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Summary. In this article we prove the measurablility of some extended
real valued functions which are f+g, f – g and so on. Moreover, we will define the
simple function which are defined on the sigma field. It will play an important
role for the Lebesgue integral theory.

MML Identifier: MESFUNC2.

The notation and terminology used here are introduced in the following papers:

[21], [2], [10], [11], [9], [7], [6], [3], [8], [13], [12], [17], [16], [15], [14], [22], [23],

[18], [20], [4], [5], [19], and [1].

1. Finite Valued Function

For simplicity, we adopt the following rules: X is a non empty set, x is an

element of X, f , g are partial functions from X to R, S is a σ-field of subsets

of X, F is a function from Q into S, p is a rational number, r is a real number,

n, m are natural numbers, and A, B are elements of S.

Let us consider X and let us consider f . We say that f is finite if and only

if:

(Def. 1) For every x such that x ∈ dom f holds |f(x)| < +∞.

Next we state three propositions:

(1) f = 1 f.

(2) For all f , g, A such that f is finite or g is finite holds dom(f + g) =

dom f ∩ dom g and dom(f − g) = dom f ∩ dom g.
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(3) Let given f , g, F , r, A. Suppose f is finite and g is finite and for every

p holds F (p) = A ∩ LE-dom(f, R(p)) ∩ (A ∩ LE-dom(g, R(r − p))). Then

A ∩ LE-dom(f + g, R(r)) =
⋃
rngF.

2. Measurability of f + g and f − g

The following propositions are true:

(4) There exists a function F from N into Q such that F is one-to-one and

domF = N and rngF = Q.

(5) Let X, Y , Z be non empty sets and F be a function from X into Z. If

X ≈ Y, then there exists a function G from Y into Z such that rngF =

rngG.

(6) Let given S, f , g,A. Suppose f is measurable onA and g is measurable on

A. Then there exists a function F fromQ into S such that for every rational

number p holds F (p) = A∩LE-dom(f, R(p))∩ (A∩LE-dom(g, R(r− p))).

(7) Let given f , g, A. Suppose f is finite and g is finite and f is measurable

on A and g is measurable on A. Then f + g is measurable on A.

(8) For all sets E, F , G and for every partial function f from E to F holds

f−1(G) ⊆ E.

(9) For every non empty set C and for all partial functions f1, f2 from C to

R holds f1 − f2 = f1 +−f2.

(10) For every real number r holds R(−r) = −R(r).

(11) For every non empty set C and for every partial function f from C to R

holds −f = (−1) f.

(12) Let C be a non empty set, f be a partial function from C to R, and r

be a real number. If f is finite, then r f is finite.

(13) Let given f , g, A. Suppose f is finite and g is finite and f is measurable

on A and g is measurable on A and A ⊆ dom g. Then f − g is measurable

on A.

3. Definitions of Extended Real Valued Functions max+(f) and

max
−
(f) and their Basic Properties

Let C be a non empty set and let f be a partial function from C to R. The

functor max+(f) yields a partial function from C to R and is defined as follows:

(Def. 2) dommax+(f) = dom f and for every element x of C such that x ∈

dommax+(f) holds (max+(f))(x) = max(f(x), 0
R
).



the measurability of extended real valued . . . 527

The functor max
−
(f) yielding a partial function from C to R is defined by:

(Def. 3) dommax
−
(f) = dom f and for every element x of C such that x ∈

dommax
−
(f) holds (max

−
(f))(x) = max(−f(x), 0

R
).

The following propositions are true:

(14) Let C be a non empty set, f be a partial function from C to R, and x

be an element of C. If x ∈ dom f, then 0
R
¬ (max+(f))(x).

(15) Let C be a non empty set, f be a partial function from C to R, and x

be an element of C. If x ∈ dom f, then 0
R
¬ (max

−
(f))(x).

(16) For every non empty set C and for every partial function f from C to R

holds max
−
(f) = max+(−f).

(17) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and 0
R

< (max+(f))(x), then

(max
−
(f))(x) = 0

R
.

(18) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and 0
R

< (max
−
(f))(x), then

(max+(f))(x) = 0
R
.

(19) For every non empty set C and for every partial function f from C to R

holds dom f = dom(max+(f) −max
−
(f)) and dom f = dom(max+(f) +

max
−
(f)).

(20) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f, then (max+(f))(x) = f(x) or

(max+(f))(x) = 0
R
but (max

−
(f))(x) = −f(x) or (max

−
(f))(x) = 0

R
.

(21) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and (max+(f))(x) = f(x), then

(max
−
(f))(x) = 0

R
.

(22) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and (max+(f))(x) = 0
R
, then

(max
−
(f))(x) = −f(x).

(23) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and (max
−
(f))(x) = −f(x), then

(max+(f))(x) = 0
R
.

(24) Let C be a non empty set, f be a partial function from C to R, and

x be an element of C. If x ∈ dom f and (max
−
(f))(x) = 0

R
, then

(max+(f))(x) = f(x).

(25) For every non empty set C and for every partial function f from C to R

holds f = max+(f)−max
−
(f).

(26) For every non empty set C and for every partial function f from C to R

holds |f | = max+(f) +max
−
(f).
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4. Measurability of max+(f), max−(f) and |f |

Next we state three propositions:

(27) If f is measurable on A, then max+(f) is measurable on A.

(28) If f is measurable on A and A ⊆ dom f, then max
−
(f) is measurable on

A.

(29) For all f , A such that f is measurable on A and A ⊆ dom f holds |f | is

measurable on A.

5. Definition and Measurability of Characteristic Function

One can prove the following proposition

(30) For all sets A, X holds rng(χA,X) ⊆ {0
R
, 1}.

Let A, X be sets. Then χA,X is a partial function from X to R.

Next we state two propositions:

(31) χA,X is finite.

(32) χA,X is measurable on B.

6. Definition and Measurability of Simple Function

Let X be a set and let S be a σ-field of subsets of X. One can check that there

exists a finite sequence of elements of S which is disjoint valued.

Let X be a set and let S be a σ-field of subsets of X. A finite sequence of

separated subsets of S is a disjoint valued finite sequence of elements of S.

The following propositions are true:

(33) Suppose F is a finite sequence of separated subsets of S. Then there exists

a sequence G of separated subsets of S such that
⋃
rngF =

⋃
rngG and

for every n such that n ∈ domF holds F (n) = G(n) and for every m such

that m /∈ domF holds G(m) = ∅.

(34) If F is a finite sequence of separated subsets of S, then
⋃
rngF ∈ S.

Let X be a non empty set, let S be a σ-field of subsets of X, and let f be a

partial function from X to R. We say that f is simple function in S if and only

if the conditions (Def. 5) are satisfied.

(Def. 5)1(i) f is finite, and

(ii) there exists a finite sequence F of separated subsets of S such that

dom f =
⋃
rngF and for every natural number n and for all elements x, y

of X such that n ∈ domF and x ∈ F (n) and y ∈ F (n) holds f(x) = f(y).

1The definition (Def. 4) has been removed.
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One can prove the following propositions:

(35) If f is finite, then rng f is a subset of R.

(36) Suppose F is a finite sequence of separated subsets of S. Let given n.

Then F ↾Seg n is a finite sequence of separated subsets of S.

(37) If f is simple function in S, then f is measurable on A.
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