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The terminology and notation used in this paper are introduced in the following

articles: [20], [25], [2], [7], [18], [21], [8], [3], [4], [16], [13], [23], [14], [17], [5], [11],

[12], [1], [19], [6], [10], [15], [22], [24], and [9].

We adopt the following convention: C denotes a simple closed curve, i, j, n

denote natural numbers, and p denotes a point of E2
T
.

The following propositions are true:

(1) BDDC is Bounded.

(2) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i + 1, j〉〉 ∈ the

indices of Gauge(C, n), then ρ((Gauge(C, n))1,1, (Gauge(C, n))2,1) =

|((Gauge(C, n))i+1,j)1 − ((Gauge(C, n))i,j)1|.

(3) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i, j + 1〉〉 ∈ the

indices of Gauge(C, n), then ρ((Gauge(C, n))1,1, (Gauge(C, n))1,2) =

|((Gauge(C, n))i,j+1)2 − ((Gauge(C, n))i,j)2|.

(4) For every subset S of E2
T
such that S is Bounded holds (proj1)◦S is

bounded.

(5) Let C1 be a non empty compact subset of E
2
T
and C2, S be non empty

subsets of E2
T
. If S = C1 ∪ C2 and (proj1)◦C2 is non empty and lower

bounded, then W-boundS = min(W-boundC1,W-boundC2).

(6) For every subset X of E2
T
such that p ∈ X and X is Bounded holds

W-boundX ¬ p1 and p1 ¬ E-boundX and S-boundX ¬ p2 and p2 ¬

N-boundX.

(7) p ∈WestHalfline p and p ∈ EastHalfline p.
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(8) WestHalfline p is non Bounded.

(9) EastHalfline p is non Bounded.

(10) NorthHalfline p is non Bounded.

(11) SouthHalfline p is non Bounded.

(12) If UBDC 6= ∅, then UBDC is a component of Cc.

(13) For every connected subset W1 of E
2
T
such that W1 is non Bounded and

W1 ∩ C = ∅ holds W1 ⊆ UBDC.

(14) For every point p of E2
T
such that WestHalfline p ∩ C = ∅ holds

WestHalfline p ⊆ UBDC.

(15) For every point p of E2
T
such that EastHalfline p ∩ C = ∅ holds

EastHalfline p ⊆ UBDC.

(16) For every point p of E2
T
such that SouthHalfline p ∩ C = ∅ holds

SouthHalfline p ⊆ UBDC.

(17) For every point p of E2
T
such that NorthHalfline p ∩ C = ∅ holds

NorthHalfline p ⊆ UBDC.

(18) If BDDC 6= ∅, then W-boundC ¬W-boundBDDC.

(19) If BDDC 6= ∅, then E-boundC ­ E-boundBDDC.

(20) If BDDC 6= ∅, then S-boundC ¬ S-boundBDDC.

(21) If BDDC 6= ∅, then N-boundC ­ N-boundBDDC.

(22) For every integer I such that p ∈ BDDC and I = ⌊ p1−W-boundC
E-boundC−W-boundC

·

2n + 2⌋ holds 1 < I.

(23) For every integer I such that p ∈ BDDC and I = ⌊ p1−W-boundC
E-boundC−W-boundC

·

2n + 2⌋ holds I + 1 ¬ lenGauge(C, n).

(24) For every integer J such that p ∈ BDDC and J = ⌊ p2−S-boundC
N-boundC−S-boundC

·

2n + 2⌋ holds 1 < J and J + 1 ¬ widthGauge(C, n).

(25) For every integer I such that I = ⌊ p1−W-boundC
E-boundC−W-boundC

· 2n + 2⌋ holds

W-boundC + E-boundC−W-boundC
2n

· (I − 2) ¬ p1.

(26) For every integer I such that I = ⌊ p1−W-boundC
E-boundC−W-boundC

· 2n + 2⌋ holds

p1 <W-boundC + E-boundC−W-boundC
2n

· (I − 1).

(27) For every integer J such that J = ⌊ p2−S-boundC
N-boundC−S-boundC

· 2n + 2⌋ holds

S-boundC + N-boundC−S-boundC
2n

· (J − 2) ¬ p2.

(28) For every integer J such that J = ⌊ p2−S-boundC
N-boundC−S-boundC

· 2n + 2⌋ holds

p2 < S-boundC + N-boundC−S-boundC
2n

· (J − 1).

(29) Let C be a closed subset of E2
T
and p be a point of E2. If p ∈ BDDC,

then there exists a real number r such that r > 0 and Ball(p, r) ⊆ BDDC.

(30) Let p, q be points of E2
T
and r be a real number. Suppose

ρ((Gauge(C, n))1,1, (Gauge(C, n))1,2) < r and ρ((Gauge(C, n))1,1,
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(Gauge(C, n))2,1) < r and p ∈ cell(Gauge(C, n), i, j) and q ∈

cell(Gauge(C, n), i, j) and 1 ¬ i and i + 1 ¬ lenGauge(C, n) and 1 ¬ j

and j + 1 ¬ widthGauge(C, n). Then ρ(p, q) < 2 · r.

(31) If p ∈ BDDC, then p2 6= N-boundBDDC.

(32) If p ∈ BDDC, then p1 6= E-boundBDDC.

(33) If p ∈ BDDC, then p2 6= S-boundBDDC.

(34) If p ∈ BDDC, then p1 6=W-boundBDDC.

(35) Suppose p ∈ BDDC. Then there exist natural numbers n, i, j such that

1 < i and i < lenGauge(C, n) and 1 < j and j < widthGauge(C, n)

and p1 6= ((Gauge(C, n))i,j)1 and p ∈ cell(Gauge(C, n), i, j) and

cell(Gauge(C, n), i, j) ⊆ BDDC.
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