Some Properties of Dyadic Numbers and Intervals

Józef Białas Łódź University Yatsuka Nakamura Shinshu University Nagano

Summary. The article is the second part of a paper proving the fundamental Urysohn Theorem concerning the existence of a real valued continuous function on a normal topological space. The paper is divided into two parts. In the first part, we introduce some definitions and theorems concerning properties of intervals; in the second we prove some of properties of dyadic numbers used in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

The terminology and notation used here have been introduced in the following articles: [9], [10], [11], [3], [4], [8], [7], [6], [12], [1], [2], and [5].

The following proposition is true

(1) For every interval A such that $A \neq \emptyset$ holds if $\inf A < \sup A$, then $\operatorname{vol}(A) = \sup A - \inf A$ and if $\sup A = \inf A$, then $\operatorname{vol}(A) = 0_{\overline{\mathbb{R}}}$.

Let A be a subset of \mathbb{R} and let x be a real number. The functor $x \cdot A$ yielding a subset of \mathbb{R} is defined as follows:

(Def. 1) For every real number y holds $y \in x \cdot A$ iff there exists a real number z such that $z \in A$ and $y = x \cdot z$.

Next we state a number of propositions:

- (2) For every subset A of \mathbb{R} and for every real number x such that $x \neq 0$ holds $x^{-1} \cdot (x \cdot A) = A$.
- (3) For every real number x such that $x \neq 0$ and for every subset A of \mathbb{R} such that $A = \mathbb{R}$ holds $x \cdot A = A$.
- (4) For every subset A of \mathbb{R} such that $A \neq \emptyset$ holds $0 \cdot A = \{0\}$.
- (5) For every subset A of \mathbb{R} such that $A \neq \emptyset$ holds $0 \cdot A = \{0\}$.

C 2001 University of Białystok ISSN 1426-2630

JÓZEF BIAŁAS AND YATSUKA NAKAMURA

- (6) For every real number x holds $x \cdot \emptyset = \emptyset$.
- (7) For every real number y holds y < 0 or y = 0 or 0 < y.
- (8) Let a, b be extended real numbers. Suppose $a \leq b$. Then $a = -\infty$ and $b = -\infty$ or $a = -\infty$ and $b \in \mathbb{R}$ or $a = -\infty$ and $b = +\infty$ or $a \in \mathbb{R}$ and $b \in \mathbb{R}$ or $a \in \mathbb{R}$ and $b = +\infty$ or $a = +\infty$ and $b = +\infty$.
- (9) For every extended real number x holds [x, x] is an interval.
- (10) For every interval A holds $0 \cdot A$ is an interval.
- (11) For all real numbers q, x such that $x \neq 0$ holds $q = x \cdot \frac{q}{x}$.
- (12) For all real numbers p, q, x such that 0 < x and $x \cdot p < x \cdot q$ holds p < q.
- (13) For all real numbers p, q, x such that x < 0 and $x \cdot p < x \cdot q$ holds q < p.
- (14) For all real numbers p, q, x such that 0 < x and $x \cdot p \leq x \cdot q$ holds $p \leq q$.
- (15) For all real numbers p, q, x such that x < 0 and $x \cdot p \leq x \cdot q$ holds $q \leq p$.
- (16) Let A be an interval and x be a real number. If $x \neq 0$, then if A is open interval, then $x \cdot A$ is open interval.
- (17) Let A be an interval and x be a real number. If $x \neq 0$, then if A is closed interval, then $x \cdot A$ is closed interval.
- (18) Let A be an interval and x be a real number. Suppose 0 < x. If A is right open interval, then $x \cdot A$ is right open interval.
- (19) Let A be an interval and x be a real number. Suppose x < 0. If A is right open interval, then $x \cdot A$ is left open interval.
- (20) Let A be an interval and x be a real number. Suppose 0 < x. If A is left open interval, then $x \cdot A$ is left open interval.
- (21) Let A be an interval and x be a real number. Suppose x < 0. If A is left open interval, then $x \cdot A$ is right open interval.
- (22) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose 0 < x. Let B be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A]$. Then $B = [\inf B, \sup B]$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (23) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose 0 < x. Let B be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A]$. Then $B = [\inf B, \sup B]$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (24) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose 0 < x. Let B be an interval. Suppose $B = x \cdot A$. Suppose $A =]\inf A$, $\sup A[$. Then $B =]\inf B$, $\sup B[$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (25) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose 0 < x. Let B be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A]$.

628

Then $B = [\inf B, \sup B]$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.

- (26) For every interval A and for every real number x holds $x \cdot A$ is an interval. Let A be an interval and let x be a real number. Observe that $x \cdot A$ is interval. The following propositions are true:
- (27) Let A be an interval and x be a real number. If $0 \le x$, then for every real number y such that $y = \operatorname{vol}(A)$ holds $x \cdot y = \operatorname{vol}(x \cdot A)$.
- (28) For all real numbers x, y, z such that x < y and $y \leq z$ or $x \leq y$ and y < z holds x < z.
- (29) For every natural number n holds $n < 2^n$.
- (30) For every integer n such that $0 \leq n$ holds n is a natural number.
- (31) For all natural numbers n, m such that n < m holds $2^n < 2^m$.
- (32) For every real number e_1 such that $0 < e_1$ there exists a natural number n such that $1 < 2^n \cdot e_1$.
- (33) For all real numbers a, b such that $0 \le a$ and 1 < b a there exists a natural number n such that a < n and n < b.
- (34) For every integer n such that 0 < n holds n is a natural number.
- (35) For every rational number n such that $0 \leq n$ holds $0 \leq \text{num } n$.
- (36) For every rational number n such that 0 < n holds 0 < num n.
- (37) For all real numbers a, b, c, d such that 0 < b and 0 < d or b < 0 and d < 0 holds if $\frac{a}{b} < \frac{c}{d}$, then $a \cdot d < c \cdot b$.
- (38) For every natural number n holds dyadic $(n) \subseteq$ DYADIC.
- (39) For all real numbers a, b such that a < b and $0 \le a$ and $b \le 1$ there exists a real number c such that $c \in DYADIC$ and a < c and c < b.
- (40) For all real numbers a, b such that a < b there exists a real number c such that $c \in DOM$ and a < c and c < b.
- (41) For every non empty subset A of $\overline{\mathbb{R}}$ and for all extended real numbers a, b such that $A \subseteq [a, b]$ holds $a \leq \inf A$ and $\sup A \leq b$.
- (42) $0 \in DYADIC$ and $1 \in DYADIC$.
- (43) For all extended real numbers a, b such that a = 0 and b = 1 holds DYADIC $\subseteq [a, b]$.
- (44) For all natural numbers n, k such that $n \leq k$ holds dyadic $(n) \subseteq$ dyadic(k).
- (45) For all real numbers a, b, c, d such that a < c and c < b and a < d and d < b holds |d c| < b a.
- (46) Let e_1 be a real number. Suppose $0 < e_1$. Let d be a real number. Suppose 0 < d and $d \leq 1$. Then there exist real numbers r_1 , r_2 such that $r_1 \in \text{DYADIC} \cup \mathbb{R}_{>1}$ and $r_2 \in \text{DYADIC} \cup \mathbb{R}_{>1}$ and $0 < r_1$ and $r_1 < d$ and $d < r_2$ and $r_2 - r_1 < e_1$.

References

- Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [3] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992.
- [4] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21–26, 1996.
- [5] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_4 topological spaces. Formalized Mathematics, 5(3):361–366, 1996.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841–845, 1990.
- [8] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received February 16, 2001