Classes of Independent Partitions

Andrzej Trybulec University of Białystok

Summary. The paper includes proofs of few theorems proved earlier by Shunichi Kobayashi in many different settings.

MML Identifier: $\texttt{PARTIT_2}.$

The terminology and notation used in this paper have been introduced in the following articles: [1], [3], [4], [5], [9], [2], [10], [12], [11], [7], [6], and [8].

1. Preliminaries

Let X, Y be sets and let R, S be relations between X and Y. Let us observe that $R \subseteq S$ if and only if:

(Def. 1) For every element x of X and for every element y of Y such that $\langle x, y \rangle \in R$ holds $\langle x, y \rangle \in S$.

For simplicity, we adopt the following rules: Y is a non empty set, a is an element of $Boolean^Y$, G is a subset of PARTITIONS(Y), and P, Q are partitions of Y.

Let Y be a non empty set and let G be a non empty subset of PARTITIONS(Y). We see that the element of G is a partition of Y.

One can prove the following propositions:

- (1) $\bigwedge \emptyset_{\text{PARTITIONS}(Y)} = \mathcal{O}(Y).$
- (2) For all equivalence relations R, S of Y holds $R \cup S \subseteq R \cdot S$.
- (3) For every binary relation R on Y holds $R \subseteq \nabla_Y$.
- (4) For every equivalence relation R of Y holds $\nabla_Y \cdot R = \nabla_Y$ and $R \cdot \nabla_Y = \nabla_Y$.

C 2001 University of Białystok ISSN 1426-2630

ANDRZEJ TRYBULEC

- (5) For every partition P of Y and for all elements x, y of Y holds $\langle x, y \rangle \in \equiv_P$ iff $x \in EqClass(y, P)$.
- (6) Let P, Q, R be partitions of Y. Suppose $\equiv_R = \equiv_P \cdot \equiv_Q$. Let x, y be elements of Y. Then $x \in \text{EqClass}(y, R)$ if and only if there exists an element z of Y such that $x \in \text{EqClass}(z, P)$ and $z \in \text{EqClass}(y, Q)$.
- (7) Let R, S be binary relations and Y be a set. If R is reflexive in Y and S is reflexive in Y, then $R \cdot S$ is reflexive in Y.
- (8) For every binary relation R and for every set Y such that R is reflexive in Y holds $Y \subseteq$ field R.
- (9) For every set Y and for every binary relation R on Y such that R is reflexive in Y holds Y =field R.
- (10) For all equivalence relations R, S of Y such that $R \cdot S = S \cdot R$ holds $R \cdot S$ is an equivalence relation of Y.

2. BOOLEAN-VALUED FUNCTIONS

The following propositions are true:

- (11) For all elements a, b of $Boolean^Y$ such that $a \in b$ holds $\neg b \in \neg a$.
- (12) For every element a of $Boolean^Y$ and for every subset G of PARTITIONS(Y) and for every partition A of Y holds $\forall_{a,A} G \Subset a$.
- (13) Let a, b be elements of $Boolean^Y$, G be a subset of PARTITIONS(Y), and P be a partition of Y. If $a \in b$, then $\forall_{a,P}G \in \forall_{b,P}G$.
- (14) For every element a of $Boolean^Y$ and for every subset G of PARTITIONS(Y) and for every partition A of Y holds $a \in \exists_{a,A}G$.
- (15) Let a, b be elements of $Boolean^Y$, G be a subset of PARTITIONS(Y), and P be a partition of Y. If $a \in b$, then $\exists_{a,P}G \in \exists_{b,P}G$.
 - 3. INDEPENDENT CLASSES OF PARTITIONS

One can prove the following four propositions:

- (16) If G is independent, then for all subsets P, Q of PARTITIONS(Y) such that $P \subseteq G$ and $Q \subseteq G$ holds $\equiv_{\bigwedge P} \cdot \equiv_{\bigwedge Q} = \equiv_{\bigwedge Q} \cdot \equiv_{\bigwedge P}$.
- (17) If G is independent, then $\forall_{\forall_{a,P}G,Q}G = \forall_{\forall_{a,Q}G,P}G$.
- (18) If G is independent, then $\exists_{\exists_{a,P}G,Q}G = \exists_{\exists_{a,Q}G,P}G$.
- (19) Let *a* be an element of $Boolean^Y$, *G* be a subset of PARTITIONS(*Y*), and *P*, *Q* be partitions of *Y*. If *G* is independent, then $\exists_{\forall_{a,P}G,Q}G \Subset \forall_{\exists_{a,Q}G,P}G$.

624

References

- [1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
- [3] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [5] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [8] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized Mathematics, 1(4):739-743, 1990.
- [9] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
 [10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- 1(1):73-83, 1990.
- [11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [12] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received February 14, 2001