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Summary. In this article we introduce some definitions concerning me-
asurable functions and prove related properties.

MML Identifier: MESFUNC1.

The papers [18], [10], [8], [9], [16], [6], [5], [2], [7], [1], [13], [12], [11], [19], [20],

[14], [17], [3], [4], and [15] provide the notation and terminology for this paper.

1. Cardinal Numbers of Z and Q

In this paper k is a natural number, r is a real number, i is an integer, and

q is a rational number.

The subset Z
−
of R is defined as follows:

(Def. 1) r ∈ Z
−
iff there exists k such that r = −k.

Let us observe that Z
−
is non empty.

Next we state three propositions:

(1) N ≈ Z
−
.

(2) Z = Z
−
∪ N.

(3) N ≈ Z.

Z is a subset of R.

Let n be a natural number. The functor Q(n) yields a subset of Q and is

defined as follows:

(Def. 2) q ∈ Q(n) iff there exists i such that q = i
n
.
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Let n be a natural number. Observe that Q(n + 1) is non empty.

We now state two propositions:

(4) For every natural number n holds Z ≈ Q(n + 1).

(5) N ≈ Q.

2. Basic Operations of Extended Real Valued Functions

Let C be a non empty set, let f be a partial function from C to R, and let x be

a set. Then f(x) is an extended real number.

Let C be a non empty set and let f1, f2 be partial functions from C to R.

The functor f1 + f2 yielding a partial function from C to R is defined by:

(Def. 3) dom(f1 + f2) = dom f1 ∩ dom f2 \ (f1
−1({−∞}) ∩ f2

−1({+∞}) ∪

f1
−1({+∞}) ∩ f2

−1({−∞})) and for every element c of C such that

c ∈ dom(f1 + f2) holds (f1 + f2)(c) = f1(c) + f2(c).

The functor f1 − f2 yields a partial function from C to R and is defined by:

(Def. 4) dom(f1 − f2) = dom f1 ∩ dom f2 \ (f1
−1({+∞}) ∩ f2

−1({+∞}) ∪

f1
−1({−∞}) ∩ f2

−1({−∞})) and for every element c of C such that

c ∈ dom(f1 − f2) holds (f1 − f2)(c) = f1(c)− f2(c).

The functor f1 f2 yields a partial function from C to R and is defined as follows:

(Def. 5) dom(f1 f2) = dom f1 ∩ dom f2 and for every element c of C such that

c ∈ dom(f1 f2) holds (f1 f2)(c) = f1(c) · f2(c).

Let C be a non empty set, let f be a partial function from C to R, and let

r be a real number. The functor r f yielding a partial function from C to R is

defined as follows:

(Def. 6) dom(r f) = dom f and for every element c of C such that c ∈ dom(r f)

holds (r f)(c) = R(r) · f(c).

The following proposition is true

(6) Let C be a non empty set, f be a partial function from C to R, and r be

a real number. Suppose r 6= 0. Let c be an element of C. If c ∈ dom(r f),

then f(c) = (r f)(c)

R(r)
.

Let C be a non empty set and let f be a partial function from C to R. The

functor −f yielding a partial function from C to R is defined by:

(Def. 7) dom(−f) = dom f and for every element c of C such that c ∈ dom(−f)

holds (−f)(c) = −f(c).

The extended real number 1 is defined by:

(Def. 8) 1 = 1.

Let C be a non empty set, let f be a partial function from C to R, and let

r be a real number. The functor r
f
yielding a partial function from C to R is

defined by:
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(Def. 9) dom( r
f
) = dom f \ f−1({0

R
}) and for every element c of C such that

c ∈ dom( r
f
) holds ( r

f
)(c) = R(r)

f(c) .

One can prove the following proposition

(7) Let C be a non empty set and f be a partial function from C to R.

Then dom( 1
f
) = dom f \f−1({0

R
}) and for every element c of C such that

c ∈ dom( 1
f
) holds ( 1

f
)(c) = 1

f(c) .

Let C be a non empty set and let f be a partial function from C to R. The

functor |f | yields a partial function from C to R and is defined as follows:

(Def. 10) dom |f | = dom f and for every element c of C such that c ∈ dom |f |

holds |f |(c) = |f(c)|.

We now state three propositions:

(8) For all extended real numbers x, y such that x 6= +∞ or y 6= −∞ but

x 6= −∞ or y 6= +∞ holds x + y = y + x.

(9) For every non empty set C and for all partial functions f1, f2 from C to

R holds f1 + f2 = f2 + f1.

(10) For every non empty set C and for all partial functions f1, f2 from C to

R holds f1 f2 = f2 f1.

Let C be a non empty set and let f1, f2 be partial functions from C to R.

Let us note that the functor f1 + f2 is commutative. Let us observe that the

functor f1 f2 is commutative.

3. Level Sets

Next we state several propositions:

(11) For every real number r there exists a natural number n such that r ¬ n.

(12) For every real number r there exists a natural number n such that −n ¬

r.

(13) For all real numbers r, s such that r < s there exists a natural number

n such that 1
n+1 < s− r.

(14) For all real numbers r, s such that for every natural number n holds

r − 1
n+1 ¬ s holds r ¬ s.

(15) For every extended real number a such that for every real number r

holds R(r) < a holds a = +∞.

(16) For every extended real number a such that for every real number r

holds a < R(r) holds a = −∞.

Let X be a set, let S be a σ-field of subsets of X, and let A be a set. We say

that A is measurable on S if and only if:

(Def. 11) A ∈ S.



498 noboru endou et al.

One can prove the following proposition

(17) LetX, A be sets and S be a σ-field of subsets ofX. Then A is measurable

on S if and only if for every σ-measure M on S holds A is measurable

w.r.t. M .

For simplicity, we use the following convention: X is a non empty set, x is

an element of X, f , g are partial functions from X to R, S is a σ-field of subsets

of X, F is a function from N into S, A is a set, a is an extended real number,

r, s are real numbers, and n is a natural number.

Let us consider X, f , a. The functor LE-dom(f, a) yielding a subset of X is

defined by:

(Def. 12) x ∈ LE-dom(f, a) iff x ∈ dom f and there exists an extended real number

y such that y = f(x) and y < a.

The functor LEQ-dom(f, a) yielding a subset of X is defined by:

(Def. 13) x ∈ LEQ-dom(f, a) iff x ∈ dom f and there exists an extended real

number y such that y = f(x) and y ¬ a.

The functor GT-dom(f, a) yields a subset of X and is defined as follows:

(Def. 14) x ∈ GT-dom(f, a) iff x ∈ dom f and there exists an extended real num-

ber y such that y = f(x) and a < y.

The functor GTE-dom(f, a) yields a subset of X and is defined as follows:

(Def. 15) x ∈ GTE-dom(f, a) iff x ∈ dom f and there exists an extended real

number y such that y = f(x) and a ¬ y.

The functor EQ-dom(f, a) yielding a subset of X is defined as follows:

(Def. 16) x ∈ EQ-dom(f, a) iff x ∈ dom f and there exists an extended real number

y such that y = f(x) and a = y.

One can prove the following propositions:

(18) For all X, S, f , A, a such that A ⊆ dom f holds A ∩GTE-dom(f, a) =

A \A ∩ LE-dom(f, a).

(19) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ GT-dom(f, a) =

A \A ∩ LEQ-dom(f, a).

(20) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ LEQ-dom(f, a) =

A \A ∩GT-dom(f, a).

(21) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ LE-dom(f, a) =

A \A ∩GTE-dom(f, a).

(22) For all X, S, f , A, a holds A ∩ EQ-dom(f, a) = A ∩ GTE-dom(f, a) ∩

LEQ-dom(f, a).

(23) For all X, S, F , f , A, r such that for every n holds F (n) = A ∩

GT-dom(f, R(r − 1
n+1)) holds A ∩GTE-dom(f, R(r)) =

⋂
rngF.

(24) For all X, S, F , f , A and for every real number r such that for every n

holds F (n) = A ∩ LE-dom(f, R(r + 1
n+1)) holds A ∩ LEQ-dom(f, R(r)) =
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⋂
rngF.

(25) For all X, S, F , f , A and for every real number r such that for every n

holds F (n) = A ∩ LEQ-dom(f, R(r − 1
n+1)) holds A ∩ LE-dom(f, R(r)) =

⋃
rngF.

(26) For all X, S, F , f , A, r such that for every n holds F (n) = A ∩

GTE-dom(f, R(r + 1
n+1)) holds A ∩GT-dom(f, R(r)) =

⋃
rngF.

(27) For all X, S, F , f , A such that for every n holds F (n) = A ∩

GT-dom(f, R(n)) holds A ∩ EQ-dom(f,+∞) =
⋂
rngF.

(28) For all X, S, F , f , A such that for every n holds F (n) = A ∩

LE-dom(f, R(n)) holds A ∩ LE-dom(f,+∞) =
⋃
rngF.

(29) For all X, S, F , f , A such that for every n holds F (n) = A ∩

LE-dom(f, R(−n)) holds A ∩ EQ-dom(f,−∞) =
⋂
rngF.

(30) For all X, S, F , f , A such that for every n holds F (n) = A ∩

GT-dom(f, R(−n)) holds A ∩GT-dom(f,−∞) =
⋃
rngF.

4. Measurable Functions

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a partial

function from X to R, and let A be an element of S. We say that f is measurable

on A if and only if:

(Def. 17) For every real number r holds A∩ LE-dom(f, R(r)) is measurable on S.

In the sequel A, B are elements of S.

Next we state a number of propositions:

(31) Let given X, S, f , A. Suppose A ⊆ dom f. Then f is measurable on

A if and only if for every real number r holds A ∩ GTE-dom(f, R(r)) is

measurable on S.

(32) Let given X, S, f , A. Then f is measurable on A if and only if for every

real number r holds A ∩ LEQ-dom(f, R(r)) is measurable on S.

(33) Let given X, S, f , A. Suppose A ⊆ dom f. Then f is measurable on

A if and only if for every real number r holds A ∩ GT-dom(f, R(r)) is

measurable on S.

(34) For all X, S, f , A, B such that B ⊆ A and f is measurable on A holds

f is measurable on B.

(35) For all X, S, f , A, B such that f is measurable on A and f is measurable

on B holds f is measurable on A ∪B.

(36) For all X, S, f , A, r, s such that f is measurable on A and A ⊆ dom f

holds A ∩GT-dom(f, R(r)) ∩ LE-dom(f, R(s)) is measurable on S.

(37) For all X, S, f , A such that f is measurable on A and A ⊆ dom f holds

A ∩ EQ-dom(f,+∞) is measurable on S.
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(38) For all X, S, f , A such that f is measurable on A holds A ∩

EQ-dom(f,−∞) is measurable on S.

(39) For all X, S, f , A such that f is measurable on A and A ⊆ dom f holds

A ∩GT-dom(f,−∞) ∩ LE-dom(f,+∞) is measurable on S.

(40) Let given X, S, f , g, A, r. Suppose f is measurable on A and g is measu-

rable on A and A ⊆ dom g. Then A∩LE-dom(f, R(r))∩GT-dom(g, R(r))

is measurable on S.

(41) For all X, S, f , A, r such that f is measurable on A and A ⊆ dom f

holds r f is measurable on A.
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