Definitions and Basic Properties of Measurable Functions

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article we introduce some definitions concerning measurable functions and prove related properties.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{MESFUNC1}.$

The papers [18], [10], [8], [9], [16], [6], [5], [2], [7], [1], [13], [12], [11], [19], [20], [14], [17], [3], [4], and [15] provide the notation and terminology for this paper.

1. Cardinal Numbers of ${\mathbb Z}$ and ${\mathbb Q}$

In this paper k is a natural number, r is a real number, i is an integer, and q is a rational number.

The subset \mathbb{Z}_- of \mathbb{R} is defined as follows:

(Def. 1) $r \in \mathbb{Z}_{-}$ iff there exists k such that r = -k.

Let us observe that \mathbb{Z}_{-} is non empty.

Next we state three propositions:

- (1) $\mathbb{N} \approx \mathbb{Z}_{-}$.
- (2) $\mathbb{Z} = \mathbb{Z}_{-} \cup \mathbb{N}.$
- (3) $\mathbb{N} \approx \mathbb{Z}$.

 \mathbbm{Z} is a subset of $\mathbbm{R}.$

Let n be a natural number. The functor $\mathbb{Q}(n)$ yields a subset of \mathbb{Q} and is defined as follows:

(Def. 2) $q \in \mathbb{Q}(n)$ iff there exists *i* such that $q = \frac{i}{n}$.

C 2001 University of Białystok ISSN 1426-2630 Let n be a natural number. Observe that $\mathbb{Q}(n+1)$ is non empty. We now state two propositions:

- (4) For every natural number n holds $\mathbb{Z} \approx \mathbb{Q}(n+1)$.
- (5) $\mathbb{N} \approx \mathbb{Q}$.

2. Basic Operations of Extended Real Valued Functions

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let x be a set. Then f(x) is an extended real number.

Let C be a non empty set and let f_1 , f_2 be partial functions from C to $\overline{\mathbb{R}}$. The functor $f_1 + f_2$ yielding a partial function from C to $\overline{\mathbb{R}}$ is defined by:

(Def. 3) $\operatorname{dom}(f_1 + f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2 \setminus (f_1^{-1}(\{-\infty\}) \cap f_2^{-1}(\{+\infty\}) \cup f_1^{-1}(\{+\infty\}) \cap f_2^{-1}(\{-\infty\}))$ and for every element c of C such that $c \in \operatorname{dom}(f_1 + f_2)$ holds $(f_1 + f_2)(c) = f_1(c) + f_2(c)$.

The functor $f_1 - f_2$ yields a partial function from C to $\overline{\mathbb{R}}$ and is defined by:

(Def. 4) $\operatorname{dom}(f_1 - f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2 \setminus (f_1^{-1}(\{+\infty\}) \cap f_2^{-1}(\{+\infty\}) \cup f_1^{-1}(\{-\infty\}) \cap f_2^{-1}(\{-\infty\}))$ and for every element c of C such that $c \in \operatorname{dom}(f_1 - f_2)$ holds $(f_1 - f_2)(c) = f_1(c) - f_2(c)$.

The functor $f_1 f_2$ yields a partial function from C to $\overline{\mathbb{R}}$ and is defined as follows:

(Def. 5) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every element c of C such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)(c) = f_1(c) \cdot f_2(c)$.

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let r be a real number. The functor r f yielding a partial function from C to $\overline{\mathbb{R}}$ is defined as follows:

(Def. 6) $\operatorname{dom}(r f) = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom}(r f)$ holds $(r f)(c) = \overline{\mathbb{R}}(r) \cdot f(c)$.

The following proposition is true

(6) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and r be a real number. Suppose $r \neq 0$. Let c be an element of C. If $c \in \operatorname{dom}(r f)$, then $f(c) = \frac{(r f)(c)}{\overline{\mathbb{R}}(r)}$.

Let C be a non empty set and let f be a partial function from C to $\overline{\mathbb{R}}$. The functor -f yielding a partial function from C to $\overline{\mathbb{R}}$ is defined by:

(Def. 7) $\operatorname{dom}(-f) = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom}(-f)$ holds (-f)(c) = -f(c).

The extended real number $\overline{1}$ is defined by:

(Def. 8) $\overline{1} = 1$.

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let r be a real number. The functor $\frac{r}{f}$ yielding a partial function from C to $\overline{\mathbb{R}}$ is defined by:

(Def. 9) $\operatorname{dom}(\frac{r}{f}) = \operatorname{dom} f \setminus f^{-1}(\{0_{\overline{\mathbb{R}}}\})$ and for every element c of C such that $c \in \operatorname{dom}(\frac{r}{f})$ holds $(\frac{r}{f})(c) = \frac{\overline{\mathbb{R}}(r)}{f(c)}$.

One can prove the following proposition

(7) Let C be a non empty set and f be a partial function from C to $\overline{\mathbb{R}}$. Then dom $(\frac{1}{f}) = \text{dom } f \setminus f^{-1}(\{0_{\overline{\mathbb{R}}}\})$ and for every element c of C such that $c \in \text{dom}(\frac{1}{f})$ holds $(\frac{1}{f})(c) = \frac{\overline{1}}{f(c)}$.

Let C be a non empty set and let f be a partial function from C to $\overline{\mathbb{R}}$. The functor |f| yields a partial function from C to $\overline{\mathbb{R}}$ and is defined as follows:

(Def. 10) dom |f| = dom f and for every element c of C such that $c \in \text{dom } |f|$ holds |f|(c) = |f(c)|.

We now state three propositions:

- (8) For all extended real numbers x, y such that $x \neq +\infty$ or $y \neq -\infty$ but $x \neq -\infty$ or $y \neq +\infty$ holds x + y = y + x.
- (9) For every non empty set C and for all partial functions f_1 , f_2 from C to $\overline{\mathbb{R}}$ holds $f_1 + f_2 = f_2 + f_1$.
- (10) For every non empty set C and for all partial functions f_1 , f_2 from C to $\overline{\mathbb{R}}$ holds $f_1 f_2 = f_2 f_1$.

Let C be a non empty set and let f_1 , f_2 be partial functions from C to \mathbb{R} . Let us note that the functor $f_1 + f_2$ is commutative. Let us observe that the functor $f_1 f_2$ is commutative.

3. Level Sets

Next we state several propositions:

- (11) For every real number r there exists a natural number n such that $r \leq n$.
- (12) For every real number r there exists a natural number n such that $-n \leq r$.
- (13) For all real numbers r, s such that r < s there exists a natural number n such that $\frac{1}{n+1} < s r$.
- (14) For all real numbers r, s such that for every natural number n holds $r \frac{1}{n+1} \leq s$ holds $r \leq s$.
- (15) For every extended real number a such that for every real number r holds $\overline{\mathbb{R}}(r) < a$ holds $a = +\infty$.
- (16) For every extended real number a such that for every real number r holds $a < \overline{\mathbb{R}}(r)$ holds $a = -\infty$.

Let X be a set, let S be a σ -field of subsets of X, and let A be a set. We say that A is measurable on S if and only if:

⁽Def. 11) $A \in S$.

One can prove the following proposition

(17) Let X, A be sets and S be a σ -field of subsets of X. Then A is measurable on S if and only if for every σ -measure M on S holds A is measurable w.r.t. M.

For simplicity, we use the following convention: X is a non empty set, x is an element of X, f, g are partial functions from X to $\overline{\mathbb{R}}$, S is a σ -field of subsets of X, F is a function from N into S, A is a set, a is an extended real number, r, s are real numbers, and n is a natural number.

Let us consider X, f, a. The functor LE-dom(f, a) yielding a subset of X is defined by:

(Def. 12) $x \in \text{LE-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and y < a.

The functor LEQ-dom(f, a) yielding a subset of X is defined by:

(Def. 13) $x \in \text{LEQ-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and $y \leq a$.

The functor $\operatorname{GT-dom}(f, a)$ yields a subset of X and is defined as follows:

(Def. 14) $x \in \text{GT-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and a < y.

The functor GTE-dom(f, a) yields a subset of X and is defined as follows:

(Def. 15) $x \in \text{GTE-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and $a \leq y$.

The functor EQ-dom(f, a) yielding a subset of X is defined as follows:

(Def. 16) $x \in \text{EQ-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and a = y.

One can prove the following propositions:

- (18) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{GTE-dom}(f, a) = A \setminus A \cap \text{LE-dom}(f, a)$.
- (19) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{GT-dom}(f, a) = A \setminus A \cap \text{LEQ-dom}(f, a).$
- (20) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{LEQ-dom}(f, a) = A \setminus A \cap \text{GT-dom}(f, a).$
- (21) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{LE-dom}(f, a) = A \setminus A \cap \text{GTE-dom}(f, a).$
- (22) For all X, S, f, A, a holds $A \cap \text{EQ-dom}(f, a) = A \cap \text{GTE-dom}(f, a) \cap \text{LEQ-dom}(f, a)$.
- (23) For all X, S, F, f, A, r such that for every n holds $F(n) = A \cap$ GT-dom $(f, \overline{\mathbb{R}}(r - \frac{1}{n+1}))$ holds $A \cap$ GTE-dom $(f, \overline{\mathbb{R}}(r)) = \bigcap \operatorname{rng} F$.
- (24) For all X, S, F, f, A and for every real number r such that for every n holds $F(n) = A \cap \text{LE-dom}(f, \overline{\mathbb{R}}(r + \frac{1}{n+1}))$ holds $A \cap \text{LEQ-dom}(f, \overline{\mathbb{R}}(r)) =$

 \bigcap rng F.

- (25) For all X, S, F, f, A and for every real number r such that for every n holds $F(n) = A \cap \text{LEQ-dom}(f, \overline{\mathbb{R}}(r \frac{1}{n+1}))$ holds $A \cap \text{LE-dom}(f, \overline{\mathbb{R}}(r)) = \bigcup \text{rng } F$.
- (26) For all X, S, F, f, A, r such that for every n holds $F(n) = A \cap$ GTE-dom $(f, \overline{\mathbb{R}}(r + \frac{1}{n+1}))$ holds $A \cap$ GT-dom $(f, \overline{\mathbb{R}}(r)) = \bigcup \operatorname{rng} F$.
- (27) For all X, S, F, f, A such that for every n holds $F(n) = A \cap$ GT-dom $(f, \mathbb{R}(n))$ holds $A \cap \text{EQ-dom}(f, +\infty) = \bigcap \text{rng } F$.
- (28) For all X, S, F, f, A such that for every n holds $F(n) = A \cap$ LE-dom $(f, \overline{\mathbb{R}}(n))$ holds $A \cap \text{LE-dom}(f, +\infty) = \bigcup \text{rng } F$.
- (29) For all X, S, F, f, A such that for every n holds $F(n) = A \cap$ LE-dom $(f, \overline{\mathbb{R}}(-n))$ holds $A \cap \text{EQ-dom}(f, -\infty) = \bigcap \text{rng } F$.
- (30) For all X, S, F, f, A such that for every n holds $F(n) = A \cap$ GT-dom $(f, \overline{\mathbb{R}}(-n))$ holds $A \cap$ GT-dom $(f, -\infty) = \bigcup \operatorname{rng} F$.

4. Measurable Functions

Let X be a non empty set, let S be a σ -field of subsets of X, let f be a partial function from X to $\overline{\mathbb{R}}$, and let A be an element of S. We say that f is measurable on A if and only if:

- (Def. 17) For every real number r holds $A \cap \text{LE-dom}(f, \mathbb{R}(r))$ is measurable on S. In the sequel A, B are elements of S. Next we state a number of propositions:
 - (31) Let given X, S, f, A. Suppose $A \subseteq \text{dom } f$. Then f is measurable on A if and only if for every real number r holds $A \cap \text{GTE-dom}(f, \overline{\mathbb{R}}(r))$ is measurable on S.
 - (32) Let given X, S, f, A. Then f is measurable on A if and only if for every real number r holds $A \cap \text{LEQ-dom}(f, \overline{\mathbb{R}}(r))$ is measurable on S.
 - (33) Let given X, S, f, A. Suppose $A \subseteq \text{dom } f$. Then f is measurable on A if and only if for every real number r holds $A \cap \text{GT-dom}(f, \overline{\mathbb{R}}(r))$ is measurable on S.
 - (34) For all X, S, f, A, B such that $B \subseteq A$ and f is measurable on A holds f is measurable on B.
 - (35) For all X, S, f, A, B such that f is measurable on A and f is measurable on B holds f is measurable on $A \cup B$.
 - (36) For all X, S, f, A, r, s such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \text{GT-dom}(f, \overline{\mathbb{R}}(r)) \cap \text{LE-dom}(f, \overline{\mathbb{R}}(s))$ is measurable on S.
 - (37) For all X, S, f, A such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \text{EQ-dom}(f, +\infty)$ is measurable on S.

NOBORU ENDOU et al.

- (38) For all X, S, f, A such that f is measurable on A holds $A \cap$ EQ-dom $(f, -\infty)$ is measurable on S.
- (39) For all X, S, f, A such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \operatorname{GT-dom}(f, -\infty) \cap \operatorname{LE-dom}(f, +\infty)$ is measurable on S.
- (40) Let given X, S, f, g, A, r. Suppose f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom} g$. Then $A \cap \operatorname{LE-dom}(f, \overline{\mathbb{R}}(r)) \cap \operatorname{GT-dom}(g, \overline{\mathbb{R}}(r))$ is measurable on S.
- (41) For all X, S, f, A, r such that f is measurable on A and $A \subseteq \text{dom } f$ holds r f is measurable on A.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Józef Białas. Completeness of the σ -additive measure. Measure theory. Formalized Mathematics, 2(5):689-693, 1991.
- [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- Józef Białas. Several properties of the σ -additive measure. Formalized Mathematics, [5]2(4):493-497, 1991.
- [6] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270,
- Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21–26, 1996.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-8 65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491–494, 2001.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
- Andrzej Nedzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990. [13]
- [14]Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.[16]
- Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [17]Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [19]Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received September 7, 2000

500