p = \mathcal{A}$ and for every k such that $k \in \mathcal{A}$ holds $p(k) = \mathcal{F}(k)$

for all values of the parameters.

Next we state several propositions:

- (9) If $z \in p$, then there exists k such that $k \in \text{dom } p$ and $z = \langle k, p(k) \rangle$.
- (10) If dom p = dom q and for every k such that $k \in \text{dom } p$ holds p(k) = q(k), then p = q.
- (11) If $\operatorname{len} p = \operatorname{len} q$ and for every k such that $k < \operatorname{len} p$ holds p(k) = q(k), then p = q.

(12) $p \upharpoonright n$ is a finite 0-sequence.

- (13) If rng $p \subseteq \text{dom } f$, then $f \cdot p$ is a finite 0-sequence.
- (14) If k < len p and $q = p \restriction k$, then len q = k and dom q = k.

Let D be a set. Observe that there exists a transfinite sequence of elements of D which is finite.

Let D be a set. A finite 0-sequence of D is a finite transfinite sequence of elements of D.

We now state the proposition

(15) For every set D holds every finite 0-sequence of D is a partial function from \mathbb{N} to D.

One can verify that \emptyset is transfinite sequence-like.

Let D be a set. Observe that there exists a partial function from \mathbb{N} to D which is finite and transfinite sequence-like.

In the sequel D is a set.

Next we state two propositions:

- (16) For every finite 0-sequence p of D holds $p \upharpoonright k$ is a finite 0-sequence of D.
- (17) For every non empty set D there exists a finite 0-sequence p of D such that len p = k.

One can verify that there exists a finite 0-sequence which is empty. One can prove the following propositions:

826

(18) $\operatorname{len} p = 0$ iff $p = \emptyset$.

(19) For every set D holds \emptyset is a finite 0-sequence of D.

Let D be a set. One can verify that there exists a finite 0-sequence of D which is empty.

Let us consider x. The functor $\langle_0 x \rangle$ yielding a set is defined as follows:

(Def. 2) $\langle_0 x \rangle = \{ \langle 0, x \rangle \}.$

Let D be a set. The functor $\langle \rangle_D$ yields an empty finite 0-sequence of D and is defined by:

(Def. 3) $\langle \rangle_D = \emptyset$.

Let us consider p, q. Observe that $p \cap q$ is finite. Then $p \cap q$ can be characterized by the condition:

(Def. 4) $\operatorname{dom}(p \cap q) = \operatorname{len} p + \operatorname{len} q$ and for every k such that $k \in \operatorname{dom} p$ holds $(p \cap q)(k) = p(k)$ and for every k such that $k \in \operatorname{dom} q$ holds $(p \cap q)(\operatorname{len} p + k) = q(k)$.

The following propositions are true:

- (20) $\operatorname{len}(p \cap q) = \operatorname{len} p + \operatorname{len} q.$
- (21) If $\operatorname{len} p \leq k$ and $k < \operatorname{len} p + \operatorname{len} q$, then $(p \cap q)(k) = q(k \operatorname{len} p)$.
- (22) If len $p \leq k$ and $k < \text{len}(p \cap q)$, then $(p \cap q)(k) = q(k \text{len } p)$.
- (23) If $k \in \text{dom}(p \cap q)$, then $k \in \text{dom} p$ or there exists n such that $n \in \text{dom} q$ and k = len p + n.
- (24) For all transfinite sequences p, q holds dom $p \subseteq \text{dom}(p \cap q)$.
- (25) If $x \in \operatorname{dom} q$, then there exists k such that k = x and $\operatorname{len} p + k \in \operatorname{dom}(p \cap q)$.
- (26) If $k \in \operatorname{dom} q$, then $\operatorname{len} p + k \in \operatorname{dom}(p \cap q)$.
- (27) $\operatorname{rng} p \subseteq \operatorname{rng}(p \cap q).$
- (28) $\operatorname{rng} q \subseteq \operatorname{rng}(p \cap q).$
- (29) $\operatorname{rng}(p \cap q) = \operatorname{rng} p \cup \operatorname{rng} q.$
- $(30) \quad (p \cap q) \cap r = p \cap (q \cap r).$
- (31) If $p \cap r = q \cap r$ or $r \cap p = r \cap q$, then p = q.
- (32) $p \cap \emptyset = p$ and $\emptyset \cap p = p$.
- (33) If $p \cap q = \emptyset$, then $p = \emptyset$ and $q = \emptyset$.

Let D be a set and let p, q be finite 0-sequences of D. Then $p \cap q$ is a transfinite sequence of elements of D.

Let us consider x. Then $\langle_0 x \rangle$ is a function and it can be characterized by the condition:

(Def. 5) dom $\langle_0 x \rangle = 1$ and $\langle_0 x \rangle(0) = x$.

Let us consider x. One can verify that $\langle 0x \rangle$ is function-like and relation-like.

Let us consider x. One can check that $\langle_0 x \rangle$ is finite and transfinite sequencelike.

One can prove the following proposition

(34) Suppose $p \cap q$ is a finite 0-sequence of D. Then p is a finite 0-sequence of D and q is a finite 0-sequence of D.

Let us consider x, y. The functor $\langle 0x, y \rangle$ yielding a set is defined by:

(Def. 6) $\langle_0 x, y \rangle = \langle_0 x \rangle \cap \langle_0 y \rangle.$

Let us consider z. The functor $\langle 0x, y, z \rangle$ yields a set and is defined by:

(Def. 7) $\langle 0x, y, z \rangle = \langle 0x \rangle \cap \langle 0y \rangle \cap \langle 0z \rangle.$

Let us consider x, y. One can check that $\langle 0x, y \rangle$ is function-like and relationlike. Let us consider z. One can verify that $\langle 0x, y, z \rangle$ is function-like and relationlike.

Let us consider x, y. One can check that $\langle 0x, y \rangle$ is finite and transfinite sequence-like. Let us consider z. Observe that $\langle 0x, y, z \rangle$ is finite and transfinite sequence-like.

One can prove the following propositions:

- $(35) \quad \langle_0 x \rangle = \{ \langle 0, x \rangle \}.$
- (36) $p = \langle_0 x \rangle$ iff dom p = 1 and rng $p = \{x\}$.
- (37) $p = \langle_0 x \rangle$ iff len p = 1 and rng $p = \{x\}$.
- (38) $p = \langle_0 x \rangle$ iff len p = 1 and p(0) = x.
- $(39) \quad (\langle_0 x \rangle \frown p)(0) = x.$
- (40) $(p \cap \langle_0 x \rangle)(\operatorname{len} p) = x.$
- (41) $\langle_0 x, y, z \rangle = \langle_0 x \rangle \land \langle_0 y, z \rangle$ and $\langle_0 x, y, z \rangle = \langle_0 x, y \rangle \land \langle_0 z \rangle$.

(42) $p = \langle_0 x, y \rangle$ iff len p = 2 and p(0) = x and p(1) = y.

- (43) $p = \langle_0 x, y, z \rangle$ iff len p = 3 and p(0) = x and p(1) = y and p(2) = z.
- (44) If $p \neq \emptyset$, then there exist q, x such that $p = q \cap \langle_0 x \rangle$.

Let D be a non empty set and let x be an element of D. Then $\langle_0 x \rangle$ is a finite 0-sequence of D.

The scheme IndXSeq concerns a unary predicate \mathcal{P} , and states that:

For every p holds $\mathcal{P}[p]$

provided the following conditions are met:

- $\mathcal{P}[\emptyset]$, and
- For all p, x such that $\mathcal{P}[p]$ holds $\mathcal{P}[p \cap \langle_0 x \rangle]$.

We now state the proposition

(45) For all finite 0-sequences p, q, r, s such that $p \cap q = r \cap s$ and $\operatorname{len} p \leq \operatorname{len} r$ there exists a finite 0-sequence t such that $p \cap t = r$.

Let D be a set. The functor D^{ω} yields a set and is defined as follows: (Def. 8) $x \in D^{\omega}$ iff x is a finite 0-sequence of D.

828

Let D be a set. One can check that D^{ω} is non empty.

One can prove the following propositions:

- (46) $x \in D^{\omega}$ iff x is a finite 0-sequence of D.
- (47) $\emptyset \in D^{\omega}$.

The scheme SepSeq deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P} . and states that:

There exists X such that for every x holds $x \in X$ iff there exists

p such that $p \in \mathcal{A}^{\omega}$ and $\mathcal{P}[p]$ and x = p

for all values of the parameters.

Let p be a finite 0-sequence and let i, x be sets. Note that p + (i, x) is finite and transfinite sequence-like. We introduce $\operatorname{Replace}(p, i, x)$ as a synonym of p + (i, x).

One can prove the following proposition

(48) Let p be a finite 0-sequence, i be a natural number, and x be a set. Then len Replace(p, i, x) = len p and if i < len p, then $(\operatorname{Replace}(p, i, x))(i) = x$ and for every natural number j such that $j \neq i$ holds $(\operatorname{Replace}(p, i, x))(j) = p(j).$

Let D be a non empty set, let p be a finite 0-sequence of D, let i be a natural number, and let a be an element of D. Then $\operatorname{Replace}(p, i, a)$ is a finite 0-sequence of D.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, [13]1990.

Received September 28, 2001