Fundamental Theorem of Algebra ${ }^{1}$

Robert Milewski
University of Białystok

MML Identifier: POLYNOM5.

The papers [18], [22], [19], [4], [16], [5], [12], [1], [3], [26], [24], [6], [7], [25], [13], [2], [20], [15], [14], [21], [9], [29], [27], [8], [10], [23], [28], [11], and [17] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:
(1) For all natural numbers n, m such that $n \neq 0$ and $m \neq 0$ holds ($n \cdot m-$ $n-m)+1 \geqslant 0$.
(2) For all real numbers x, y such that $y>0$ holds $\frac{\min (x, y)}{\max (x, y)} \leqslant 1$.
(3) For all real numbers x, y such that for every real number c such that $c>0$ and $c<1$ holds $c \cdot x \geqslant y$ holds $y \leqslant 0$.
(4) Let p be a finite sequence of elements of \mathbb{R}. Suppose that for every natural number n such that $n \in \operatorname{dom} p$ holds $p(n) \geqslant 0$. Let i be a natural number. If $i \in \operatorname{dom} p$, then $\sum p \geqslant p(i)$.
(5) For all real numbers x, y holds $-\left(x+y i_{\mathbb{C}_{\mathrm{F}}}\right)=-x+(-y) i_{\mathbb{C}_{\mathrm{F}}}$.
(6) For all real numbers $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left(x_{1}+y_{1} i_{\mathbb{C}_{\mathrm{F}}}\right)-\left(x_{2}+y_{2} i_{\mathbb{C}_{\mathrm{F}}}\right)=$ $\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(7) Let L be a commutative associative left unital distributive field-like non empty double loop structure and f, g, h be elements of the carrier of L. If $h \neq 0_{L}$, then if $h \cdot g=h \cdot f$ or $g \cdot h=f \cdot h$, then $g=f$.

[^0]In this article we present several logical schemes. The scheme ExDHGrStrSeq deals with a non empty groupoid \mathcal{A} and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every natural number n holds $S(n)=\mathcal{F}(n)$
for all values of the parameters.
The scheme ExDdoubleLoopStrSeq deals with a non empty double loop structure \mathcal{A} and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every natural number n holds $S(n)=\mathcal{F}(n)$
for all values of the parameters.
Next we state the proposition
(8) For every element z of the carrier of \mathbb{C}_{F} such that $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$ and for every natural number n holds $\left|\operatorname{power}_{\mathbb{C}_{\mathrm{F}}}(z, n)\right|=|z|^{n}$.
Let p be a finite sequence of elements of the carrier of \mathbb{C}_{F}. The functor $|p|$ yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def. 1) len $|p|=\operatorname{len} p$ and for every natural number n such that $n \in \operatorname{dom} p$ holds $|p|_{n}=\left|p_{n}\right|$.
We now state several propositions:
(9) $\left|\varepsilon_{\left(\text {the carrier of } \mathbb{C}_{F}\right)}\right|=\varepsilon_{\mathbb{R}}$.
(10) For every element x of the carrier of \mathbb{C}_{F} holds $|\langle x\rangle|=\langle | x| \rangle$.
(11) For all elements x, y of the carrier of \mathbb{C}_{F} holds $|\langle x, y\rangle|=\langle | x|,|y|\rangle$.
(12) For all elements x, y, z of the carrier of \mathbb{C}_{F} holds $|\langle x, y, z\rangle|=\langle | x|,|y|$, $|z|\rangle$.
(13) For all finite sequences p, q of elements of the carrier of \mathbb{C}_{F} holds $\left|p^{\wedge} q\right|=$ $|p| \frown|q|$.
(14) Let p be a finite sequence of elements of the carrier of \mathbb{C}_{F} and x be an element of the carrier of \mathbb{C}_{F}. Then $\left|p^{\frown}\langle x\rangle\right|=|p|^{\wedge}\langle | x| \rangle$ and $|\langle x\rangle \frown p|=$ $\langle | x\rangle \frown| p \mid$.
(15) For every finite sequence p of elements of the carrier of \mathbb{C}_{F} holds $\left|\sum p\right| \leqslant$ $\sum|p|$.

2. Operations on Polynomials

Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure, let p be a Polynomial of L, and let n be a natural number. The functor p^{n} yields a sequence of L and is defined by:
(Def. 2) $\quad p^{n}=\operatorname{power}_{\text {Polynom-Ring } L}(p, n)$.
Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure, let p be a Polynomial of L, and let n be a natural number. One can verify that p^{n} is finite-Support.

One can prove the following propositions:
(16) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $p^{0}=1 . L$.
(17) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $p^{1}=p$.
(18) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $p^{2}=p * p$.
(19) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $p^{3}=p * p * p$.
(20) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure, p be a Polynomial of L, and n be a natural number. Then $p^{n+1}=p^{n} * p$.
(21) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and n be a natural number. Then $(\mathbf{0} . L)^{n+1}=\mathbf{0} . L$.
(22) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and n be a natural number. Then $(\mathbf{1} . L)^{n}=\mathbf{1} . L$.
(23) Let L be a field, p be a Polynomial of L, x be an element of the carrier of L, and n be a natural number. Then $\operatorname{eval}\left(p^{n}, x\right)=\operatorname{power}_{L}(\operatorname{eval}(p, x)$, n).
(24) Let L be a field and p be a Polynomial of L. If len $p \neq 0$, then for every natural number n holds $\operatorname{len}\left(p^{n}\right)=(n \cdot \operatorname{len} p-n)+1$.
Let L be a non empty groupoid, let p be a sequence of L, and let v be an element of the carrier of L. The functor $v \cdot p$ yields a sequence of L and is defined by:
(Def. 3) For every natural number n holds $(v \cdot p)(n)=v \cdot p(n)$.
Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure, let p be a Polynomial of L, and let v be an element of the carrier of L. Observe that $v \cdot p$ is finite-Support.

We now state several propositions:
(25) Let L be an add-associative right zeroed right complementable distributive non empty double loop structure and p be a Polynomial of L. Then $\operatorname{len}\left(0_{L} \cdot p\right)=0$.
(26) Let L be an add-associative right zeroed right complementable left unital commutative associative distributive field-like non empty double loop structure, p be a Polynomial of L, and v be an element of the carrier of L. If $v \neq 0_{L}$, then len $(v \cdot p)=\operatorname{len} p$.
(27) Let L be an add-associative right zeroed right complementable left distributive non empty double loop structure and p be a sequence of L. Then $0_{L} \cdot p=\mathbf{0} . L$.
(28) For every left unital non empty multiplicative loop structure L and for every sequence p of L holds $\mathbf{1}_{L} \cdot p=p$.
(29) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure and v be an element of the carrier of L. Then $v \cdot \mathbf{0} . L=\mathbf{0} . L$.
(30) Let L be an add-associative right zeroed right complementable right unital right distributive non empty double loop structure and v be an element of the carrier of L. Then $v \cdot \mathbf{1 . L}=\langle v\rangle$.
(31) Let L be an add-associative right zeroed right complementable left unital distributive commutative associative field-like non empty double loop structure, p be a Polynomial of L, and v, x be elements of the carrier of L. Then $\operatorname{eval}(v \cdot p, x)=v \cdot \operatorname{eval}(p, x)$.
(32) Let L be an add-associative right zeroed right complementable right distributive unital non empty double loop structure and p be a Polynomial of L. Then $\operatorname{eval}\left(p, 0_{L}\right)=p(0)$.
Let L be a non empty zero structure and let z_{0}, z_{1} be elements of the carrier of L. The functor $\left\langle z_{0}, z_{1}\right\rangle$ yields a sequence of L and is defined by:
$\left(\right.$ Def. 4) $\left\langle z_{0}, z_{1}\right\rangle=\mathbf{0} . L+\cdot\left(0, z_{0}\right)+\cdot\left(1, z_{1}\right)$.
The following propositions are true:
(33) Let L be a non empty zero structure and z_{0} be an element of the carrier of L. Then $\left\langle z_{0}\right\rangle(0)=z_{0}$ and for every natural number n such that $n \geqslant 1$ holds $\left\langle z_{0}\right\rangle(n)=0_{L}$.
(34) For every non empty zero structure L and for every element z_{0} of the carrier of L such that $z_{0} \neq 0_{L}$ holds $\operatorname{len}\left\langle z_{0}\right\rangle=1$.
(35) For every non empty zero structure L holds $\left\langle 0_{L}\right\rangle=\mathbf{0} . L$.
(36) Let L be an add-associative right zeroed right complementable distributive commutative associative left unital field-like non empty double loop structure and x, y be elements of the carrier of L. Then $\langle x\rangle *\langle y\rangle=\langle x \cdot y\rangle$.
(37) Let L be an Abelian add-associative right zeroed right complementable right unital associative commutative distributive field-like non empty do-
uble loop structure, x be an element of the carrier of L, and n be a natural number. Then $\langle x\rangle^{n}=\left\langle\operatorname{power}_{L}(x, n)\right\rangle$.
(38) Let L be an add-associative right zeroed right complementable unital non empty double loop structure and z_{0}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle z_{0}\right\rangle, x\right)=z_{0}$.
(39) Let L be a non empty zero structure and z_{0}, z_{1} be elements of the carrier of L. Then $\left\langle z_{0}, z_{1}\right\rangle(0)=z_{0}$ and $\left\langle z_{0}, z_{1}\right\rangle(1)=z_{1}$ and for every natural number n such that $n \geqslant 2$ holds $\left\langle z_{0}, z_{1}\right\rangle(n)=0_{L}$.
Let L be a non empty zero structure and let z_{0}, z_{1} be elements of the carrier of L. One can verify that $\left\langle z_{0}, z_{1}\right\rangle$ is finite-Support.

The following propositions are true:
(40) For every non empty zero structure L and for all elements z_{0}, z_{1} of the carrier of L holds $\operatorname{len}\left\langle z_{0}, z_{1}\right\rangle \leqslant 2$.
(41) For every non empty zero structure L and for all elements z_{0}, z_{1} of the carrier of L such that $z_{1} \neq 0_{L}$ holds len $\left\langle z_{0}, z_{1}\right\rangle=2$.
(42) For every non empty zero structure L and for every element z_{0} of the carrier of L such that $z_{0} \neq 0_{L}$ holds $\operatorname{len}\left\langle z_{0}, 0_{L}\right\rangle=1$.
(43) For every non empty zero structure L holds $\left\langle 0_{L}, 0_{L}\right\rangle=\mathbf{0}$. L.
(44) For every non empty zero structure L and for every element z_{0} of the carrier of L holds $\left\langle z_{0}, 0_{L}\right\rangle=\left\langle z_{0}\right\rangle$.
(45) Let L be an add-associative right zeroed right complementable left distributive unital non empty double loop structure and z_{0}, z_{1}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle z_{0}, z_{1}\right\rangle, x\right)=z_{0}+z_{1} \cdot x$.
(46) Let L be an add-associative right zeroed right complementable left distributive unital non empty double loop structure and z_{0}, z_{1}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle z_{0}, 0_{L}\right\rangle, x\right)=z_{0}$.
(47) Let L be an add-associative right zeroed right complementable left distributive unital non empty double loop structure and z_{0}, z_{1}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle 0_{L}, z_{1}\right\rangle, x\right)=z_{1} \cdot x$.
(48) Let L be an add-associative right zeroed right complementable left distributive well unital non empty double loop structure and z_{0}, z_{1}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle z_{0}, \mathbf{1}_{L}\right\rangle, x\right)=z_{0}+x$.
(49) Let L be an add-associative right zeroed right complementable left distributive well unital non empty double loop structure and z_{0}, z_{1}, x be elements of the carrier of L. Then $\operatorname{eval}\left(\left\langle 0_{L}, \mathbf{1}_{L}\right\rangle, x\right)=x$.

3. Substitution in Polynomials

Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and let p, q be Polynomials of L. The functor $p[q]$ yielding a Polynomial of L is defined by the condition (Def. 5).
(Def. 5) There exists a finite sequence F of elements of the carrier of Polynom-Ring L such that $p[q]=\sum F$ and len $F=\operatorname{len} p$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=p\left(n-^{\prime} 1\right) \cdot q^{n-{ }^{\prime}}$.
One can prove the following propositions:
(50) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $(\mathbf{0} . L)[p]=\mathbf{0} . L$.
(51) Let L be an Abelian add-associative right zeroed right complementable right unital commutative distributive non empty double loop structure and p be a Polynomial of L. Then $p[\mathbf{0} . L]=\langle p(0)\rangle$.
(52) Let L be an Abelian add-associative right zeroed right complementable right unital associative commutative distributive field-like non empty double loop structure, p be a Polynomial of L, and x be an element of the carrier of L. Then len $(p[\langle x\rangle]) \leqslant 1$.
(53) For every field L and for all Polynomials p, q of L such that len $p \neq 0$ and $\operatorname{len} q>1$ holds $\operatorname{len}(p[q])=(\operatorname{len} p \cdot \operatorname{len} q-\operatorname{len} p-\operatorname{len} q)+2$.
(54) Let L be a field, p, q be Polynomials of L, and x be an element of the carrier of L. Then $\operatorname{eval}(p[q], x)=\operatorname{eval}(p, \operatorname{eval}(q, x))$.

4. Fundamental Theorem of Algebra

Let L be a unital non empty double loop structure, let p be a Polynomial of L, and let x be an element of the carrier of L. We say that x is a root of p if and only if:
(Def. 6) $\quad \operatorname{eval}(p, x)=0_{L}$.
Let L be a unital non empty double loop structure and let p be a Polynomial of L. We say that p has roots if and only if:
(Def. 7) There exists an element x of the carrier of L such that x is a root of p. The following proposition is true
(55) For every unital non empty double loop structure L holds $\mathbf{0} . L$ has roots.

Let L be a unital non empty double loop structure. One can verify that $\mathbf{0} . L$ has roots.

The following proposition is true
(56) Let L be a unital non empty double loop structure and x be an element of the carrier of L. Then x is a root of $0 . L$.
Let L be a unital non empty double loop structure. One can verify that there exists a Polynomial of L which has roots.

Let L be a unital non empty double loop structure. We say that L is algebraic-closed if and only if:
(Def. 8) For every Polynomial p of L such that len $p>1$ holds p has roots.
Let L be a unital non empty double loop structure and let p be a Polynomial of L. The functor Roots p yields a subset of L and is defined by:
(Def. 9) For every element x of the carrier of L holds $x \in \operatorname{Roots} p$ iff x is a root of p.
Let L be a commutative associative left unital distributive field-like non empty double loop structure and let p be a Polynomial of L. The functor NormPolynomial p yielding a sequence of L is defined as follows:
(Def. 10) For every natural number n holds (NormPolynomial $p)(n)=\frac{p(n)}{p(\ln p-1)}$.
Let L be an add-associative right zeroed right complementable commutative associative left unital distributive field-like non empty double loop structure and let p be a Polynomial of L. Note that NormPolynomial p is finite-Support.

The following propositions are true:
(57) Let L be a commutative associative left unital distributive field-like non empty double loop structure and p be a Polynomial of L. If len $p \neq 0$, then $($ NormPolynomial $p)\left(\operatorname{len} p-^{\prime} 1\right)=\mathbf{1}_{L}$.
(58) For every field L and for every Polynomial p of L such that len $p \neq 0$ holds len NormPolynomial $p=\operatorname{len} p$.
(59) Let L be a field and p be a Polynomial of L. Suppose len $p \neq 0$. Let x be an element of the carrier of L. Then eval(NormPolynomial $p, x)=$ $\frac{\operatorname{eval}(p, x)}{p\left(\operatorname{len} p \chi^{\prime} 1\right)}$.
(60) Let L be a field and p be a Polynomial of L. Suppose len $p \neq 0$. Let x be an element of the carrier of L. Then x is a root of p if and only if x is a root of NormPolynomial p.
(61) For every field L and for every Polynomial p of L such that len $p \neq 0$ holds p has roots iff NormPolynomial p has roots.
(62) For every field L and for every Polynomial p of L such that len $p \neq 0$ holds Roots $p=$ Roots NormPolynomial p.
(63) $\mathrm{id}_{\mathbb{C}}$ is continuous on \mathbb{C}.
(64) For every element x of \mathbb{C} holds $\mathbb{C} \longmapsto x$ is continuous on \mathbb{C}.

Let L be a unital non empty groupoid, let x be an element of the carrier of L, and let n be a natural number. The functor $\operatorname{FPower}(x, n)$ yields a map from L into L and is defined as follows:
(Def. 11) For every element y of the carrier of L holds $(\operatorname{FPower}(x, n))(y)=x$. $\operatorname{power}_{L}(y, n)$.
The following propositions are true:
(65) For every unital non empty groupoid L holds $\operatorname{FPower}\left(1_{L}, 1\right)=$ $\mathrm{id}_{\text {the }}$ carrier of L.
(66) $\quad \operatorname{FPower}\left(\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}, 2\right)=\mathrm{id}_{\mathbb{C}} \mathrm{id}_{\mathbb{C}}$.
(67) For every unital non empty groupoid L and for every element x of the carrier of L holds $\operatorname{FPower}(x, 0)=($ the carrier of $L) \longmapsto x$.
(68) For every element x of the carrier of \mathbb{C}_{F} there exists an element x_{1} of \mathbb{C} such that $x=x_{1}$ and $\operatorname{FPower}(x, 1)=x_{1} \mathrm{id}_{\mathbb{C}}$.
(69) For every element x of the carrier of \mathbb{C}_{F} there exists an element x_{1} of \mathbb{C} such that $x=x_{1}$ and $\operatorname{FPower}(x, 2)=x_{1}\left(\mathrm{id}_{\mathbb{C}} \mathrm{id}_{\mathbb{C}}\right)$.
(70) Let x be an element of the carrier of \mathbb{C}_{F} and n be a natural number. Then there exists a function f from \mathbb{C} into \mathbb{C} such that $f=\operatorname{FPower}(x, n)$ and $\operatorname{FPower}(x, n+1)=f \operatorname{id}_{\mathbb{C}}$.
(71) Let x be an element of the carrier of \mathbb{C}_{F} and n be a natural number. Then there exists a function f from \mathbb{C} into \mathbb{C} such that $f=\operatorname{FPower}(x, n)$ and f is continuous on \mathbb{C}.

Let L be a unital non empty double loop structure and let p be a Polynomial of L. The functor Polynomial-Function (L, p) yields a map from L into L and is defined as follows:
(Def. 12) For every element x of the carrier of L holds
$(\operatorname{Polynomial-Function}(L, p))(x)=\operatorname{eval}(p, x)$.
The following propositions are true:
(72) For every Polynomial p of \mathbb{C}_{F} there exists a function f from \mathbb{C} into \mathbb{C} such that $f=$ Polynomial-Function $\left(\mathbb{C}_{\mathrm{F}}, p\right)$ and f is continuous on \mathbb{C}.
(73) Let p be a Polynomial of \mathbb{C}_{F}. Suppose len $p>2$ and $\left|p\left(\operatorname{len} p-^{\prime} 1\right)\right|=1$. Let F be a finite sequence of elements of \mathbb{R}. Suppose len $F=\operatorname{len} p$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=\left|p\left(n-^{\prime} 1\right)\right|$. Let z be an element of the carrier of \mathbb{C}_{F}. If $|z|>\sum F$, then $|\operatorname{eval}(p, z)|>|p(0)|+1$.
(74) Let p be a Polynomial of \mathbb{C}_{F}. Suppose len $p>2$. Then there exists an element z_{0} of the carrier of \mathbb{C}_{F} such that for every element z of the carrier of \mathbb{C}_{F} holds $|\operatorname{eval}(p, z)| \geqslant\left|\operatorname{eval}\left(p, z_{0}\right)\right|$.
(75) For every Polynomial p of \mathbb{C}_{F} such that len $p>1$ holds p has roots.

Let us note that \mathbb{C}_{F} is algebraic-closed.

Let us mention that there exists a left unital right unital non empty double loop structure which is algebraic-closed, add-associative, right zeroed, right complementable, Abelian, commutative, associative, distributive, field-like, and non degenerated.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[12] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[13] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
[14] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[15] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[16] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. Formalized Mathematics, 9(1):185-190, 2001.
[17] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[18] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[21] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[22] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185-191, 1991.
[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[24] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[25] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received August 21, 2000

[^0]: ${ }^{1}$ This work has been partially supported by TYPES grant IST-1999-29001.

