Some Properties of Cells and Gauges ${ }^{1}$

Adam Grabowski
University of Białystok

Artur Korniłowicz
University of Białystok

Andrzej Trybulec
University of Białystok

MML Identifier: JORDAN1C.

The terminology and notation used in this paper are introduced in the following articles: [20], [25], [2], [7], [18], [21], [8], [3], [4], [16], [13], [23], [14], [17], [5], [11], [12], [1], [19], [6], [10], [15], [22], [24], and [9].

We adopt the following convention: C denotes a simple closed curve, i, j, n denote natural numbers, and p denotes a point of $\mathcal{E}_{\mathrm{T}}^{2}$.

The following propositions are true:
(1) $\mathrm{BDD} C$ is Bounded.
(2) If $\langle i, j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ and $\langle i+1, j\rangle \in$ the indices of Gauge (C, n), then $\rho\left((\operatorname{Gauge}(C, n))_{1,1},(\operatorname{Gauge}(C, n))_{2,1}\right)=$ $\left|\left((\operatorname{Gauge}(C, n))_{i+1, j}\right)_{\mathbf{1}}-\left((\operatorname{Gauge}(C, n))_{i, j}\right)_{\mathbf{1}}\right|$.
(3) If $\langle i, j\rangle \in$ the indices of Gauge (C, n) and $\langle i, j+1\rangle \in$ the indices of Gauge (C, n), then $\rho\left((\operatorname{Gauge}(C, n))_{1,1},(\operatorname{Gauge}(C, n))_{1,2}\right)=$ $\left|\left((\operatorname{Gauge}(C, n))_{i, j+1}\right)_{\mathbf{2}}-\left((\operatorname{Gauge}(C, n))_{i, j}\right)_{\mathbf{2}}\right|$.
(4) For every subset S of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S is Bounded holds $(\operatorname{proj} 1)^{\circ} S$ is bounded.
(5) Let C_{1} be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and C_{2}, S be non empty subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. If $S=C_{1} \cup C_{2}$ and (proj1) ${ }^{\circ} C_{2}$ is non empty and lower bounded, then W -bound $S=\min \left(\mathrm{W}\right.$-bound $C_{1}, \mathrm{~W}$-bound $\left.C_{2}\right)$.
(6) For every subset X of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in X$ and X is Bounded holds W-bound $X \leqslant p_{1}$ and $p_{1} \leqslant \mathrm{E}$-bound X and S -bound $X \leqslant p_{2}$ and $p_{2} \leqslant$ N-bound X.
(7) $p \in$ WestHalfline p and $p \in$ EastHalfline p.

[^0](8) WestHalfline p is non Bounded.
(9) EastHalfline p is non Bounded.
(10) NorthHalfline p is non Bounded.
(11) SouthHalfline p is non Bounded.
(12) If UBD $C \neq \emptyset$, then $\operatorname{UBD} C$ is a component of C^{c}.
(13) For every connected subset W_{1} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that W_{1} is non Bounded and $W_{1} \cap C=\emptyset$ holds $W_{1} \subseteq \mathrm{UBD} C$.
(14) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that WestHalfline $p \cap C=\emptyset$ holds WestHalfline $p \subseteq \mathrm{UBD} C$.
(15) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that EastHalfline $p \cap C=\emptyset$ holds EastHalfline $p \subseteq \mathrm{UBD} C$.
(16) For every point p of \mathcal{E}_{T}^{2} such that SouthHalfline $p \cap C=\emptyset$ holds SouthHalfline $p \subseteq \mathrm{UBD} C$.
(17) For every point p of \mathcal{E}_{T}^{2} such that NorthHalfline $p \cap C=\emptyset$ holds NorthHalfline $p \subseteq \mathrm{UBD} C$.
(18) If $\mathrm{BDD} C \neq \emptyset$, then W -bound $C \leqslant \mathrm{~W}$-bound $\mathrm{BDD} C$.
(19) If $\mathrm{BDD} C \neq \emptyset$, then E-bound $C \geqslant \mathrm{E}$-bound $\mathrm{BDD} C$.
(20) If $\mathrm{BDD} C \neq \emptyset$, then S -bound $C \leqslant \mathrm{~S}$-bound $\mathrm{BDD} C$.
(21) If $\mathrm{BDD} C \neq \emptyset$, then N -bound $C \geqslant \mathrm{~N}$-bound $\mathrm{BDD} C$.
 $2^{n}+2$ 」 holds $1<I$.
(23) For every integer I such that $p \in \operatorname{BDD} C$ and $I=\left\lfloor_{\frac{p_{1}-W \text {-bound } C}{E-\text { bound } C-W \text {-bound } C} \text {. }}\right.$. $\left.2^{n}+2\right\rfloor$ holds $I+1 \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$.
(24) For every integer J such that $p \in \operatorname{BDD} C$ and $J=\left\lfloor\frac{p_{2}-\mathrm{S} \text {-bound } C}{\mathrm{~N} \text {-bound } C \text {-S-bound } C}\right.$. $\left.2^{n}+2\right\rfloor$ holds $1<J$ and $J+1 \leqslant$ width Gauge (C, n).
(25) For every integer I such that $I=\left\lfloor\frac{p_{1}-\mathrm{W} \text {-bound } C}{\mathrm{E} \text {-bound } C \text {-W-bound } C} \cdot 2^{n}+2\right\rfloor$ holds W-bound $C+\frac{\mathrm{E} \text {-bound } C \text {-W-bound } C}{2^{n}} \cdot(I-2) \leqslant p_{1}$.
(26) For every integer I such that $I=\left\lfloor\frac{p_{1}-\mathrm{W} \text {-bound } C}{\mathrm{E} \text {-bound } C-\mathrm{W} \text {-bound } C} \cdot 2^{n}+2\right\rfloor$ holds $p_{1}<\mathrm{W}$-bound $C+\frac{\mathrm{E} \text {-bound } C-\mathrm{W} \text {-bound } C}{2^{n}} \cdot(I-1)$.
(27) For every integer J such that $J=\left\lfloor\frac{p_{2}-\mathrm{S} \text {-bound } C}{\mathrm{~N} \text { bound } C-\mathrm{S} \text {-bound } C} \cdot 2^{n}+2\right\rfloor$ holds S-bound $C+\frac{\mathrm{N} \text {-bound } C \text {-S-bound } C}{2^{n}} \cdot(J-2) \leqslant p_{2}$.
(28) For every integer J such that $J=\left\lfloor\frac{p_{2}-S \text {-bound } C}{N-\text { bound } C-S \text {-bound } C} \cdot 2^{n}+2\right\rfloor$ holds $p_{2}<\mathrm{S}$-bound $C+\frac{\mathrm{N} \text {-bound } C \text {-S-bound } C}{2^{n}} \cdot(J-1)$.
(29) Let C be a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of \mathcal{E}^{2}. If $p \in \operatorname{BDD} C$, then there exists a real number r such that $r>0$ and $\operatorname{Ball}(p, r) \subseteq \operatorname{BDD} C$.
(30) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and r be a real number. Suppose $\rho\left((\operatorname{Gauge}(C, n))_{1,1},(\operatorname{Gauge}(C, n))_{1,2}\right)<r$ and $\rho\left((\operatorname{Gauge}(C, n))_{1,1}\right.$,
(Gauge $\left.(C, n))_{2,1}\right)<r$ and $p \in \operatorname{cell}(\operatorname{Gauge}(C, n), i, j)$ and $q \in$ $\operatorname{cell}($ Gauge $(C, n), i, j)$ and $1 \leqslant i$ and $i+1 \leqslant$ len Gauge (C, n) and $1 \leqslant j$ and $j+1 \leqslant$ width Gauge (C, n). Then $\rho(p, q)<2 \cdot r$.
(31) If $p \in \operatorname{BDD} C$, then $p_{\mathbf{2}} \neq \mathrm{N}$-bound $\mathrm{BDD} C$.
(32) If $p \in \operatorname{BDD} C$, then $p_{1} \neq \mathrm{E}$-bound $\mathrm{BDD} C$.
(33) If $p \in \operatorname{BDD} C$, then $p_{\mathbf{2}} \neq$ S-bound $\operatorname{BDD} C$.
(34) If $p \in \operatorname{BDD} C$, then $p_{\mathbf{1}} \neq \mathrm{W}$-bound $\operatorname{BDD} C$.
(35) Suppose $p \in \operatorname{BDD} C$. Then there exist natural numbers n, i, j such that $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$ and $1<j$ and $j<$ width Gauge (C, n) and $p_{\mathbf{1}} \neq\left((\operatorname{Gauge}(C, n))_{i, j}\right)_{\mathbf{1}}$ and $\left.p \in \operatorname{cell(Gauge}(C, n), i, j\right)$ and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq \operatorname{BDD} C$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[13] Artur Korniłowicz. Properties of left and right components. Formalized Mathematics, 8(1):163-168, 1999.
[14] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.
[15] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[17] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[18] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[20] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 115-122,1990$.
[22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received October 13, 2000

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

