Some Properties of Dyadic Numbers and Intervals

Józef Białas
Łódź University

Yatsuka Nakamura
Shinshu University

Nagano

Abstract

Summary. The article is the second part of a paper proving the fundamental Urysohn Theorem concerning the existence of a real valued continuous function on a normal topological space. The paper is divided into two parts. In the first part, we introduce some definitions and theorems concerning properties of intervals; in the second we prove some of properties of dyadic numbers used in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

The terminology and notation used here have been introduced in the following articles: [9], [10], [11], [3], [4], [8], [7], [6], [12], [1], [2], and [5].

The following proposition is true
(1) For every interval A such that $A \neq \emptyset$ holds if $\inf A<\sup A$, then $\operatorname{vol}(A)=\sup A-\inf A$ and if $\sup A=\inf A$, then $\operatorname{vol}(A)=0_{\overline{\mathbb{R}}}$.
Let A be a subset of \mathbb{R} and let x be a real number. The functor $x \cdot A$ yielding a subset of \mathbb{R} is defined as follows:
(Def. 1) For every real number y holds $y \in x \cdot A$ iff there exists a real number z such that $z \in A$ and $y=x \cdot z$.
Next we state a number of propositions:
(2) For every subset A of \mathbb{R} and for every real number x such that $x \neq 0$ holds $x^{-1} \cdot(x \cdot A)=A$.
(3) For every real number x such that $x \neq 0$ and for every subset A of \mathbb{R} such that $A=\mathbb{R}$ holds $x \cdot A=A$.
(4) For every subset A of \mathbb{R} such that $A \neq \emptyset$ holds $0 \cdot A=\{0\}$.
(5) For every subset A of \mathbb{R} such that $A \neq \emptyset$ holds $0 \cdot A=\{0\}$.
(6) For every real number x holds $x \cdot \emptyset=\emptyset$.
(7) For every real number y holds $y<0$ or $y=0$ or $0<y$.
(8) Let a, b be extended real numbers. Suppose $a \leqslant b$. Then $a=-\infty$ and $b=-\infty$ or $a=-\infty$ and $b \in \mathbb{R}$ or $a=-\infty$ and $b=+\infty$ or $a \in \mathbb{R}$ and $b \in \mathbb{R}$ or $a \in \mathbb{R}$ and $b=+\infty$ or $a=+\infty$ and $b=+\infty$.
(9) For every extended real number x holds $[x, x]$ is an interval.
(10) For every interval A holds $0 \cdot A$ is an interval.
(11) For all real numbers q, x such that $x \neq 0$ holds $q=x \cdot \frac{q}{x}$.
(12) For all real numbers p, q, x such that $0<x$ and $x \cdot p<x \cdot q$ holds $p<q$.
(13) For all real numbers p, q, x such that $x<0$ and $x \cdot p<x \cdot q$ holds $q<p$.
(14) For all real numbers p, q, x such that $0<x$ and $x \cdot p \leqslant x \cdot q$ holds $p \leqslant q$.
(15) For all real numbers p, q, x such that $x<0$ and $x \cdot p \leqslant x \cdot q$ holds $q \leqslant p$.
(16) Let A be an interval and x be a real number. If $x \neq 0$, then if A is open interval, then $x \cdot A$ is open interval.
(17) Let A be an interval and x be a real number. If $x \neq 0$, then if A is closed interval, then $x \cdot A$ is closed interval.
(18) Let A be an interval and x be a real number. Suppose $0<x$. If A is right open interval, then $x \cdot A$ is right open interval.
(19) Let A be an interval and x be a real number. Suppose $x<0$. If A is right open interval, then $x \cdot A$ is left open interval.
(20) Let A be an interval and x be a real number. Suppose $0<x$. If A is left open interval, then $x \cdot A$ is left open interval.
(21) Let A be an interval and x be a real number. Suppose $x<0$. If A is left open interval, then $x \cdot A$ is right open interval.
(22) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose $0<x$. Let B be an interval. Suppose $B=x \cdot A$. Suppose $A=[\inf A, \sup A]$. Then $B=[\inf B, \sup B]$ and for all real numbers s, t such that $s=\inf A$ and $t=\sup A$ holds $\inf B=x \cdot s$ and $\sup B=x \cdot t$.
(23) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose $0<x$. Let B be an interval. Suppose $B=x \cdot A$. Suppose $A=\rceil \inf A$, $\sup A]$. Then $B=\inf B, \sup B]$ and for all real numbers s, t such that $s=\inf A$ and $t=\sup A$ holds $\inf B=x \cdot s$ and $\sup B=x \cdot t$.
(24) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose $0<x$. Let B be an interval. Suppose $B=x \cdot A$. Suppose $A=] \inf A, \sup A[$. Then $B=\inf B, \sup B[$ and for all real numbers s, t such that $s=\inf A$ and $t=\sup A$ holds $\inf B=x \cdot s$ and $\sup B=x \cdot t$.
(25) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose $0<x$. Let B be an interval. Suppose $B=x \cdot A$. Suppose $A=[\inf A, \sup A[$.

Then $B=[\inf B, \sup B[$ and for all real numbers s, t such that $s=\inf A$ and $t=\sup A$ holds $\inf B=x \cdot s$ and $\sup B=x \cdot t$.
(26) For every interval A and for every real number x holds $x \cdot A$ is an interval. Let A be an interval and let x be a real number. Observe that $x \cdot A$ is interval. The following propositions are true:
(27) Let A be an interval and x be a real number. If $0 \leqslant x$, then for every real number y such that $y=\operatorname{vol}(A)$ holds $x \cdot y=\operatorname{vol}(x \cdot A)$.
(28) For all real numbers x, y, z such that $x<y$ and $y \leqslant z$ or $x \leqslant y$ and $y<z$ holds $x<z$.
(29) For every natural number n holds $n<2^{n}$.
(30) For every integer n such that $0 \leqslant n$ holds n is a natural number.
(31) For all natural numbers n, m such that $n<m$ holds $2^{n}<2^{m}$.
(32) For every real number e_{1} such that $0<e_{1}$ there exists a natural number n such that $1<2^{n} \cdot e_{1}$.
(33) For all real numbers a, b such that $0 \leqslant a$ and $1<b-a$ there exists a natural number n such that $a<n$ and $n<b$.
(34) For every integer n such that $0<n$ holds n is a natural number.
(35) For every rational number n such that $0 \leqslant n$ holds $0 \leqslant$ num n.
(36) For every rational number n such that $0<n$ holds $0<$ num n.
(37) For all real numbers a, b, c, d such that $0<b$ and $0<d$ or $b<0$ and $d<0$ holds if $\frac{a}{b}<\frac{c}{d}$, then $a \cdot d<c \cdot b$.
(38) For every natural number n holds dyadic $(n) \subseteq$ DYADIC.
(39) For all real numbers a, b such that $a<b$ and $0 \leqslant a$ and $b \leqslant 1$ there exists a real number c such that $c \in$ DYADIC and $a<c$ and $c<b$.
(40) For all real numbers a, b such that $a<b$ there exists a real number c such that $c \in \mathrm{DOM}$ and $a<c$ and $c<b$.
(41) For every non empty subset A of $\overline{\mathbb{R}}$ and for all extended real numbers a, b such that $A \subseteq[a, b]$ holds $a \leqslant \inf A$ and $\sup A \leqslant b$.
(42) $0 \in$ DYADIC and $1 \in$ DYADIC .
(43) For all extended real numbers a, b such that $a=0$ and $b=1$ holds DYADIC $\subseteq[a, b]$.
(44) For all natural numbers n, k such that $n \leqslant k$ holds dyadic $(n) \subseteq$ dyadic (k).
(45) For all real numbers a, b, c, d such that $a<c$ and $c<b$ and $a<d$ and $d<b$ holds $|d-c|<b-a$.
(46) Let e_{1} be a real number. Suppose $0<e_{1}$. Let d be a real number. Suppose $0<d$ and $d \leqslant 1$. Then there exist real numbers r_{1}, r_{2} such that $r_{1} \in \mathrm{DYADIC} \cup \mathbb{R}_{>1}$ and $r_{2} \in \mathrm{DYADIC} \cup \mathbb{R}_{>1}$ and $0<r_{1}$ and $r_{1}<d$ and $d<r_{2}$ and $r_{2}-r_{1}<e_{1}$.

References

[1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[3] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992.
[4] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[5] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[8] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received February 16, 2001

