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Summary. The article is the second part of a paper proving the funda-
mental Urysohn Theorem concerning the existence of a real valued continuous

function on a normal topological space. The paper is divided into two parts. In

the first part, we introduce some definitions and theorems concerning properties

of intervals; in the second we prove some of properties of dyadic numbers used

in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

The terminology and notation used here have been introduced in the following

articles: [9], [10], [11], [3], [4], [8], [7], [6], [12], [1], [2], and [5].

The following proposition is true

(1) For every interval A such that A 6= ∅ holds if inf A < supA, then

vol(A) = supA− inf A and if supA = inf A, then vol(A) = 0
R
.

Let A be a subset of R and let x be a real number. The functor x ·A yielding

a subset of R is defined as follows:

(Def. 1) For every real number y holds y ∈ x · A iff there exists a real number z

such that z ∈ A and y = x · z.

Next we state a number of propositions:

(2) For every subset A of R and for every real number x such that x 6= 0

holds x−1 · (x ·A) = A.

(3) For every real number x such that x 6= 0 and for every subset A of R

such that A = R holds x ·A = A.

(4) For every subset A of R such that A 6= ∅ holds 0 ·A = {0}.

(5) For every subset A of R such that A 6= ∅ holds 0 ·A = {0}.
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(6) For every real number x holds x · ∅ = ∅.

(7) For every real number y holds y < 0 or y = 0 or 0 < y.

(8) Let a, b be extended real numbers. Suppose a ¬ b. Then a = −∞ and

b = −∞ or a = −∞ and b ∈ R or a = −∞ and b = +∞ or a ∈ R and

b ∈ R or a ∈ R and b = +∞ or a = +∞ and b = +∞.

(9) For every extended real number x holds [x, x] is an interval.

(10) For every interval A holds 0 ·A is an interval.

(11) For all real numbers q, x such that x 6= 0 holds q = x · q
x
.

(12) For all real numbers p, q, x such that 0 < x and x · p < x · q holds p < q.

(13) For all real numbers p, q, x such that x < 0 and x · p < x · q holds q < p.

(14) For all real numbers p, q, x such that 0 < x and x · p ¬ x · q holds p ¬ q.

(15) For all real numbers p, q, x such that x < 0 and x · p ¬ x · q holds q ¬ p.

(16) Let A be an interval and x be a real number. If x 6= 0, then if A is open

interval, then x ·A is open interval.

(17) Let A be an interval and x be a real number. If x 6= 0, then if A is closed

interval, then x ·A is closed interval.

(18) Let A be an interval and x be a real number. Suppose 0 < x. If A is

right open interval, then x ·A is right open interval.

(19) Let A be an interval and x be a real number. Suppose x < 0. If A is

right open interval, then x ·A is left open interval.

(20) Let A be an interval and x be a real number. Suppose 0 < x. If A is left

open interval, then x ·A is left open interval.

(21) Let A be an interval and x be a real number. Suppose x < 0. If A is left

open interval, then x ·A is right open interval.

(22) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = [inf A, supA].

Then B = [inf B, supB] and for all real numbers s, t such that s = inf A

and t = supA holds inf B = x · s and supB = x · t.

(23) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = ]inf A, supA].

Then B = ]inf B, supB] and for all real numbers s, t such that s = inf A

and t = supA holds inf B = x · s and supB = x · t.

(24) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = ]inf A, supA[.

Then B = ]inf B, supB[ and for all real numbers s, t such that s = inf A

and t = supA holds inf B = x · s and supB = x · t.

(25) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = [inf A, supA[.



some properties of dyadic numbers and . . . 629

Then B = [inf B, supB[ and for all real numbers s, t such that s = inf A

and t = supA holds inf B = x · s and supB = x · t.

(26) For every interval A and for every real number x holds x·A is an interval.

Let A be an interval and let x be a real number. Observe that x·A is interval.

The following propositions are true:

(27) Let A be an interval and x be a real number. If 0 ¬ x, then for every

real number y such that y = vol(A) holds x · y = vol(x ·A).

(28) For all real numbers x, y, z such that x < y and y ¬ z or x ¬ y and

y < z holds x < z.

(29) For every natural number n holds n < 2n.

(30) For every integer n such that 0 ¬ n holds n is a natural number.

(31) For all natural numbers n, m such that n < m holds 2n < 2m.

(32) For every real number e1 such that 0 < e1 there exists a natural number

n such that 1 < 2n · e1.

(33) For all real numbers a, b such that 0 ¬ a and 1 < b − a there exists a

natural number n such that a < n and n < b.

(34) For every integer n such that 0 < n holds n is a natural number.

(35) For every rational number n such that 0 ¬ n holds 0 ¬ numn.

(36) For every rational number n such that 0 < n holds 0 < numn.

(37) For all real numbers a, b, c, d such that 0 < b and 0 < d or b < 0 and

d < 0 holds if a
b

< c
d
, then a · d < c · b.

(38) For every natural number n holds dyadic(n) ⊆ DYADIC .

(39) For all real numbers a, b such that a < b and 0 ¬ a and b ¬ 1 there

exists a real number c such that c ∈ DYADIC and a < c and c < b.

(40) For all real numbers a, b such that a < b there exists a real number c

such that c ∈ DOM and a < c and c < b.

(41) For every non empty subset A of R and for all extended real numbers a,

b such that A ⊆ [a, b] holds a ¬ inf A and supA ¬ b.

(42) 0 ∈ DYADIC and 1 ∈ DYADIC .

(43) For all extended real numbers a, b such that a = 0 and b = 1 holds

DYADIC ⊆ [a, b].

(44) For all natural numbers n, k such that n ¬ k holds dyadic(n) ⊆

dyadic(k).

(45) For all real numbers a, b, c, d such that a < c and c < b and a < d and

d < b holds |d− c| < b− a.

(46) Let e1 be a real number. Suppose 0 < e1. Let d be a real number.

Suppose 0 < d and d ¬ 1. Then there exist real numbers r1, r2 such that

r1 ∈ DYADIC∪R>1 and r2 ∈ DYADIC∪R>1 and 0 < r1 and r1 < d and

d < r2 and r2 − r1 < e1.
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