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Summary. In the paper, we develop the notation of duality and equiva-
lence of categories and concrete categories based on [9]. The development was
motivated by the duality theory for continuous lattices (see [5, p. 189]), where we
need to cope with concrete categories of lattices and maps preserving their pro-
perties. For example, the category UPS of complete lattices and directed suprema
preserving maps; or the category INF of complete lattices and infima preserving
maps. As the main result of this paper it is shown that every category is isomor-
phic to its concretization (the concrete category with the same objects). Some
useful schemes to construct categories and functors are also presented.

MML Identifier: YELLOW18.

The notation and terminology used here are introduced in the following articles:

[9], [10], [7], [2], [13], [11], [6], [3], [4], [1], [14], [15], [12], and [8].

1. Definability of Categories and Functors

In this article we present several logical schemes. The scheme AltCatStr-

Lambda deals with a non empty set A, a binary functor F yielding a set, and a

5-ary functor G yielding a set, and states that:

There exists a strict non empty transitive category structure C

such that

(i) the carrier of C = A,

(ii) for all objects a, b of C holds 〈a, b〉 = F(a, b), and

(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅

and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)
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provided the following requirement is met:

• For all elements a, b, c of A and for all sets f , g such that f ∈

F(a, b) and g ∈ F(b, c) holds G(a, b, c, f, g) ∈ F(a, c).

The scheme CatAssocSch deals with a non empty transitive category struc-

ture A and a 5-ary functor F yielding a set, and states that:

A is associative

provided the parameters meet the following requirements:

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let

f be a morphism from a to b and g be a morphism from b to c.

Then g · f = F(a, b, c, f, g), and

• Let a, b, c, d be objects of A and f , g, h be sets. If f ∈ 〈a, b〉

and g ∈ 〈b, c〉 and h ∈ 〈c, d〉, then F(a, c, d,F(a, b, c, f, g), h) =

F(a, b, d, f,F(b, c, d, g, h)).

The scheme CatUnitsSch deals with a non empty transitive category struc-

ture A and a 5-ary functor F yielding a set, and states that:

A has units

provided the parameters satisfy the following conditions:

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let

f be a morphism from a to b and g be a morphism from b to c.

Then g · f = F(a, b, c, f, g),

• Let a be an object of A. Then there exists a set f such that

f ∈ 〈a, a〉 and for every object b of A and for every set g such

that g ∈ 〈a, b〉 holds F(a, a, b, f, g) = g, and

• Let a be an object of A. Then there exists a set f such that

f ∈ 〈a, a〉 and for every object b of A and for every set g such

that g ∈ 〈b, a〉 holds F(b, a, a, g, f) = g.

The scheme CategoryLambda deals with a non empty set A, a binary functor

F yielding a set, and a 5-ary functor G yielding a set, and states that:

There exists a strict category C such that

(i) the carrier of C = A,

(ii) for all objects a, b of C holds 〈a, b〉 = F(a, b), and

(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅

and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)

provided the parameters satisfy the following conditions:

• For all elements a, b, c of A and for all sets f , g such that f ∈

F(a, b) and g ∈ F(b, c) holds G(a, b, c, f, g) ∈ F(a, c),

• Let a, b, c, d be elements of A and f , g, h be sets. If f ∈ F(a, b)

and g ∈ F(b, c) and h ∈ F(c, d), then G(a, c, d,G(a, b, c, f, g), h) =

G(a, b, d, f,G(b, c, d, g, h)),

• Let a be an element of A. Then there exists a set f such that

f ∈ F(a, a) and for every element b of A and for every set g such
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that g ∈ F(a, b) holds G(a, a, b, f, g) = g, and

• Let a be an element of A. Then there exists a set f such that

f ∈ F(a, a) and for every element b of A and for every set g such

that g ∈ F(b, a) holds G(b, a, a, g, f) = g.

The scheme CategoryLambdaUniq deals with a non empty set A, a binary

functor F yielding a set, and a 5-ary functor G yielding a set, and states that:

Let C1, C2 be non empty transitive category structures. Suppose

that

(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 holds 〈a, b〉 = F(a, b),

(iii) for all objects a, b, c of C1 such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅

and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g),

(iv) the carrier of C2 = A,

(v) for all objects a, b of C2 holds 〈a, b〉 = F(a, b), and

(vi) for all objects a, b, c of C2 such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅

and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g).

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

The scheme CategoryQuasiLambda deals with a non empty set A, a binary

functor F yielding a set, a 5-ary functor G yielding a set, and a ternary predicate

P, and states that:

There exists a strict category C such that

(i) the carrier of C = A,

(ii) for all objects a, b of C and for every set f holds f ∈ 〈a, b〉

iff f ∈ F(a, b) and P[a, b, f ], and

(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅

and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)

provided the following requirements are met:

• Let a, b, c be elements of A and f , g be sets. Suppose f ∈ F(a, b)

and P[a, b, f ] and g ∈ F(b, c) and P[b, c, g]. Then G(a, b, c, f, g) ∈

F(a, c) and P[a, c,G(a, b, c, f, g)],

• Let a, b, c, d be elements of A and f , g, h be sets. Suppose f ∈

F(a, b) and P[a, b, f ] and g ∈ F(b, c) and P[b, c, g] and h ∈ F(c, d)

and P[c, d, h]. Then G(a, c, d,G(a, b, c, f, g), h) = G(a, b, d, f,G(b, c,

d, g, h)),

• Let a be an element of A. Then there exists a set f such that f ∈

F(a, a) and P[a, a, f ] and for every element b of A and for every
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set g such that g ∈ F(a, b) and P[a, b, g] holds G(a, a, b, f, g) = g,

and

• Let a be an element of A. Then there exists a set f such that f ∈

F(a, a) and P[a, a, f ] and for every element b of A and for every

set g such that g ∈ F(b, a) and P[b, a, g] holds G(b, a, a, g, f) = g.

Let f be a function yielding function and let a, b, c be sets. Note that f(a,

b, c) is relation-like and function-like.

Now we present two schemes. The scheme SubcategoryEx deals with a cate-

gory A, a unary predicate P, and a ternary predicate Q, and states that:

There exists a subcategory B of A such that

(i) for every object a of A holds a is an object of B iff P[a],

and

(ii) for all objects a, b of A and for all objects a′, b′ of B such

that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f

from a to b holds f ∈ 〈a′, b′〉 iff Q[a, b, f ]

provided the parameters meet the following requirements:

• There exists an object a of A such that P[a],

• Let a, b, c be objects of A. Suppose P[a] and P[b] and P[c] and

〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b and

g be a morphism from b to c. If Q[a, b, f ] and Q[b, c, g], then

Q[a, c, g · f ], and

• For every object a of A such that P[a] holds Q[a, a, ida].

The scheme CovariantFunctorLambda deals with categories A, B, a unary

functor F yielding a set, and a ternary functor G yielding a set, and states that:

There exists a covariant strict functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f)

provided the parameters have the following properties:

• For every object a of A holds F(a) is an object of B,

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then G(a, b, f) ∈ (the arrows of B)(F(a), F(b)),

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅.

Let f be a morphism from a to b, g be a morphism from b to c,

and a′, b′, c′ be objects of B. Suppose a′ = F(a) and b′ = F(b)

and c′ = F(c). Let f ′ be a morphism from a′ to b′ and g′ be a

morphism from b′ to c′. If f ′ = G(a, b, f) and g′ = G(b, c, g), then

G(a, c, g · f) = g′ · f ′, and

• For every object a of A and for every object a′ of B such that

a′ = F(a) holds G(a, a, ida) = ida′ .

The following proposition is true
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(1) Let A, B be categories and F , G be covariant functors from A to B.

Suppose that

(i) for every object a of A holds F (a) = G(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (f) = G(f).

Then the functor structure of F = the functor structure of G.

The scheme ContravariantFunctorLambda deals with categoriesA, B, a unary

functor F yielding a set, and a ternary functor G yielding a set, and states that:

There exists a contravariant strict functor F from A to B such

that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f)

provided the parameters meet the following requirements:

• For every object a of A holds F(a) is an object of B,

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then G(a, b, f) ∈ (the arrows of B)(F(b), F(a)),

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅.

Let f be a morphism from a to b, g be a morphism from b to c,

and a′, b′, c′ be objects of B. Suppose a′ = F(a) and b′ = F(b)

and c′ = F(c). Let f ′ be a morphism from b′ to a′ and g′ be a

morphism from c′ to b′. If f ′ = G(a, b, f) and g′ = G(b, c, g), then

G(a, c, g · f) = f ′ · g′, and

• For every object a of A and for every object a′ of B such that

a′ = F(a) holds G(a, a, ida) = ida′ .

One can prove the following proposition

(2) Let A, B be categories and F , G be contravariant functors from A to B.

Suppose that

(i) for every object a of A holds F (a) = G(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (f) = G(f).

Then the functor structure of F = the functor structure of G.

2. Isomorphism and Equivalence of Categories

Let A, B, C be non empty sets and let f be a function from [:A, B :] into C.

Let us observe that f is one-to-one if and only if:

(Def. 1) For all elements a1, a2 of A and for all elements b1, b2 of B such that

f(a1, b1) = f(a2, b2) holds a1 = a2 and b1 = b2.
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Now we present four schemes. The scheme CoBijectiveSch deals with cate-

gories A, B, a covariant functor C from A to B, a unary functor F yielding a

set, and a ternary functor C yielding a set, and states that:

C is bijective

provided the parameters meet the following requirements:

• For every object a of A holds C(a) = F(a),

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every mor-

phism f from a to b holds C(f) = C(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms

f , g from a to b such that C(a, b, f) = C(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then there exist objects c, d of A and there exists

a morphism g from c to d such that a = F(c) and b = F(d) and

〈c, d〉 6= ∅ and f = C(c, d, g).

The scheme CatIsomorphism deals with categories A, B, a unary functor F

yielding a set, and a ternary functor G yielding a set, and states that:

A and B are isomorphic

provided the parameters meet the following requirements:

• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms

f , g from a to b such that G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then there exist objects c, d of A and there exists

a morphism g from c to d such that a = F(c) and b = F(d) and

〈c, d〉 6= ∅ and f = G(c, d, g).

The scheme ContraBijectiveSch deals with categories A, B, a contravariant

functor C from A to B, a unary functor F yielding a set, and a ternary functor

C yielding a set, and states that:

C is bijective

provided the following conditions are met:

• For every object a of A holds C(a) = F(a),

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every mor-

phism f from a to b holds C(f) = C(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms

f , g from a to b such that C(a, b, f) = C(a, b, g) holds f = g, and
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• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then there exist objects c, d of A and there exists

a morphism g from c to d such that b = F(c) and a = F(d) and

〈c, d〉 6= ∅ and f = C(c, d, g).

The scheme CatAntiIsomorphism deals with categories A, B, a unary functor

F yielding a set, and a ternary functor G yielding a set, and states that:

A, B are anti-isomorphic

provided the parameters meet the following conditions:

• There exists a contravariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = G(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms

f , g from a to b such that G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b. Then there exist objects c, d of A and there exists

a morphism g from c to d such that b = F(c) and a = F(d) and

〈c, d〉 6= ∅ and f = G(c, d, g).

Let A, B be categories. We say that A and B are equivalent if and only if

the condition (Def. 2) is satisfied.

(Def. 2) There exists a covariant functor F from A to B and there exists a co-

variant functor G from B to A such that G · F and idA are naturally

equivalent and F ·G and idB are naturally equivalent.

Let us notice that the predicate A and B are equivalent is reflexive and sym-

metric.

The following propositions are true:

(3) Let A, B, C be non empty reflexive graphs, F1, F2 be feasible functor

structures from A to B, and G1, G2 be functor structures from B to C.

Suppose that

(i) the functor structure of F1 = the functor structure of F2, and

(ii) the functor structure of G1 = the functor structure of G2.

Then G1 · F1 = G2 · F2.

(4) Let A, B, C be categories. Suppose A and B are equivalent and B and

C are equivalent. Then A and C are equivalent.

(5) For all categories A, B such that A and B are isomorphic holds A and

B are equivalent.

Now we present two schemes. The scheme NatTransLambda deals with ca-

tegories A, B, covariant functors C, D from A to B, and a unary functor F

yielding a set, and states that:
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There exists a natural transformation t from C to D such that C

is naturally transformable to D and for every object a of A holds

t[a] = F(a)

provided the parameters have the following properties:

• For every object a of A holds F(a) ∈ 〈C(a),D(a)〉, and

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b and g1 be a morphism from C(a) to D(a). Suppose

g1 = F(a). Let g2 be a morphism from C(b) to D(b). If g2 = F(b),

then g2 · C(f) = D(f) · g1.

The scheme NatEquivalenceLambda deals with categories A, B, covariant

functors C, D from A to B, and a unary functor F yielding a set, and states

that:

There exists a natural equivalence t of C and D such that C and D

are naturally equivalent and for every object a of A holds t[a] =

F(a)

provided the following conditions are satisfied:

• Let a be an object ofA. Then F(a) ∈ 〈C(a),D(a)〉 and 〈D(a), C(a)〉 6=

∅ and for every morphism f from C(a) to D(a) such that f = F(a)

holds f is iso, and

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b and g1 be a morphism from C(a) to D(a). Suppose

g1 = F(a). Let g2 be a morphism from C(b) to D(b). If g2 = F(b),

then g2 · C(f) = D(f) · g1.

3. Dual Categories

Let C1, C2 be non empty category structures. We say that C1 and C2 are

opposite if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) The carrier of C2 = the carrier of C1,

(ii) the arrows of C2 = x(the arrows of C1), and

(iii) for all objects a, b, c of C1 and for all objects a′, b′, c′ of C2 such

that a′ = a and b′ = b and c′ = c holds (the composition of C2)(a
′, b′,

c′) = x(the composition of C1)(c, b, a).

Let us note that the predicate C1 and C2 are opposite is symmetric.

Next we state several propositions:

(6) For all non empty category structures A, B such that A and B are

opposite holds every object of A is an object of B.

(7) Let A, B be non empty category structures. Suppose A and B are op-

posite. Let a, b be objects of A and a′, b′ be objects of B. If a′ = a and

b′ = b, then 〈a, b〉 = 〈b′, a′〉.
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(8) Let A, B be non empty category structures. Suppose A and B are op-

posite. Let a, b be objects of A and a′, b′ be objects of B. If a′ = a and

b′ = b, then every morphism from a to b is a morphism from b′ to a′.

(9) Let C1, C2 be non empty transitive category structures. Then C1 and

C2 are opposite if and only if the following conditions are satisfied:

(i) the carrier of C2 = the carrier of C1, and

(ii) for all objects a, b, c of C1 and for all objects a′, b′, c′ of C2 such that

a′ = a and b′ = b and c′ = c holds 〈a, b〉 = 〈b′, a′〉 and if 〈a, b〉 6= ∅ and

〈b, c〉 6= ∅, then for every morphism f from a to b and for every morphism g

from b to c and for every morphism f ′ from b′ to a′ and for every morphism

g′ from c′ to b′ such that f ′ = f and g′ = g holds f ′ · g′ = g · f.

(10) Let A, B be categories. Suppose A and B are opposite. Let a be an

object of A and b be an object of B. If a = b, then ida = idb .

(11) Let C be a transitive non empty category structure. Then there exists a

strict transitive non empty category structure C ′ such that C and C ′ are

opposite.

(12) Let A, B be transitive non empty category structures. Suppose A and

B are opposite. If A is associative, then B is associative.

(13) For all transitive non empty category structures A, B such that A and

B are opposite holds if A has units, then B has units.

(14) Let C, C1, C2 be non empty category structures. Suppose C and C1 are

opposite. Then C and C2 are opposite if and only if the category structure

of C1 = the category structure of C2.

Let C be a transitive non empty category structure. The functor Cop yields

a strict transitive non empty category structure and is defined as follows:

(Def. 4) C and Cop are opposite.

Let C be an associative transitive non empty category structure. One can

check that Cop is associative.

Let C be a transitive non empty category structure with units. One can

verify that Cop has units.

Let A, B be categories. Let us assume that A and B are opposite. The

dualizing functor from A into B is a contravariant strict functor from A to B

and is defined by the conditions (Def. 5).

(Def. 5)(i) For every object a of A holds (the dualizing functor from A into

B)(a) = a, and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds (the dualizing functor from A into B)(f) = f.

Next we state two propositions:

(15) Let A, B be categories. Suppose A and B are opposite. Then (the duali-

zing functor from A into B) · (the dualizing functor from B into A) = idB.
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(16) Let A, B be categories. Suppose A and B are opposite. Then the duali-

zing functor from A into B is bijective.

Let A be a category. One can verify that the dualizing functor from A into

Aop is bijective and the dualizing functor from Aop into A is bijective.

Next we state a number of propositions:

(17) For all categories A, B such that A and B are opposite holds A, B are

anti-isomorphic.

(18) Let A, B, C be categories. Suppose A and B are opposite. Then A and

C are isomorphic if and only if B, C are anti-isomorphic.

(19) Let A, B, C, D be categories. Suppose A and B are opposite and C and

D are opposite. If A and C are isomorphic, then B and D are isomorphic.

(20) Let A, B, C, D be categories. Suppose A and B are opposite and C and

D are opposite. If A, C are anti-isomorphic, then B,D are anti-isomorphic.

(21) Let A, B be categories. Suppose A and B are opposite. Let a, b be objects

of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B. Suppose

a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a morphism

from b′ to a′. If f ′ = f, then f is retraction iff f ′ is coretraction.

(22) Let A, B be categories. Suppose A and B are opposite. Let a, b be objects

of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B. Suppose

a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a morphism

from b′ to a′. If f ′ = f, then f is coretraction iff f ′ is retraction.

(23) Let A, B be categories. Suppose A and B are opposite. Let a, b be

objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B.

Suppose a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be

a morphism from b′ to a′. If f ′ = f and f is retraction and coretraction,

then f ′−1 = f−1.

(24) Let A, B be categories. Suppose A and B are opposite. Let a, b be

objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B.

Suppose a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a

morphism from b′ to a′. If f ′ = f, then f is iso iff f ′ is iso.

(25) Let A, B, C, D be categories. Suppose A and B are opposite and C and

D are opposite. Let F , G be covariant functors from B to C. Suppose F

and G are naturally equivalent. Then (the dualizing functor from C into

D) · G · the dualizing functor from A into B and (the dualizing functor

from C into D) · F · the dualizing functor from A into B are naturally

equivalent.

(26) Let A, B, C, D be categories. Suppose A and B are opposite and C and

D are opposite. If A and C are equivalent, then B and D are equivalent.

Let A, B be categories. We say that A and B are dual if and only if:

(Def. 6) A and Bop are equivalent.
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Let us note that the predicate A and B are dual is symmetric.

We now state four propositions:

(27) For all categories A, B such that A, B are anti-isomorphic holds A and

B are dual.

(28) Let A, B, C be categories. Suppose A and B are opposite. Then A and

C are equivalent if and only if B and C are dual.

(29) For all categories A, B, C such that A and B are dual and B and C are

equivalent holds A and C are dual.

(30) For all categories A, B, C such that A and B are dual and B and C are

dual holds A and C are equivalent.

4. Concrete Categories

The following proposition is true

(31) For all sets X, Y , x holds x ∈ Y X iff x is a function and π1(x) = X and

π2(x) ⊆ Y.

Let C be a 1-sorted structure. A many sorted set indexed by C is a many

sorted set indexed by the carrier of C.

Let C be a category. We say that C is para-functional if and only if:

(Def. 7) There exists a many sorted set F indexed by C such that for all objects

a1, a2 of C holds 〈a1, a2〉 ⊆ F (a2)
F (a1).

Let us note that every category which is quasi-functional is also para-functional.

Let C be a category and let a be a set. C-carrier of a is defined as follows:

(Def. 8)(i) There exists an object b of C such that b = a and C-carrier of a =

π1(idb) if a is an object of C,

(ii) C-carrier of a = ∅, otherwise.

Let C be a category and let a be an object of C. Then C-carrier of a can be

characterized by the condition:

(Def. 9) C-carrier of a = π1(ida).

We introduce the carrier of a as a synonym of C-carrier of a.

We now state two propositions:

(32) For every non empty set A and for every object a of EnsA holds the

identity morphism of a = the identity function on a.

(33) For every non empty set A and for every object a of EnsA holds the

carrier of a = a.

Let C be a category. We say that C is set-id-inheriting if and only if:

(Def. 10) For every object a of C holds ida = idthe carrier of a.
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Let A be a non empty set. Observe that EnsA is set-id-inheriting.

Let C be a category. We say that C is concrete if and only if:

(Def. 11) C is para-functional, semi-functional, and set-id-inheriting.

One can verify that every category which is concrete is also para-functional,

semi-functional, and set-id-inheriting and every category which is para-functional,

semi-functional, and set-id-inheriting is also concrete.

Let us mention that there exists a category which is concrete, quasi-functional,

and strict.

The following propositions are true:

(34) Let C be a category. Then C is para-functional if and only if for all

objects a1, a2 of C holds 〈a1, a2〉 ⊆ (the carrier of a2)
the carrier of a1 .

(35) Let C be a para-functional category and a, b be objects of C. Suppose

〈a, b〉 6= ∅. Then every morphism from a to b is a function from the carrier

of a into the carrier of b.

Let A be a para-functional category and let a, b be objects of A. One can

verify that every morphism from a to b is function-like and relation-like.

We now state four propositions:

(36) Let C be a para-functional category and a, b be objects of C. Suppose

〈a, b〉 6= ∅. Let f be a morphism from a to b. Then dom f = the carrier of

a and rng f ⊆ the carrier of b.

(37) For every para-functional semi-functional category C and for every ob-

ject a of C holds the carrier of a = dom(ida).

(38) Let C be a para-functional semi-functional category and a, b, c be objects

of C. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b

and g be a morphism from b to c. Then g · f = (g qua function) · (f qua

function).

(39) Let C be a para-functional semi-functional category and a be an object

of C. If idthe carrier of a ∈ 〈a, a〉, then ida = idthe carrier of a.

Now we present several schemes. The scheme ConcreteCategoryLambda deals

with a non empty set A, a binary functor F yielding a set, and a unary functor

G yielding a set, and states that:

There exists a concrete strict category C such that

(i) the carrier of C = A,

(ii) for every object a of C holds the carrier of a = G(a), and

(iii) for all objects a, b of C holds 〈a, b〉 = F(a, b)

provided the following requirements are met:

• For all elements a, b, c of A and for all functions f , g such that

f ∈ F(a, b) and g ∈ F(b, c) holds g · f ∈ F(a, c),

• For all elements a, b of A holds F(a, b) ⊆ G(b)G(a), and

• For every element a of A holds idG(a) ∈ F(a, a).
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The scheme ConcreteCategoryQuasiLambda deals with a non empty set A,

a unary functor F yielding a set, and a ternary predicate P, and states that:

There exists a concrete strict category C such that

(i) the carrier of C = A,

(ii) for every object a of C holds the carrier of a = F(a), and

(iii) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ]

provided the parameters satisfy the following conditions:

• For all elements a, b, c of A and for all functions f , g such that

P[a, b, f ] and P[b, c, g] holds P[a, c, g · f ], and

• For every element a of A holds P[a, a, idF(a)].

The scheme ConcreteCategoryEx deals with a non empty set A, a unary

functor F yielding a set, a binary predicate P, and a ternary predicate Q, and

states that:

There exists a concrete strict category C such that

(i) the carrier of C = A,

(ii) for every object a of C and for every set x holds x ∈ the

carrier of a iff x ∈ F(a) and P[a, x], and

(iii) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C)(a, b) iff f ∈ (C-carrier of b)C-carrier of a and

Q[a, b, f ]

provided the following requirements are met:

• For all elements a, b, c of A and for all functions f , g such that

Q[a, b, f ] and Q[b, c, g] holds Q[a, c, g · f ], and

• Let a be an element of A and X be a set. If for every set x holds

x ∈ X iff x ∈ F(a) and P[a, x], then Q[a, a, idX ].

The scheme ConcreteCategoryUniq1 deals with a non empty set A and a

binary functor F yielding a set, and states that:

Let C1, C2 be para-functional semi-functional categories. Suppose

that

(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 holds 〈a, b〉 = F(a, b),

(iii) the carrier of C2 = A, and

(iv) for all objects a, b of C2 holds 〈a, b〉 = F(a, b).

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

The scheme ConcreteCategoryUniq2 deals with a non empty set A, a unary

functor F yielding a set, and a ternary predicate P, and states that:

Let C1, C2 be para-functional semi-functional categories. Suppose

that

(i) the carrier of C1 = A,
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(ii) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C1)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ],

(iii) the carrier of C2 = A, and

(iv) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C2)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ].

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

The scheme ConcreteCategoryUniq3 deals with a non empty set A, a unary

functor F yielding a set, a binary predicate P, and a ternary predicate Q, and

states that:

Let C1, C2 be para-functional semi-functional categories. Suppose

that

(i) the carrier of C1 = A,

(ii) for every object a of C1 and for every set x holds x ∈ the

carrier of a iff x ∈ F(a) and P[a, x],

(iii) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C1)(a, b) iff f ∈ (C1-carrier of b)
C1-carrier of a

and Q[a, b, f ],

(iv) the carrier of C2 = A,

(v) for every object a of C2 and for every set x holds x ∈ the

carrier of a iff x ∈ F(a) and P[a, x], and

(vi) for all elements a, b of A and for every function f holds

f ∈ (the arrows of C2)(a, b) iff f ∈ (C2-carrier of b)
C2-carrier of a

and Q[a, b, f ].

Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

5. Equivalence Between Concrete Categories

One can prove the following propositions:

(40) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅

and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is retraction, then

rng f = the carrier of b.

(41) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅

and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is coretraction, then

f is one-to-one.
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(42) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅

and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then f is one-

to-one and rng f = the carrier of b.

(43) Let C be a para-functional semi-functional category and a, b be objects

of C. Suppose 〈a, b〉 6= ∅. Let f be a morphism from a to b. If f is one-to-one

and (f qua function) −1 ∈ 〈b, a〉, then f is iso.

(44) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅

and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then f−1 =

(f qua function) −1.

The scheme ConcreteCatEquivalence deals with para-functional semi-functional

categories A, B, two unary functors F and G yielding sets, two ternary functors

H and I yielding functions, and two unary functors A and B yielding functions,

and states that:

A and B are equivalent

provided the following conditions are met:

• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds F (f) = H(a, b, f),

• There exists a covariant functor G from B to A such that

(i) for every object a of B holds G(a) = G(a), and

(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds G(f) = I(a, b, f),

• For all objects a, b of A such that a = G(F(b)) holds A(b) ∈ 〈a, b〉

and A(b)−1 ∈ 〈b, a〉 and A(b) is one-to-one,

• For all objects a, b of B such that b = F(G(a)) holds B(a) ∈ 〈a, b〉

and B(a)−1 ∈ 〈b, a〉 and B(a) is one-to-one,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every

morphism f from a to b holds A(b) · I(F(a),F(b),H(a, b, f)) =

f · A(a), and

• For all objects a, b of B such that 〈a, b〉 6= ∅ and for every mor-

phism f from a to b holds H(G(a),G(b), I(a, b, f))·B(a) = B(b)·f.

6. Concretization of Categories

Let C be a category. The concretized C is a concrete strict category and is

defined by the conditions (Def. 12).

(Def. 12)(i) The carrier of the concretized C = the carrier of C,

(ii) for every object a of the concretized C and for every set x holds x ∈ the

carrier of a iff x ∈ Union disjoint (the arrows of C) and a = x2,2, and
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(iii) for all elements a, b of the carrier of C and for every function f holds f ∈

(the arrows of the concretized C)(a, b) iff f ∈ ((the concretized C)-carrier

of b)(the concretized C)-carrier of a and there exist objects f1, f2 of C and there

exists a morphism g from f1 to f2 such that f1 = a and f2 = b and

〈f1, f2〉 6= ∅ and for every object o of C such that 〈o, f1〉 6= ∅ and for every

morphism h from o to f1 holds f(〈〈h, 〈〈o, f1〉〉〉〉) = 〈〈g · h, 〈〈o, f2〉〉〉〉.

One can prove the following proposition

(45) Let A be a category, a be an object of A, and x be a set. Then x ∈

(the concretized A)-carrier of a if and only if there exists an object b of A

and there exists a morphism f from b to a such that 〈b, a〉 6= ∅ and x = 〈〈f,

〈〈b, a〉〉〉〉.

Let A be a category and let a be an object of A. Observe that (the concretized

A)-carrier of a is non empty.

One can prove the following two propositions:

(46) Let A be a category and a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let

f be a morphism from a to b. Then there exists a function F from (the

concretized A)-carrier of a into (the concretized A)-carrier of b such that

(i) F ∈ (the arrows of the concretized A)(a, b), and

(ii) for every object c of A and for every morphism g from c to a such that

〈c, a〉 6= ∅ holds F (〈〈g, 〈〈c, a〉〉〉〉) = 〈〈f · g, 〈〈c, b〉〉〉〉.

(47) Let A be a category and a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let

F1, F2 be functions. Suppose that

(i) F1 ∈ (the arrows of the concretized A)(a, b),

(ii) F2 ∈ (the arrows of the concretized A)(a, b), and

(iii) F1(〈〈 ida, 〈〈a, a〉〉〉〉) = F2(〈〈 ida, 〈〈a, a〉〉〉〉).

Then F1 = F2.

The scheme NonUniqMSFunctionEx deals with a set A, many sorted sets B,

C indexed by A, and a ternary predicate P, and states that:

There exists a many sorted function F from B into C such that

for all sets i, x if i ∈ A and x ∈ B(i), then F (i)(x) ∈ C(i) and

P[i, x, F (i)(x)]

provided the following condition is met:

• For all sets i, x such that i ∈ A and x ∈ B(i) there exists a set y

such that y ∈ C(i) and P[i, x, y].

Let A be a category. The concretization of A is a covariant strict functor

from A to the concretized A and is defined by the conditions (Def. 13).

(Def. 13)(i) For every object a of A holds (the concretization of A)(a) = a, and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds (the concretization of A)(f)(〈〈 ida, 〈〈a, a〉〉〉〉) = 〈〈f, 〈〈a, b〉〉〉〉.

Let A be a category. One can check that the concretization of A is bijective.

The following proposition is true
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(48) For every category A holds A and the concretized A are isomorphic.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–
541, 1990.

[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-
pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[6] Artur Korniłowicz. The composition of functors and transformations in alternative cate-
gories. Formalized Mathematics, 7(1):1–7, 1998.

[7] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics,
6(3):329–334, 1997.

[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[9] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathe-
matics, 5(2):259–267, 1996.

[10] Andrzej Trybulec. Examples of category structures. Formalized Mathematics, 5(4):493–
500, 1996.

[11] Andrzej Trybulec. Functors for alternative categories. Formalized Mathematics, 5(4):595–
608, 1996.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received January 12, 2001


